Annales Academiz Scientiarum Fennice
Series A. 1. Mathematica
Volumen 5, 1980, 197—205

DEFINITIONS FOR UNIFORM DOMAINS

O. MARTIO

1. Introduction

The concept of an (a, f)-uniform domain D in R" was introduced in [MS].

Although useful in several applications, this definition has no immediate con-
formally invariant meaning in R"=R"U{e}. Here we present a very simple con-
dition, called d-uniformity and based on the concept of the cross ratio, which turns
out to be equivalent to the (x, f)-uniformity in the case Dc R".

A domain DcR" is called §-uniform, 0<d=1, if for all x;, x,€D, x;#X,,
there is a continuum K in D connecting x; to x, with

x—=yl %=X,/

=6, i#j, i,j=1,2
x—x| [y—x] bbd

for all xe K\ {x;, x,} and y€R™D.

In order to prove that a domain DCR" is d-uniform if and only if it is (x, f)-
uniform we consider two other definitions for the («, f)-uniformity in Chapters 3
and 4. The main equivalence is then proved in Chapter 5. Chapter 6 is devoted to
some general properties of uniform domains, e.g. if D is a d-uniform domain, the
Hausdorff-dimension of dD satisfies dim, dD=c<n, where ¢ depends only on
¢ and n.

In R2? a simply connected domain D is §-uniform if and only if D=R2? or
D=R™\({z} or D is a quasiconformal disc. In the case of Jordan domains this gives
a new and simple characterization of quasiconformal discs in R2.

Notation will be as in [MS] and generally standard. A rectifiable path is always
parametrized by means of arc length. If y: [a, b]—R" is a path, then |y|=v][a, b]
is the locus of y.
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2. John domains and (o, f)-uniform domains

First we recall the definitions presented in [MS].

2.1. Definition. A domain GCR" is called an (o, §)-John domain, O<oa=
B<-oo, if there is x,€D such that every x€D can be joined to x, by a rectifiable
path y: [0, d]—D such that d=f and

(2.2) dist (y(#), 0D) = —t for t€[0, dI.

o
d
The point x, is called a center of D.

2.3. An alternative characterization for John domains was given in [MS, Lemma
2.7]. Here we shall need the following fact included in the proof of that lemma:
Suppose that GC R" is a domain, x, x,€G and x can be joined to x, using a path
y: [0, 11> D such that for some 6¢€(0, 1]

2.4) [0, t] < B" (y(t),%dist (y(0), 8G)], 0=r=1.

Then there exists a rectifiable path y;: [0, d]—G joining x to x, and satisfying
(2.5) d = |x—xl/p?
2.6) dist (3,(1), D) = o1, 1€[0,d],

and ¢ depends only on »n and §.

2.7. Definition. A domain DcCR" is called (a, f)-uniform, O<o=f<oco, if
for each pair of points x;, X,€D, x;5#x,, there is an (o |x; —x,|, f|x; —x,|)-John
domain G such that x;, x,€ G D.

2.8. Remark. The definition for uniformity in the above sense can easily be
extended for domains in R"; for instance, a domain DcCR" can be called («, B)-
uniform if DAR" is («, f)-uniform in the sence of 2.7. However, we only consider
(2, B)-uniform domains in R" since the definition for d-uniform domains applies to
R” and reduces to (x, f)-uniformity in R"; see Chapter 5.

3. Domains of type (2, )

3.1. Definition. A domain DcCR" is of type (o, f), O<a=f<-o, if for
each pair of points x;, X,€ D, x;7X,, there is a rectifiable path y: [0, d]-D joining
x; to x, and
(3.2) d = Blxy—x

(3.3) dist(v(t),aD)é%Pa(t), 1€[0,d], where py(r) = d/2—|t—d/2], 1€[0, d].
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3.4. Theorem. (a) If D is (a, p)-uniform, then D is of type (u, 2f3). (b) If D is
of type (o, B), then D is ((o/B)?/32, B)-uniform.

Proof. For (a) suppose that D is («, f)-uniform. Let x;, x,€ D, x;x,. Then
there exist rectifiable paths y;: [0, d]—~D joining x; to a point x, of D and
d; = Blxy—xal, dist (y,(1), OD) = a|x, —x,|1/d;.
Since o |x;—x,|t/d;=at/f, the composed path y=y;'y: [0,d,+dp]>D clearly sat-
isfies (3.2) and (3.3) for the required « and p.

For (b) assume that D is of type («, ). Let xy, x,€D, x;x,, and let y be a
path as in 3.1. Write for =0

A= U B'(y(s), tps(s).
s€(0,d)

Then A4, is a domain in D provided z€(0, o/p).

Let e=(1/4) min (d, dist (4,55, 0D))>0. Set G=A, 5+ B"(¢). We claim that

G is an (o', §’)-John domain with

o = (/B x1—x2l/32, B = Blx;—x,
and x;, x,6GcD. The last two assertions are trivial and it remains to prove
the first.

Set xo=y(d/2) and let y€G. Fix s€[0,d] such that y€B"(y(s), ap,(s)/2B)+
B"(¢). By symmetry we may assume s=d/2. Let y;: [0, d;]~G represent a straight
line segment joining y to y(s). The composed path y,=(y|[s, d/2])y; joins y to x,
in G. Let y,: [0,/]—-G with arc length as parameter. Now
(3.5) l=d+d2 =as/2f+e+d)2 = ad/df+e+d[2 =d = B|x;—x,].

Choose t€[0,7]. If t€[0, d,], then clearly
dist (y,(2), 0G) = 12 = at/2.

Suppose t=d;. Pick s'€[s, d/2] with d/2—s"=[—t. Since |—d/2=¢, the inequality
s’+e=t holds. If #/2=¢,

(3.6) dist (y,(¢), 8G) = dist (y(5), IG) = iﬁ § = % (t—e) = 4—/3 ‘.
On the other hand, if #/2<e, then
3.7 dist (y,(1), 0G) = 8+—-—l;s' = 2ﬁ (e+5) = ﬁ

The conclusion now follows from

3.8. Lemma. Suppose that GCR" is a domain and x,CG. If there exist num-
bers O0<a=f<e such that every point x€G can be joined to x, using a rectifiable
path y: [0,d]-G with d=B and

(3.9) dist (y(1), 0G) =
then G is an ((o/B)? dia (G)/2, B)-John domain.

‘w|sz
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3.10. Remark. The only difference is in the lower bounds of (2.2) and (3.9).

Proof for Lemma 3.8. Set p=o«dia(G)/2f. Clearly dia(G)=2f and
B" (x4, p)cG. Note also that («/f)? dia (G)/2=p.

Let x€G and let y: [0, d]—G be a path as in (3.9). If d<p, then instead
of y we can use a straight line segment y” connecting x to x,, and it is not difficult

to see that
dist (y’(t), 8G) = pt/d’, t€[0,d’],

where d’ is the length of y’. On the other hand, if d=p, then

dist (y(1), 0G) = at/B = adt/pd = («/B)* dia (G)1/2d.

The lemma follows.
To finish the proof of (b) note that by (3.6) and (3.7)

. o o ]x;— x|
3.11 dist (y,(2),00) = —t = ———"—1.
1D 02(.00) = 351 = 35 T, =x
Since dia (G)=|x;—x,|, Lemma 3.8 implies by (3.5) and (3.11) that G is a
(3271 (ot/B)? | Xy — X3/, B|x;—X,])-John domain. This completes the proof for (b).

4. Condition A (9)

For uniform domains this condition is a counterpart of [MS, Lemma 2.7]
given for John-domains.

4.1. Definition. A domain DcCR" satisfies the condition A (§), 0<d=1,
if for all x;, x,€ D there is a path y: [0, s]--D (not necessarily rectifiable) joining
x; to x, and

4.2 dia [y] = |x;—x,|/0

4.3) y[0, t] < B" (y(t),—;—dist (@), (9D)) , 0=r=s/2
_ 1 .. ‘

4.4 y[¢, s] < B [y(t), 5 dist (y (1), (9D)) , S2=t=s.

4.5. Theorem. (a) If a domain DCR" satisfies the condition A (0), 0<d0=1,
then D is of type (a, ), where O<a=p<o depend only on § and, possibly, on n.
(b) If D is of type (o, B), then D satisfies A (0) with d=min (1/8, «/B).

Proof. The proof for (a) rests on 2.3. Suppose that D satisfies the condition
A (5). Let x;,x,6D and let y: [0,s]>D be a path as in 4.1. We may assume
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s=2. Write xo=y(1). By 2.3 there are rectifiable paths y,;: [0, d;]—~D connecting
x; to x,, i=1, 2, with
(4.6) dist (y;(¢), D) = ot

4.7 d; = |x;—Xol/ 9%,

where ¢€(0, 1] depends only on ¢ and n. Letting y=y, 'y, it is not difficult to see
that y satisfies (3.2) and (3.3) with S=2/¢2%5, a=1.

The proof for (b) is easy. Suppose that D is of type (x, B). Pick x;, x,€D,
X1#X,, and let y: [0, d]—D be a rectifiable path joining x; to x, as in (3.2) and
(3.3). Now dia ([y)=d=8|x,—x,| and for ¢€[0, d/2]

y[0, 1] < B'(y (1), t) < B"(y(1), (B/o) dist (y(7), OD)),

and, by symmetry, the same holds for y[#, ] in the interval [d/2, d]. Thus 7 satisfies
(4.2)—(4.4) with 5=min (1/B, «/B). The proof is complete.

5. J-uniform domains

5.1. Definition. A domain DCR" is called d-uniform, 0<d=1, if for all
X1, X2€D, x;7#Xx,, there is a continuum K joining x; to x, such that the cross ratio

[x—yl lxi—xj|25, i,j=1,2, i#j

5.2 X, Vs Xis X;) = =
(5-2) (. y J) [x— x| |xj_y,

for all xe K\ {x;, x,} and y€[D.

5.3. Remark. The cross ratio (x, y, x;, X,) is defined whenever all four points
are distinct in R". Especially, if y=-<o, then

(X, 2, X1, x2) = 'xl_x2l/lx_x1|'

Observe that the cross ratio is a conformal invariant in R*. If x, y, x;, x, are four
distinct points of R", then there is a M&bius transformation 7 with 7'(x,)=0, T(y)=
and T(x)=e; and we have

(%, s X1, X2) = [T (x5)].

5.4. Theorem. (a) If a domain DCR" is S-uniform, then D is (x, B)-uniform
and O<a=f<oo depend only on 6 and n.
(b) If DCR" is (a, B)-uniform, then D is S-uniform and 6€(0, 1] depends only on
o and f.

Proof. For (a) fix x;, x,€D, x;7#x,, and let K be a connecting continuum as
in 5.1. Let K; be a subcontinuum of K such that K; joins S""*(x,, s) to S"71(x,, s),
5= x;—X,|[/4, in D\U;=1,.B"(x;, 5). Choose xo€K;nS"1(xy, ).
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By symmetry and trivial geometric considerations it suffices to show that x,
can be joined to x, by a path ¢ such that

(5.5) [0, t] < B*|e(1), 1 dist (¢(¢), 0D
%

where » depends on J and n, since then it is easy to see that D satisfies the A (5')-
condition and hence Theorems 4.5 and 3.4 show that D is (o, §)-uniform.

To construct the path ¢ define a sequence of points zg, z;, ... and paths v,
connecting z; to z;,, as follows. Set z,=x,. Choose z;€KNS" *(x;,s/2). Since
D is S-uniform, there is a continuum connecting z, to z; in D and satisfying (5.2).
Without loss of generality we may assume that the continuum is a path. Call it y,.
In general we pick z;€S"7(x;, s/2))nK and define y; similarly.

Fix i. For y€[D with |z;—y|=dist (z;, (D) the estimate
(5.6) dist (z;, [D) = ds|xys—yl/Ix;—xa| 2 = 6 |x,— yl/2'*?
holds. If now |x,—y|<|x;—x,|/2 for some i, then ¢ can be chosen to be a straight
line segment and the estimate (5.5) is trivial. Otherwise |x,—y|=|x;—x,|/2 for all i.
Consequently (5.6) yields

(5.7) dist (z;,[D) = 0 |x,—x,|/2*3 =1y, i=0,1,....
Consider ;. Let x€[y;\U;=si+1 B"(z;, r;/2). For y€(D
(5.8) [x—yl =dIx—zlly—zisal/lzi—zisal.

On the other hand, |x—z;|=r/2, |y—zi41|=r+1 and |z;—z;4,|=2s/2"; thus (5.8)
yields
(5.9 |x—y| = 8% |x;—x,/20 7.

Clearly the same estimate holds if x€|y|Ul;=; 41 B"(2;,7;/2), since in this case
(5.7) gives
x—yl=ly—zjl=lx—z;l =r;—r;2 = 8 ]x;—xp| /2744

for j=i,i+1. Compose the paths y; into a single path ¢ joining x, to x;. It remains
to show that ¢ satisfies (5.5).
To this end let x€le|. Then x€ly;| for some i. For z€ly;]

(5.10) lz—x;| = |x,—zjl+lz—zj| = |x;—2z;|+5/62771
= 52 56201 = 25/6291,
since for y=-< (5.2) implies
|z;—z| = |zj—zj41l/0 = 25/627.
Let now z€|y;|, j=i,i+1, ... be arbitrary. By (5.9) and (5.10)
lz—x| = |x—x;|+|z— x| = 4s/62~* = dist (x, [ D)/x,
where »%=4§"2-5. This proves (5.5).
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To prove (b) suppose that the domain DCR" is («, f)-uniform. Let x;, x,€D,
X, #X,. By Theorem 3.4, D is of type (o, 2f3); hence there is a path y: [0,d]—~D
joining x; to x, and satisfying (3.2) and (3.3). We shall show that K=|y| satisfies
the condition (5.2), where 6 depends only on « and S.

Let x=y(1), t€(0,d), x=x,, x, and y€[D. Suppose t=d/2. Assume first
|x,—y|=4B|x;—x,|. Then

X =yllx =X _ apa() X1 —Xs| _ o
[x—x;x,—yl = Btlx,—yl 4p*
If |x,—y|=4B|x;—x,|, then

I

Ixs—yl — [x2 =yl - Ixs — ¥l
since the map s—(s—f|x; —x,[)/s has the minimum 3/4 in [48|x;—x,|, ). On
the other hand,

lx—yl - |y =% =[x =X, — [y = Xa| = Blx1 — X, = 3/4,

1 — X, | X1 — X,
=
[ — x4 Blx1—x,|

=1/p

and thus
[x =yl |x1—x,
— == = 3/48.
[x—x1| [x2— ] 4P
Thus we have a lower bound for the cross ratio (x, y, x;, x,) in terms of « and B
whenever y€(D and x=y(t), t=d/2. Observe that the case y=-co is trivial.
Next consider (x, y, x,, x;) for yé[D and x=y(¢), t=d/2. Assume first [x—y|=
cly—x,, c=a/f(1+a/f). Now

(5.11) (X, ¥, Xa5 X1) = € ]X1 = Xal/[x —X5| = € |X1—Xl/B %1 —Xs| = ¢/B.
If |x—y|<c|y—x,|, then

[X;=x| = ly—x1| =y —x| = [y—x1] —cly—x1] = |y —x1|/(1+0/P)
and hence
ly—x| = ot/ = alx—x|/B = |y —x4l,

a contradiction. Thus (5.11) holds in each case.

To complete the proof we observe that the above estimates also hold, by sym-
metry, in the case x=y(¢), d/2=t=d. Hence we have the required lower bounds
for the cross ratios in (5.2).

5.12. Remark. It is also possible to give alternative characterizations for
uniform domains in terms of cross ratios. For instance, a domain DcR" can be
called t-uniform, O<¢=1, if for all x;, x,€D, x;#Xx,, there is a path y: [0, 1]-D
joining x, to x, such that for all z, z,€|y|, z;%z, and x€|y| between z; and z,
the estimate (x, y, z;, z)=¢ holds for all y€[[D. To prove that this gives essentially
the same concept as 5.1 requires lengthy technical constructions, which we omit here.
Observe that this definition is also a conformal invariant in R".
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6. Properties of uniform domains

6.1. Quasiconformal invariance. It was shown in [MS, Theorem 2.15] that if a
domain DcR" is («, f)-uniform and f: R"—R" is a K-quasiconformal mapping,
then D is («’, f*)-uniform and O<a’=p"<< depend only on «, ff, K and n. Since
the cross ratio is invariant under Mé&bius transformations of R”, standard modulus
estimates and a compactness argument give the following result.

6.2. Theorem. There is a function ¢@,: (0, 11X[1, «)—(0, 1] depending only
on n such that
@u(6,1) = 6 = lim ¢, (5, K),

and if DcR" is a S-uniform domain and f: R"—R" is K-quasiconformal, then fD is
@,(6, K)-uniform.

6.3. Remark. For n=2, because of Teichmiiller’s famous theorem, the change
of the cross ratio under a quasiconformal map is known. Consequently, for n=2
the function ¢, (5, K) can be calculated.

6.4. Hausdorff dimension of 0D. It was proved in [GV] that if f: R*>R" is
a quasiconformal mapping, then the Hausdorff dimension, dim,,, of f.S"~* satisfies
dim, fS"'=c<n, where ¢ depends only on n and K. Observe that dim, fS" !
can take values arbitrarily close to #. Thus the following theorem is sharp.

6.5. Theorem. Suppose that DCR" is a 5-uniform domain. Then dim, dD=
c<n, where ¢ depends only on & and n.

Proof. For the proof we apply [S, Theorem 3.2]. Let ACR" and z€A. Write
G(z, A)=1lm sup dist(x, A)/r
r—~0 x€B"(z,r)
and G(A)=inf {G(z, A): z€A}. If G(4)=0, then dim, A=c<n, where ¢ depends
only on G(A) and n; see [S, Theorem 3.2]. Thus it suffices to find a lower bound for
G(0D) depending only on 6.

We may assume 0D R"#0. Fix z€dDnR" and choose r,>0 such that for
all r€(0, rol, S""*(z, r)nD#0.

Let x,€S8"*(z, r)nD, r€(0, r,]. Pick x,6 DNS""'(z, r/4). Since D is J-uni-
form, there is a continuum K joining x, to x, and (x, y, x;, x,) =4 forall x€ K\ {x;, x,}
and y€(D. Fix x€S"7'(z, 3r/4)nK and then y€[D such that |y—x|=dist ([D, x).
Now either |y—x|=r/16 or |y—x|<r/16, in which case
x—xilly=xs| _ s (/H@r/A=r/16—r/4) 10

R ) 6

Hence in both cases

sup idist (x,0D) = §/16, re(0, ro).

x€B"(z,r) r

This is the required lower bound.
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6.6. A metric property. If DCR" is a d-uniform domain, it is easy to show
that D is locally connected at boundary points (for the case n=2, see [MS, Lemma
2.29)). F. Gehring, see e.g. [G], has introduced an important metric property called
b-locally connectedness. We recall the definition. A set ECR" is said to be b-locally
connected 1=b<-oo if, for all z€ER" and r=0, points in EnB"(z, r) can be joined
in EnB"(z, br) and points in EN\B"(z, r) can be joined in E\B"(z, r/b).

6.7. Theorem. Suppose that DCR is a 6-uniform domain. Then D is b-locally
connected and b depends only on §.

Proof. Let zéDNR" and r=0. Since §-uniform domains are invariant under
the inversion in a ball, it suffices to show that points in DnB"(z, r) can be joined
in DnB"(z, br), where b depends only on 8. Let x,, x,¢ DnB"(z, r). Since D is
d-uniform, there is a continuum X joining x; to x, in D and satisfying (5.2). Set
b=1+5/0 and S=S""'(z,br). If KcB"(z,br) or ScD, we have proved the
claim. Otherwise let x€KnS and y€[DnS. Now (5.2) yields
_ 1 x=yllxi—x| _ 1 2br2r 4[1 5]r

=3 —wl  —oso-nr - 3UTs

5
57 = |x—xq|

clearly a contradiction since 6€(0, 1]. This proves the theorem.
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