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ON THE VALUE DISTRIBUTION OF MEROMORPHIC
FUNCTIONS WITH A DEFICIENT VALUE

SAKARI TOPPILA

1. Introduction

Let F be a family of functions meromorphic in the complex plane C and S a
subset of C. We call S a Picard set for F if every transcendental f€F assumes
every complex value with at most two exceptions infinitely often in C—S. We use
the usual notation of the Nevanlinna theory and denote

M (6) = {f: f meromorphic in C, §(e,f) = 5}.
Anderson and Clunie [1] have proved the following

Theorem A. Suppose that q and 6 are given with gq=1, 0<6=1. Then, if
the complex sequence {a,} satisfies

(n) st =g,
n=1,2,..., there exist a constant K=K(q) such that, if
@ log - = K52 log (log [a, ),
the set ’

3 s= U D

where D,={z: |z—a,|<d,}, is a Picard set for M(9).

We shall consider the dependence of the constant

K(q, d) = K(a)é‘zlog—;-
on § in the condition (2) and prove

Theorem 1. For any q=1 there exists a constant K=K(q) depending only
on g, not on 8, such that Theorem A still holds if the condition (2) is replaced by

@) logdl > K (logla,|)?.

Furthermore, Anderson and Clunie [1] proved
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Theorem B. Suppose that the sequence {a,} satisfies (1) and

1 _ K(og|a,))?
®) loga—” = Togg

for some K=1/2. Then S, defined by (3), is a Picard set for entire functions.

We shall show that for any g=1, the condition K=1/2 here is the best pos-
sible, i.e. the constant K in (5) cannot be replaced by 1/2. We prove

Theorem 2. Let g=>1, a,=(—1)""*¢", and

1 (logla,))®
6) log = Zlogg
Then the set S, defined by (3), is not a Picard set for entire functions.

For other results on Picard sets we refer to [2], [4], and [5].

2. Lemmas

Matsumoto [3] has proved the following

Lemma C. There exists an absolute constant A=0 such that if t=3 and f is
analytic in the annulus 1<|z|<e' and omits the values O and 1, then the spherical
diameter of the image of |z|=¢'® under f is at most Ae™"2.

Let g be meromorphic in the annulus 1<|z|<e' and omit there three values,
0, 1 and c. If ¢, we set

_ (=g

f(Z) - C(g(Z)—l)

and applying Lemma C we get

Lemma 3. Let g be as above. There exists a constant A. depending only on ¢
such that the spherical diameter of the image of |z|=e'* under g is at most A e ">,

3. Proof of Theorem 1

Let S satisfy the hypotheses of Theorem 1 and let us suppose that f is mero-
morphic and non-rational in the plane such that §(eo, f)=6=0 and

{0, 1, ¢)) € Su{z: |z] < re}

for some r,=0, 0£c=1.
Using Schottky’s theorem if ¢=<, and Lemma 1 of Anderson and Clunie [1]
if ¢, we see that |f(z)|>5 on the circles I,: |z|=¢"%|a,] and +y,: |z|=
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g~'%la,| if n is sufficiently large. Applying Lemma 3 in the annulus d,<|z—a,|<1
we note that, for all large values of n, either

6] If(2)) =3 forany zeC,={{:|{—a,l=Vd,} or
(i) f(C,) < U(a, 1/100) = {w: |[w—a| < 1/100} for some a satisfying |a| < 4.

Let E, be the region bounded by I',, 7, and C,. Let us suppose that the case (ii)
happens. Then f(E,) is a region whose boundary is contained in

U(a, 1/100) u{w: |w| = 5},

and connecting C, to I', by a path we see that f(E,) contains at least one point from
the set
{w: |w| < 5}—=U(a, 1/100).

Therefore f(E,) contains the set {w: |w|<5}—U(a, 1/100), and we see that f takes
at least one of the values 0 and 1 in E,. We are led to a contradiction and therefore
the case (i) happens for all large n. Applying the minimum principle we see now that

(i) | =3
if |z| is sufficiently large, say |z|>g, and z lies outside the union of the discs
IC_‘an|<Vdn'

We denote by B, B,, ... positive constants depending only on g. We choose
B,=0 and a sequence g<r;<r,<... such that

er, = ryyq < e8r,
and that the ring domain
ra(1=B)—1 < |z| < r,(1+B)+1
does not contain any of the points a,. We set
rZ—r?
r2—2r,r cos (o —@)+r?

2n
. 1 1
u(re’) = I f log’f(r ) do.
0 n

Then u is harmonic in |z|]<r,, u(0) =—m(r,, =),

101
—u(z) = 100 m(r,, =)

1/100 _
100 —

on |z|=r t, (if n is large enough), and if |a,|<r,, then
—u(z) = Bym(r,, =)
on C,. Let C,, p=s,, s,+1, ..., k,, be those of the discs C, which satisfy
Con{z: t, <zl <r,} =0
and let H, be the bounded domain bounded by |z|=t,, |z|=r, and C,, p=s,, ..., k,.
The function
Y log 2r,/|z—a
2= 3 loCrilz—a))
p=s, log(2r,/Vd,)
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is harmonic and positive in H, and g(z)=1 on the boundary component C,. The
function

_ log(r,/z])
Y = Tog (r)
is harmonic and positive in H, and w(z)=1 on |z|=t,. Then the function
101
U(Z) = u(z)+m(rn9 oo) _1'66 W(Z)+B2g(2) 5

which is harmonic in H,, satisfies v(z)=0> —log |f(z)] on the boundary circles
lz|=t, and C,, p=s,, s,+1,....k,, and v(z)=u(z)=—log |f(@| on |z|=r,.
From the maximum principle it follows that —log | f(z)|=v(z) in H,, and therefore

. 1 ,
(IV) _m(rn—19 °°) = 57?6/. v(rn—lew) d(p

Because u is harmonic in |z|<r, we have

2

e [ 4(aes€) dg = u(0) ==, ).

0
The function w satisfies
900
W) = 2o Toe T
on |z|=r,_;. It follows from (1) that k,=B,logr,, and from (4) we see that if
s,=p=k,, then
K(log r,)?
20000

log (2r,/Vd,) = %K(Iog )=

The sequence r, was chosen such that log (2r,/|z—a,|)=B, for any p on |z]|=r,_4,
and we get the estimate

= B5
s =% logr,
on |z|=r,_,. Let K=K(gq) in the condition (4) be chosen such that
Q) K = 1008, B;.

Then we get from (iv)

909 1 )

=1 (-, o) = s ) {_1+ 79210z 7, T 100Tog r,

and this implies that

3
(e =) = g, =) 1+ — r..]

for all large values of n, say for n=n,. Therefore

= ______3/2 ) = 3/2
m(rno+pa )~_— m(rnw )kl__]; (1+k+log rno = m(rno’ oo)p :
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and because p=log r,, ., we have m(r, <)=0 (log r)*2. We assumed that & (oo, f)=0
and we get

(vi) T(r.f) = O(logr)*®.

Let z, and b, k=1,2, ..., be the zeros and poles of f and let f have u, zeros
and v, poles in |z—a,|<1/|a,|. We choose z€C, such that |z—b|=}d,/v, for
any k, and applying the Poisson—Jensen formula with R= la,|Vq we get

log 3 = log|f(2)|

R+]z|
= o) EL 1
m(R, )R—IZI +IZ£R og

= O(T(R, f))+(u,—v,) log Vd,+v,log v,+0(n(R, =) log R).
It follows from (vi) that n(r, ==)=0(log r)'’?, and we see now from (4) that

(u,—v,)(log R)? = O(log R)*2.

R(z—by)
2 log Rz—BkZ

’R(Z_Zk)
lbal<R

R*—7Z),z

Therefore u,=v, for all large values of n, and we get
n(r,0) = (L+o(1))n(r, =)

for |a,|+1/|a,|<r<la,+1|—1/la,+1], n=n,. This implies that
N(r,0) = (1+0(D))N(r, =)

and therefore &(0,f)>0. However, the growth condition (vi) quarantees that f
has at most one deficient value. We are led to a contradiction and we see that if
K=K(q) is chosen by (v), then any non-rational f for which §(e,f)>0 takes at
least one of the three values 0, 1 and c infinitely often in C—S. By means of a
linear transformation, we conclude now that any transcendental g with & (e, g)=0
takes every value with at most two exceptions infinitely often in C—S, and Theo-

rem 1 is proved.
4. Proof of Theorem 2

Let ¢, a, and d, be as in Theorem 2. We shall consider the function

f(z) = 2t ﬁ (1—z/a,).

If n is large we see easily that |f(z)|>3 on the circle |z|=|a,|q"®. Therefore it
follows from Rouché’s theorem that f has exactly one 1-point on the ring domain
la,| g Y2 =|z|=|a,|¢"/%. We denote this 1-point by b,. In order to prove Theorem 2
it is sufficient to prove that b, lies on the open segment I,=(a,—d,, a,+d,). From
the definition of f we see that f(a,—d,)f(a,+d,) <0, and therefore it is sufficient
to show that | f(a,xd,)|=1.
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Let x=a,+d, or x=a,—d,. We denote by m,, m,, ... positive constants
depending only on g. We see easily that

oo

I (1—x/ay)

k=n+1

We denote A(z)=J[;_1 (1—z/a,). We have

le+ n—-1 x| — n—2 x|+ n-3 x| — n—4
o) = (B BECD) (Mg W)

q q

Eml-

where
Ry (x) = (x| +g"~*+H)(Ix| —¢"~*)
— x2+qn—2k((q_ l)lxl _qn—2k+1) = x2?
if k=m, and R, (x)=m;x* for any k. Therefore

log [h(x)| = (n—1)log x|~ n(n—1) log g—m,,

and we see that
1
log|f(x)| = log|d,/a,|+(n+3)log | x| -5 n(n—1)log g—m;.
Here nlogg=log la,|, log |x|=log |a,|—1/|a,| and

_ (og|a,|)®

n
togd,jan] =~ 0520 tog a, = (143 ] tog]a,,

and we note that log | f(x)|=2log |a,| —mg=0 for all large n. This completes the
proof of Theorem 2.
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