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A CONTINUITY PROPERTY OF HOTOMORPHIC
DIFFERENTIALS UNDER QUASICONFORMAT

DEFORMATIONS

YUKIO KUSUNOKI ANd MASAHIKO TANIGUCHI

Introduction

In this paper we shall investigate a continuity property of certain holomorphic

Abelian differentials with respect to the Dirichlet norm under the quasiconformal

deformation of Riemann surfaces. In the case of compact Riemann surfaces related

studies have been made by L. Ahlfors, L. Bers and others. However, when we

generalize such results to the class of open Riemann surfaces, we encounter many

difficulties. For example, we do not generally know the existence of Teichmiiller

mappings, nor the existence and uniqueness of (square integrable) holomorphic

differentials with prescribed periods along At-cycles. Hence we have to restrict our

consideration to either certain classes of open Riemann surfaces over which some

theorems used in the case of compact Riemann surfaces can be generalized, or

certain classes of differentials on general surfaces with appropriate boundary

behaviour.
In Chapter I we shall provide first some basic estimates for the variation under

quasiconformal deformations of holomorphic differentials with fixed l-periods
and holomorphic reproducing differentials. For such differentials we shall prove

in Chapter 2 the continuity theorems with respect to the Dirichlet norm in the

Teichmiiller space of a given surface. In the case of compact Riemann surfaces

these results are essentially due to L. Ahlfors [2], but we can show further in
Chapter 3 that the continuity of holomorphic reproducing differentials still holds

under the squeezing deformation about a non-dividing simple loop on a compact

Riemann surface.

1. Yariation of holomorphic differentials

1.1. For compact Riemann surfaces, L. Ahlfors [2] showed the continuity
(or variation) of normal holomorphic differentials with respect to the Dirichlet
norm, which played a fundamental role in his remarkable theory on Teichmtiller

spaces. To extend this continuity theorem to general Riemann surfaces we need
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Riemann's bilinear relation as in [2]. However, in the case of open Riemann sur-

faces, it does not generally hold in its classical form even if the differentials are

square integrable. Thus to use a generalized bilinear relation we consider flrst a re-

stricted class O" of Riemann surfaces introduced by Kusunoki [10]. For the sake

of convenience we recall the definition. Let Å be an open Riemann surface and

E: {R,}L, a canonical exhaustion (cf. [ ] of Ä. Let 9n be the set of l-cycles 7

in Ä-R, such that each 7 consists of (piecewise smooth) dividing curves on R and

is freely homotopic to åÄo. This means that every y€9, consists of the same number
of connected components yi(y,nyi:$, ilj) as lR,:Zi, and dividing curves

7, and i, are freely homotopic. We denote gn:U|=r 9n and by O" the class of
Riemann surfaces whose element admits a canonical exhaustion E for which the

extremal length ).(9) vanishes. It is known ([10]) that O"*Oo in general, but
O":Oe whenever the genus is finite, and that on every Riemann surface R of
class O" a gerreralized bilinear relation holds for harmonic differentials with finite
Dirichlet norm.

For later use we shall extend it slightly as follows.

Proposition l. Let R be an open Riemann surface of class O" and E:{R,)
be a canonical exhaustion of R such that A(9r):0, and let {Ar, BiY:, be a canon-

ical homology basis with respect to E modulo diuiding cyclest), where g (=+-;
is the genus of R. Then for any two square integrable closed Cr-dffirentials at and
o there is a sequence fuoj of integers for which the bilinear relation

(1) (a, *o)--Jg 
^Z_ t{*[a-f,{u)o A j,BrcR,ru' [. § j §j ij 

)

conjugate differential of o. In particular, if at

A-cycles, then we haue

holds, where *o is the

ing periods along all

(2)

and o hsue uanislt-

Proof. By means of the orthogonal decomposition l":11,*1"6 (cf. Ahlfors-
Sario [4]) we can write

cD : 0)h+coeo, and o : 61r*o"s,

where coo, o1,(ll and e)"o, o"o(1"o. Since ln, l"o and *l-"0 are mutually orthogonal,
we have

(a,*o) - (ar,*oo).

Now, we know that the bilinear relation for a1,and oo holds on R€O" because (l)

1)For each Å-, the subset {,4.;, n)lLr gn(=-) being the genus of ,R, forms a homology
basis on Å. (modA.Rr), for which AiXBi:öii,AiXAr:BrvBr:0 for every i, i:1,...,g,.The
intersection number AXB of two cycles A and B is taken here so that it has the positive signature

when B crosses I from right to left. Note that it has the opposite signature to that in [4].
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is valid for a:an ar,d o:oh with suitable {n1} (cf. [10]), where fu] ^uy 
depend

on rll and o. Since a and o are Cl-differentials, coe' and oro belong to l-,on,l'1c
f "nll:f!. Consequently, they are written as a"o:df and o"o:dg with C2-

functions f arrd g on Å. It follows that

I ro: I, and I oo: I o,
Aj Aj Aj AJ

and analogously for B-periods, which proves the assertion.

1.2. Let Äo be a marked Riemann surface of class O" with a canonical homology

basis {.4r, Bi\!:, modulo dividing curves as in Proposition 1. We consider a C2-

quasiconformal mapping fi of Ro onto another Riemann surface rR, where C2

means the property of being continuous up to the second derivatives. Then /*
induces on R canonical homology basis modulo dividing curves, which we denote

also by {Aj,Bj\sj:i.It is easy to see that R also belongs to the class O".Let 9obe
a holomorphic Abelian differential on Åo with finite norm, that is, 0o€l-,(rRo).'We

shall now show that there exists on Ä a unique differential 0R€f,(R) having the

same ,4-periods as 0q. Actually, we have more generally the following

Propositiorr 2. Let S be an arbitrary open Riemann surface and c» be a closed

Ct-dffirential square integrable on S. Then there exists a. square integrable Abelian

differential 0 hauing the same periods with a along all Ai-cycles where {Ai,BrY:,
is a canonical homology basis on S modulo diuiding curues. In particular, if S belongs

to O", then 0 is uniquely determined.

Proof. Let o):{D1,*a)"s be the orthogonal decomposition where a1,(f 1, and

u"sif 
"o.Since 

ot(l-1, a"o(fl hence cr.rn has the same periods as ro. Set

lr: Iro:a,+y'-t'b,
aj Äj

for every 7 with real numbers a, and år. We write arr:6er+/=.crrr, where al,

and, a, are real harmonic differentials in fo. Then Eo:o1o+|/=.*a1,(k:1,2)
are holomorphic and

I *r: a1+y':1 'c,, and I *r: b,+l -l'a,
ai Aj

for every I with some real c, and d,. Then by Virtanen-Kusunoki's theorem
(cf. [11], [12]) there exist holomorphic differentials 0r and 0, in i-o such that

{n'-
Aj

Hence 0-Tr*y1,A, is

periods oi*/;.b, as @.

aj and IUr-bj foreveryi.

a holomorphic differential in f o with the same A j-
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Note that on S€O" every holomorphic differential with finite norm is uni-
quely determined by its ,4-periods, which follows from Proposition 1.

Corollary 1. Let Ro, R and 0rbe as before. There exists on R a unique differ-
ential ?p€lo(R) hauing the same A-periods with 0o.

Proof. First we show that the pull-back c»:1oofit belongs to t-:(.R). Writing
f;':f,J:lf,lr-lfrlr, and lo:a(w)dw, we have

lllr"f ll'": 2 I l@of)1,|f"1, +lfufldx dy
R

: 2 [ t@ o nt'lffi#] l dx dy = P#tt gol1.,

_*
uhere z:x*l - | . y stands for the generic local parameter on R and
ft:supxl"Gl/lf.lGD is the supremum of the modulus of the complex dilatation of /.
Hence co€i-I(Ä), and it is easily checked that ar€f](,R).

Next, noting that ln,|o:Jn,co for every j, we see from Proposition 2 that
there exists a holomorphic square integrable differential 0* on R having the same
periods as 0o along ,4-cycles. q.e.d.

Remark. Let «lR€f&(R) be given (l<-k=-), and f be a Ce+l-quasiconformal
nnpping from .Ro onto R. Then as in the proof of Corollary 1, we can show that
aryofEfk(Ro). Moreover, if ar*(I.(A), then it is easily seen that @Rol€.1-:(Ro).

1.3. Now let Ro again be a non-planar Riemann surface of class O". Let f
be a Cz-quasiconformal mapping from Ro onto Å, E:{R,Y, be a canonical ex-
haustion of R such that )"(9r):0, and {Ai, Bi\oi:, be a canonical homology ba-
sis with respect to E. Suppose that a differential 0ao€l-.(Ro) is arbitrarily given. Then
by Corollary 1 there exists a unique 0"€f"(R) having the same periods as Oao

along all A-cycles, and we can show the following

Theorem l. Let Ro(O" and f be a Cz-quasiconformal mapping from Ro onto R.
T'hen, giuen O^o€fo(Ro), there exists a unique 0R(f,(.R) with the same A-periods
as 9po and we haue

ll0" of -0*oll*o ll 0pollno,

where k:supn"lf)llf) (<.1), i.e. K:(l+k)|[-k) is the maximal dilatation

Proof. Write 0.:a(w)dw on R, and set ar:Qnof-|^o. Then, since co

vanishing periods along all Ar-cycles, we have by Proposition I

(crr, *ar) : Q,

which implies immediately

2k<-- 1 -k
of f.
has

ll@ "f) 
.f ,(r)dz -0^olll, - ll@ "f) .f uk)dzlläo : 0.
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As I4l=/il,fl, we have

ll@ "f).f,(z) dz-|*olln, € kll(a of).f,(z) dzll*o,
and hence

ll@ " fl . f "(z) 
dzll po = *ll 0a"llno.

Thus the assertion follows from the inequality

ll 0* o/- 01oll n. = ll (a o f) . f ,(z) d z- 0n,lln. * ll ( a o I) . f z dzll *,.

1.4. Next let R be an arbitrary Riemann surface, and a simple closed curve

c on R be given. There now exists a unique differential 0,,a€I,(Å) which satisfies

the condition

I ,: (co, Re 0".p) for every ar(i-r(R).

We call 0",p the holomorphic reproducing differential for c on .R (cf. [a], [12]).
This differential has several extremal properties, and especially llRe 0.,all2

Gll2ll0","ll) is equal to the extremal length of the homology class of c on rR.

For simplicity, we write hereafter a curye corresponding to c on another sur-

face again as c. As for 0",a we can show the following

Theorem 2. Let Rs€Osp and a simple closed curoe c be giuen (on R), and

f be a Cz-quasiconformal mapping from Ro onto a surface R. Then, if we let
k:suPno lfulllf,l, it holds that

110",*of -L",nollno s fi llu".*"11"..

Proof. Write ar:0",nof-0",n0. Now we find al€fl(R.) as before. So ar can

be decomposed in the form

a : (/,r* il7r+/= . ((I,r* dgr)

with real ar;€.1-1,(Åo) and real dgi<fh(R) (i:1,2).
Note that for every l-cycle d on Ro

tm f 0",*,: cXd: lm I 0",^.

Hence cr,r€f tu(Rs), and, further, @z:0 because R,€OHD (fr,1Ro;=101), and

we have

(ar, *ar) : (a,r+ dg1* Ft - dgr, * @t+*dgL+ ll= *dg)

Ro

Thus by the same argument as in the proof
assertion.

A (Dt - 0.

of Theorem 1, we can prove the
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1.5. Finally, to obtain a similar result as Theorem 2 for an arbitrary Riemann
surface, we must restrict ourselves to reproducing differentials for a suitable sub-
class of J-0. Namely, we consider the holomorphic l-ro-reproducing differential
0"(.Ii0(R)) for a given c on Å, which is characteized. by the condition that
Re 0"(t-oo(Ä))€roo(R;, and

Note here that Im 0"(,1-6s(Ä)):*Re 0,(l-oo(Ä)).
Now let Åo be an arbitrary Riemann surface, and f be a Cz-quasiconformal

mapping from Äo onto a surface .R. First we show the following

Lemma l. Re O"(l-ro(R)) o/€l-",(n) n Il(/R).

Proof. It is clear that e"(f ho(R)) .,f€i-}(Ro). Next note that the mapping F
defined by

F(dg): (dd"f for every dg€rl@)

maps .l-](Å) onto l-l(Åo).
Also we have

(Re 0" lrro (R)) o f , * F (d g))"0 : - ./ ne e" (roo 1 R)) o f n d g a f
Ro

: -./Re 0"(t-å0(iR)) n dg :(Re 0"(re,(iR)), *dg)o : 0
R

for every d7efL@\ And since l-:(RJ is dense in i-"(Ro), we conclude that
Re 0"(l-oo(A)) o"fe *I" (no)r :I"o(Ao).

Now we can show the following

Theorem 3. Let Ro,Randf be as aboue and k:svpa"lfrlllf,l. Then it holds
that

| | 
o" 1ru. 1n) o f - e "(r ho(RJ) I I ", = * llt "(, ^o 

(nJ)l 
I 
o. .

Proof.Wite a:O"(f oo(R)) of -0"(f ho(R). Then by Lemma I Re co(t-"0(,Ro)n
It(Ao), and by the orthogonal decomposition l-"0(,Ro):i-r,o(Ao)*i-"0(Ao) we can
decompose a.r in the form

to : rorl dg1+ y= . (cr,ri- d g),

where o.r, and dg, are real, crr.€J-1.(Åo), tor(f1,(R) arrd dgr(f"o(Ro)nl-1(Rr)c
l-}(ÅJ (i=1,2). Moreover, we know that arr(i-r"(-Ro), for it holds as before that

f .r: rm ./0"(roo1n;)-rrn ./0,(roolno;): o
ild.l

[ , - (*, Re g" (f or(A») for every at{-f na(]?).
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for every l-cycle d. So noting that (a1,*ra,r):Q because art(i-oo(Ro) and
*@2€ *l-å,(.R0):.I-m(Ro)anlr(Ro), we have

(a,*a) : (o4* d.g1* lli . @r+dgr),* ra,r]-*d.gr+l -l '(*rl,z**dg))

: -211-1.(«:1, 
*atr): g.

Thus by the same argument as in the proof of Theorem l, we have the assertion'

Corollary 2. Let R, Roandf be as inTheorem3, and0"(f ,""(R)) and 0"(fr""(R))

be the holomorphic I ,,u-reproducing differentials for c on Ro and R respectiuely ' Further

suppose that Ro(Oyp. Then it holds that

| | 
e" (rr"" 1.n) o f - 0.(f o"" (,qJ) 

I l^. = #El I 
e" (r0," (no) 

| l^,.

This follows from Theorem 3, since RIQOKD if and only if i-l,"n(R6):l-1,e(Rq)'

2. Continuity theorem on the Teichmiiller spaces

2.1. Let R* be a fixed Riemann surface with the hyperbolic universal covering

surface, and consider all pairs (R, f), where R is a Riemann surface and /is a quasi-

conformal mapping from R* onto .R. We say that (,Rr, l) and (Rr, .fr) are equivalent

if frofll is homotopic to a conformal mapping from -R1 onto .Rr. The equivalence

classes are, by definition, the points of the Teichmiiller space I(R*) with the base

poilt R*:(Ä*, id), which are called marked Riemann surfaces and denoted simply

by R etc. The space I(,R*) has the natural Teichmiiller metric. (see for example [3].)

Now let G* be a Fuchsian group representing R*, then 7(Ä*) can be canonically

identified with the reduced Teichmiiller space 7+ (G*), which coincides with the

Teichmiiller space 7(G*) if and only if G* is of the flrst kind. Also note that

dim I(A*) is finite if and only if G* is finitely generated (cf. t8l) and that if -R*€ onD

then G* is of the first kind ([13])'

In the case of general open Riemann surfaces, the existence of the so-called

Teichmtiller mappings is not known. Actually, for given R1 and R, in 7(Ä*) there

exists an extremal quasiconformal mapping / from R, to R, (which preserves the

markings), but such an / is not unique in general, and even if it were, it would not

be known whether / has such regularity as Teichmiiller mappings. Hence we want

to begin by showing the existence of a smooth quasiconformal mapping between

points on I(Å*) sufficiently near each other.

2.2. Let R0€ r(R*) be fixed in the sequel, and .luo be the Poincard metric on Ä0.

We say that a Beltrami differential p on Äo is canonical if the quadratic differential

1t.),zuois holomorphic on Ä6, and that a quasiconformal mapping / from,Ro onto

another surface is canonical if the complex dilatation p(f) of f is a canonical Bel-

trami differential. In particular, a canonical Beltrami differential has a coeff.cient



214 Yurro KusuNoru and TaNrcucnr MasAHrKo

of C'-class and hence a canonical quasiconformal mapping is of c'-class (cf. for
example [6]). Now let d( , ) be the Teichmiiller distance on I(R*), and set

r.(R): äå{r,%qffii#
for every Re r(n). Then by definition k(R) is equal to the z--norm of the complex
dilatation of any extremal quasiconformal mapping from Ro to R.

We do not know whether a canonical quasiconformal mapping from Ro to R
exists for every R€ 7(Å*), but we can show the following

Lemrna 2. Suppose that k(R) <.113

a canonical quosiconformal mapping from
sreater than (t +3k(R» l(r-3k(R».

Proof. Let f be an extremal quasiconformal mapping from Ro to R, and p
be the complex dilatation of I Recall that ess supno lpl:k(R). Let Go be a Fuchsian
group acting on the unit disk U such that Ao: UlGo. Thert p can be lifted to a
Beltrami coeffrcient for Go on t/, which is also denoted by p. Now there exists a
unique quasi-conformal automorphism ,F' of the extended z-plare C fi*ing l, /=
and -/i whose complex dilatation is p on U arrd zero on C-U.Next let E,
be the schwarziar deÅvative of F considered as a schlicht function on d- U. Then
Kähnau-Lehto's theorem ([9], [15D states that

!-lzlTlEuQ\= e'lc(R) (=2) on ö-u.
This in turn implies (cf. [3], [5]) that there exists a unique quasiconformal auto-
morphism g on C such that

(i) the complex dilatation of g is equal to

U, and

(ii) g(z)=F(z) on C-U.

Now by (i) it is seen that the complex dilatation of g is a Beltrami coefficient
for Go, and (ii) implies that FoGooF-r-toGoog-l on d Thus g can be pro-
jected to a quasiconformal mapping from Ro onto R (:F(U)lFoGooF-1), which
is canonical by (i). And noting that

(i.n. d(Ro, R)<1og 2) . Then there exists
R0 to R whose maximal dilatation ,s not

| +( 1 - t,t ), r, (+) (+)' on

I oo, e-u, and

-tztryE,(+) [;)'l

-lzl,),Ere)l= 3.

,3pl-å,,

t1: lup l-;(1c-u | 'a
k(R),

we have the assertion.
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2.3. By Lemma 2 above one can restate Theorem 1 as follows.

Theorem l'. Let R*€O", and a point Roe f1n*; and |poQf,(Ro) be giuen.

Suppose that d(Ro, R)=log 2, and let 0* be the dffirential in f 
"(R) 

hauing the same

A-periods with ?Ro. Then there exists a canonical quasiconformal mapping fo from
Ro ro R such that

llde o/e-ge,|;*" 
= t'ffi lloe,llno.

Corollary 3. Using the same notation as in Theorem l', we haue

l) 
Jyp" ile^il" : llOxoll*., and

2) ;l?,/r- : {t*" for euery t-cycte d.

Proof. For -R sufficiently near R, there is a canonical quasiconformal mapping

/o of Äo onto lR. Let 0*:a*(w)dw with w:fx(r). Then

ll 0r ll * : lz I to n " f nl' (l(f il12- I(/n)?l) d x a t)ttz
-Ro

= ll0n o"fnll"o = ll0r o/p_0pollao*ll0e,lho.

Hence by T'heorem l'we see that

liXyln lloxll" = lloeolho.

On the other hand, writing k:k(R), we have

ll 0e.lln. = ll0 e o f e- 0rollno * ll 0n o,fnll^o

< llo e o f e - onott.«o * [-11fr] 
"',, ro,,.,

and consequently the inequality

t,fliif ll0xll" = ll0eol[0.

It is well-known that for a fixed l-cycle d, the linear functional L(at):loa
is bounded on f|1no), that is, there is a constant C, such that

I I r.l= Callarll". for every co(l-)(Ro).

Noting that 0"./"e fln.; we have therefore

I I u*- I r*"1= collo*o.fr-oroll^0.

Thus the asserfion 2) follows from Theorem l',
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Remark. The equation 2) in Corollary 3 implies that when R(O" and a cano-

nicalhomologybasis {Ai,B} on R is suitably chosen, then the period matrix with
respect to this basis varies continuously on 7(R) (equipped with the Teichmtiller
topology).

2.4. Similarly we have the following results from Theorems 2 and 3 respectively.

Theorem 2'. Let R*(Oa» and a simple closed curue c be giuen. Suppose that
d(Ro, R)=log 2. Then there exists a canonical quasiconformal mapping fn from
Ro ro R for which

110,, e o f e- 0.,, noll *o = +;%, ll 
g", 

n,ll 
^0.

Corollary 4. Using the same notation as in Theorem 2', we haue

1) flS.ll0",nll": Il0",nollno, and

2) Å*, I0",u: { 
u",o" for euery l-cycle d.

Theorem 3'. Let R* and a simple closed curue c be arbitrarily giuen. Suppose

that d(Ro, R)<log 2. Then there exists a canonical quasiconformal mapping fu from
Ro ro R for which

l l 
o" (r^ 1n;) o f R- 0 

"(r ho(RJ) l l^, = +#h l lo" (roo 1n))l l n,.

Corollary 5. Using the same notation os in Tlteorem 3', yre ltat,e

;IH, ll0.(r,,(A))ll* : ll0.(r,,(Åo))i i^,, anct

2.5. Here we shall consider quasiconformal mappings not necessarily of class

C2.Let R,€f(R*) converge to Ro(Z(R*), where Å* isarbitrarily given, and let l,
be a quasiconformal mapping of Ro to R,. We call a sequence {f,[. a&nissible
if the maximal dilatation of f, converges to l. Then we can show the following

Proposition 3. If we let 0u, be a holomorphic Abelian dffirential on Rn witlt

finite Dirichlet norm for euery n, then the following two conditions qre equiualent;

l) For some admissible sequence {f"}7, we haue

(3) ,llt ll0n, ofn-0noll*o : 0.

2) For any admissible sequence U"\}r, the aboue (3) holds.

1)

2)
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Proof.It is clear that2) implies l). Now suppose that for an admissible sequence

{f"\7, the condition (3) holds, and let any admissible {s,}L, be given. First note

that
(4) ll0n,, c gn- Oarllä,

= 2:+fill 0n, c sna {s;'"f,,)-gno o (s;'ofn)llä,,- l-k7 rr

where ko:es§r,o srp l(8,-t "f))llG"'""f"),1. In fact, for any square integrable
differential 0:a(w) dw*b(w) dw, and any quasi-conformal mapping w:F(z)
of Äo onto itself, it holds that

ll0 o.f llä, : I r\o o F(z). F,(z)*b o F(z).F"(41,
Ro

lla o F(z) - Fr(z)*b o F(z). FuQ)12) dx dy

= q I M o Flz*lb o Fl2)(F,12*lFrlz) dx dy
Ro

= o !.*lZ f fu o Flz+lb o Flz). l dx dy,_*- *i

: 
^' ::: I k olr +tb(w)t') du du :2, 

-tS 
tt ottä,.' 

| -k2 
^J 

\t- ' 'zt I r- \''lr

where k:ess", suplF)llF.l, J:lF,l2-lFzlz with generalized Lz-derivatives ,E,

and Fr. So, putting U:0n^ogno(g;L "f,)-0n0"(gr'ofr), and F:(g,'of,)-',
we have (4).

Next
ll0 n^ " 5, " 

(g;' 
" f,) -Ono o (9,-' oÅ)ll *,

= ll0n, of,-dpollio*llgno-Ono 
" 

(g,-t oå)llo,,

the first term of the right hand side converges to 0 by assumption. To complete
proof it therefore suffices to show that

Jg llor,-oxo o (s;'of,,)ll*o : o.

For this purpose, let Go be a Fuchsian group acting on f/:{lrl=l} such that
Ro:Uf Gn, let a(z) dz with holomorphic a(z) be the lift of 0"0 and F,(z) be the lift
of (g,-' of) such that F,ag:gof for every g(Go. Note that g, and f are homo-
topic. Fix a normal fundamental region D for Go and any positive e. Then there

exists an ro<1 such thatlla(z)llr,D-D,o<8, where D,:Da{lzl-r} afillfll!,r:
2lulJ'l'dxdy for any subset E in U. Since D" is compact in U for any r-<l,la(z)l
is bounded or\ D,. Since {fi} and {g,} are admissible and homotopic, F,(z) converges

uniformly to the identity mapping on D,, and

j11 ll(4),-1ll z,D": JIT ll(4)u11,,,, - o.

and
the

(s)
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(Cf. [14] IV Theorem 5.2 and V Theorem 5.3.) Hence we conclude that

limrup llOno-0no o (g;t oäll^o

= ligs3n lll a 
" 
r,. KF ) 

" - Ull r, 
", 

* ll a o F, - (F *) rll r, o,

* ll a - a o F,ll r.o, + ll all r. o - o,

+( I rtoo F,l2(l(F,),12+l(4),1) ax ay)'t'f
D-Dn

=lla(z)ll,,o-H.+ligsJn(P!-r)".lta(z)lt,,r^<,-o.t
<)c

where ro<r<1. Since e is arbitrary, we have (5).

Thus using Proposition 3 we obtain from Theorem l',2'and 3'the following
theorems.

Theorem 4. Let R*€O",R,(f(,R*) conDerge to R'(I(A*), and 0*.be as in
Theorem l'. Then for euery admissible sequence {f"\L,

lim Jl0r" ofn-Opoll"o :0.

Theorem 5. Let R*€Osp, and Rn€ 7(A*) conuerge ro Ro€ 7(R*). Then for euery
qdmissible sequence {f"}7,

,lim ll0",e" o.;[n-0",pollao : 0.

Theorem 6. Let R* be arbitrary and R-,€T(,R+) conuerge to R'€.T(R*). Then

for eaery admissible sequence {f"\L,

ll1 ll0"(n,t R,)) of,-0"(l-m(R))llp, : 0.

2.6. Finally we note that Theorem 5 can be extended to arbitrary Riemann
surfaces. That is, we can prove the following

Theorem 5'. Let R* be an arbitrary Riemann surface, a simple closed curue
c befixed, and R,(T(R*) conuerge to Ro€f(rR*). Thenfor euery admissible sequence

{r}L,
(6) ,lim ll0",e" o/n-0,,sollao : 0.

Proof. Sappose flrst that every .7f, is canonical, and let o,,*":Re 0.,n_ for every
z. Then one can see that llo.,r,ll", converges to llo,,poll^o, for llo,,xlll is equal to
the extremal length of the homology class of c on R. Hence it holds that

K;1llo",e,lllo = llo",R,lläo = K, llo",pollå0,
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where K, is the maximal dilatation of 1,. Note also that

llo",a,of,- o",xollio

: 
ll o", n, o /.llko- 2/ o",p' * ll o", noll åo

: llo 
", 

n^o fnll i, - 2 ll o,, n" l;fr , + ll o", r. ll ä. .

Now set O",n^:an(?,) dzo, (herrce,.2o",Rn:a,(2,) dz,lTka) dl"),2 ]" *ith
zn:fn(z). Th;n o",*^ofn:(llZ)l@,"f,' (f,)"+ o*f,G) az +@§7"4J;+
qnofn.U)) dZf, and thus we have

llo",p"",f,lllo

= * lll(-, o f o' (f ,), * a, o 7,' (f ) ) d zll'zn,

= I f V, o .,l,(l$,),| + lU,),|), 2 ax ay
'R^

= l*.llo",r,llä": K,llo,,x"llä .

Hence, we conclude from above that

J1g llo",x" o/,-o.,pollao : o'

Since

fz ll, 
", 

o^ s f n - o,, pgll a o

: lllanof,. (f )"+a,"f,.6r- aoi dzll^o,
we have

ll0",p^o f ,- 0", xoll*o

= llla,o f ,' (f "), - ad drll *, * lla," f"' (f ) u dZll 
^o

= 1/211o",o.o.;r, - o",Bolln o*2lla,o J,' (f,)rdzlle,.

Here ffa, of".(f")rdzllRo älso converges to 0, because

ll a o o I o. U ), dzll 
^" 

€ k,ll a, o f ,' (f "), d zll 
^o

= k )10 
", 

o^o/, ll no = fx,(!t)''' ll o 
", 

*,ll 
^ ^,\ l - rtr,/

where k, : sup 
"" 

l( f) rl I l( f) 
"1.

Thus if every fn is canonical, we have (6), and the assertion followsif we use

Proposition 3.
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3. A remark for the case of compact R.iemann surfaces

3.1. For a compact Riemann surface Å* of genus g (=2), T(R*) is usually
denoted by Tn, and we have the following corollary to Theorem 5, which is essenti-
ally due to Ahlfors.

Corollary 6. Let R,eTn conuerge to RrCTn, and a non-diuiding simple closed
cttroe c be giuen. Then for euery admissible sequence {f"\7:, we haue

,lim ll0.,e, o/,-0",pollao : 0.

If we let G* be a Fuchsian group corresponding to ,R*, Tn can be identified
with the Teichmiiller space of G*, and is considered to be embedded in the (finite
dimensional) space of G*-invariant bounded holomorphic quadratic forms on the
lower half plane (cf. [3], [7]). In the sequel we fix a non-dividing simple closed curve
c on R* (hence for every R<T), and by using the same notation and terminology
as in [7], we shall consider the space O"Tn for c and the f,ne topology on "tn:Tnv\"Tu. Here we recall some deflnitions. First, O"Tn is the set of marked Riemann
surfaces with one single node corresponding to c. Next, by letting S" be the set
of points R of d on which Ol,u has a closed trajectory freely homotopic to c, we
can construct a mapping E, from §, onto Tr_r,r, and set

(7)

(8)

for every Re S", where rn* is the modulus of the characteristic ring domain of gl,"
for c on R and {Ai, Bi\!:, is a canonical homology basis on R such that A, is freely
homotopic to c. Then F:(Fr, Fr) can be extended to a bijection from S"v\"Tn
onto Q-r X O, where fr : {z: Im z >0}u {-} is equipped with the usual fine (cusp)
topology. The fine topology is, by definition, the induced topology by .F from
Tn-r,rX0.

In this case we say that a sequence {(R,,Ro, f">\7, of deformations (cf. [l])
is admissible if for every neighbourhood K of the (single) node of Äo and every
positive e there exists an N such that f, 1 llar_r, is ( I * e)-quasiconformal for every
n>N (cf. Chapter 2), and set

It(R) - Re f ?-0",r +/-.r?rp.
J, llg", nll'

r,n: ffi for every R€Tn, and

gn : +. (pR, for every R€o"Tn,

where R':4(R) and ep, is the elementary differential of the third kind on R'
with poles at two punctures.
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It is known that if RoQTn converges to Ro(å" Tn in the sense of the conformal

topology (cf. []), then it holds that

(9) ,lim llOx,l R, : * -, that is, 
,l1m ll0",e,lln, : 0.

Now using the fine topology otr.in, we can extend this slightly by stating the main

theorem of this section.

Theorem 7. Suppose that Rn{-"in conuerges to Ro€"in in the sense of the fine
topology. Then for euery admissible sequenc, {(R,,Ro,-4,)},=, of deformations we

haue

(10) ,lig ll0n" o/o-'-0Boll1n,-K) : 0

for euery neighbourhood K of the node of Rs, where we assume that K:0 if Ro(Ts,

Note that (9) is derived from (10), because

ll Opoll rao -K) = ll 0r, o.fi' - gnoll 
«"0 - 4 * ll 0p, o"/,-tll (*o - "),

ll0n,o.f,-rll?oo-K)5w-orll0n,ll?o,-r;'r*»,

and llOeolllao-ry tends to +- as K shrinks to the node of Ro.

3.2. The proof of Theorem 7 will be given in Section 3.3 after preparing the

lemmas below. First we construct an admissible sequence satisfying the condition
(10). Our construction of such a sequence is based on Corollary 6 and for later

use we modify it as follows.

Lemma 3. Suppose that R,€T, conuerges lo Ro€ Tn. Let f*^be the Teichmilller

mapping of Ro to Rn, and f,--f*^'. Then the admissible sequence {(R,,Ro, .f")}":,
satisfies the condition (lO).

Proof. h is clear that the given sequence is admissible, and noting that
lim,*- ll0",a^lln":ll0",aollno (cf. Corollary 4), the assertion follows from Corollary 6

and the following inequality:
ll 0u, o/,- 1 - 0pollno

-l 2-21
= | ilo;;Iil - lo"*Iili' llo"'noll^o

)* 
I o;*JiA-:' ll 0", r, o/,-r - 0",poll no'

Now let a positive .),0 be fixed, and write

x- {Re s": rr(R) -/-
Let {S,} c X be a sequence converging to Soe X,

'!o\'

and Ri:f,, (S,) for every n.
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Then Ri is canonically embedded in a compact Riemann surface, suy Fn, of genus

g-1, and F,,-N, consists of two points, say {pi}?:r, for every n. Next let R-n:
F-'(R;,-). Then gu" is, by definition, ({-tlZ").en;. Denote the characteristic
disk of 0*" atpionR,Ay O',(i:|,2). Map each Di conformally onto p:{lzl<ll
so thatpf corresponds to z:0. Then under the natural embedding nnof Sn-Cr^
into Ai (where Cr, is the center trajectory of the characteristic ring domain lll.^
of 0os" for c on S,), the images of the boundaries of S,-Cr" are loops in D| and
D| corresponding to the circle {lzl:ro} in D for every n with ro:sxpl-nyol.
Finally let W,,, be the ring domain in Wr^cSn containing Cr" such that the
boundaries of V/,,o are mapped by n, to the loops in D) and D] corresponding to

{lrl:rl in D, where rr<r<.1. (See [6], [17] for more detailed preliminaries.)

Lemma 4. Let 5,, Rs and W,,, be as aboue, and let afinite number of constants

{är.}j:. such that 0=är=äz=...<äo=(1 -ro) be giuen. Then there exists a sequence

{(S,, Ro, f">}7, of deformations satisfying the following condition: for euery positiue
s (=1-ro-ä,) we canfind an N such that for euery n>N

(a),fI'lr o-*rl rs (l *e)-quasiconformal,
(b) ll6s, of,-Oeoll1n s_«,1<8, and
(c) f;L(K,)=w,,,, (j:1, ..., §) and f;t(tl(-R):C5",

whereKristheneighbourhoodof thenodeN(R)of Rocorresponding to {lzl<ro*öi*e}
in D, qnd ri:rn*öi.

Proof. Let Å" be the Teichmiiller mapping from So to S,. Then it is known
([16] Corollary 2) that we can find and i[, such that

(1 1) f s^(wr,., o) f wri,, (i - l, ... , s)

for every nZN1, where rj:rr+s. Hence in particular we can consider each
,o"fitlr",-cr,l (n=NJ as a quasiconformal embedding from S,-Cr" into JRicÄ0,

which we denote by 9,. Here we can assume (cf. [16]) that no is conformally ex-
tended to a suitable neighbourhood of the boundaries of ,So-Cro in Wro.

By deforming& in W,r,n-Cs^, we can now make a deformation (S,, Ro, f,)
such that 4-'(N(&»:Cr, and f, coincides with g, on S,- W,,,ofor every n >Ä(.
By taking any suitable deformations for n<.4I1, we arrive at a sequence of defor-
mations. We show that this sequence satisfies the conditions in Lemma 4.

First by Lemma 3 for a given e we can find an N (=NJ such that

(t2)

(1 3)

fs^ is (1 *e)-quasiconformal, and

ll0s, ofs.-0sollro = e for every n > N.

Note that zro(So-Wtr,o):Ro-Kj (j:1, ..., s) and 0roozo 1:0po on .Re-K1 .

Hence from (11) we have

fr(Sr-Wrj,n) : gr(,S, -Wri,J : zo(So -Wri,g) : J?0- Kj,
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that is, f,-'(Ro-Ki)cS,-w,.,n (i:1,...,s) for eyery n>-l/r. Thus we conclude

that f;r(Kj)=W",,, (,1:1, ..., s) for every n=-Nr, which implies that 1f,_l:
f§ton;r on Ao-'K1, and hence .6'-'11^o-.r) is (1 +e)-quasiconformal for every

n> N by (12).

Next, from (13) we have

ll 0s, 
" f ;1 - gnoll 

«*o - Kr) :

- ll0s- ofs,

for every n*N, which completes the

Now we can show the following

ll 
gs, o fs.o ro1 - Oso o lT;tllt*o-Kr)

- 0soli(so- W,,L,o) = t

proof.

Lemma 5. Suppose that Rn€0"7n and conuerges to RoQl"Tr. Then there exists

an admissible sequence {(R,, R0, fo>\/, of deformations satisfying the condition (lO).

Proof. Let K! be the neighbourhood of the node of -R, corresponding to

{lzl<.llk} in D for every n. Fix a positive integer k arbitrarily, and let R1,,:
r-r(Ri,(1[-1.ldlog(k+1)), where R;:{(R). Then using Lemma 4 with
S,:R;,,,, yo:(Lln) 1og (k+ l) (, hence ro:ll(k*l)), s:1, and 6r:E:Ek:
(U2)(Uk-U(k+1)), we have a sequence {(R0,,, Ro, "4,,)}L, of deformations

satisfying the condition; there exists an Np such that for every n >ÅIo

(i) /tl,1ltno-xär is (1 +eo)-quasiconformal'

(ii) ll0n*,^"fo,l' 0noll(no-xär = €r, and

(iii) f;;art))w,,,n (wittr ,,:l(+.#)) and

"fn,,'(N(Ro) 
: cRu,n.

Now let no,,be the natural embedding of Ä*,,-Cou,". Then we have an em-

bedding f*,,"n*,| from Ä,-Kj+'into Åo for every n>No, and deforming zuo,n

in. W,,,n-Co.." we can make a sequence {(R,,Ro, go,)}åru of,deformations such

that 'go,n:fo,','on;l on no,o(Ro,n-Wr,n), which contains go-r1(Ro-rfl bv (iii).
As in the proof of Lemma 4, it is easily seen from (i) and (ii) that

(iv) Br,,1lrno-rol is (1 *ee)-quasiconformal, and

(v) ll0e,,o g;,!-9noll(ro-xär = sr

for every n>-N*. Here we assume that 
^fk+1>ÅI1 

for every k.
Finally define a sequence {(R,,Ro, f">\L, of deformations by taking as f

the above gk,, if N1,<n€N1,ar-1. By (iv) and (v) we flnd that it is a desired

sequence.

Lemma 6. Suppose that S,€Tn and conuerges to Ro<A,Ts. Then there exists
qn admissible sequence {(S,, Ro, il}tr:, of deformations satisfying the condition (10).
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Proof. From the definition of the fine topology ([17]), we may assume that

{S,}L, is contained in ,S". Let F(§,):(Ri,4 and R,:7'-t(Ri, -) for every
n, and K! and eo be as in thc proof of Lemma 5. Then since Rn converges to Rs,

using Lemma 4 as in the proof of Lemma 5, we can construct a sequence

{(R,, Ro, c,)}L, of deformations satisfying the condition: for every positive integer
k, there exists an -l[e such that for every n.>Np

(D 8,-1[no-xär is (1 *eo)-quasiconformal,

(ir) ll9u,o g;L -?nollrno-räl < 8r, ard

(iir) C;'(Kil= Kj+r (j:1,...,k).
Next, let kn be the largest integer such that nn(Sn-Cr^)nK!*0 (that is,

z,(,S,-Cs"): R"-K:) for every r. Then k, tends to f -, for lfk,>exp(-n.lmz,)
for every n and limn**lmz,:*-. Deform each nn in n;l(K!) as before, and
we have a sequence {(S,,R,, h")\7, of deformations such that hn (:2,) is con-
formal on S,-n;l(K!").

Finally let f,:gnoho for every n. We can now show that {(S,, Ro, .4)}L.
is a desired sequence. In fact, for every neighbourhood K of the node of Äo and
every positive e, there exists a ko such that K:Kfo and ,oo=t Thus we can

find an N (=lfo.) such that ko>ko+l (, hence f;t(K))h;'(fj") bv (iii)), and
(i) and (ii) hold with k:ko for every n>N. Then noting that f;l:v,'og;'
and 0., onnt-?p^ on S,-,f'(K) for every n>N, we have the assertion.

3.3. Froof of Theorem 7. We consider only the case in Lemma 6, for other
cases can be treated similarly as in Proposition 3. Let S,, Ro and l, be as in Lemma
6, G,(.I(G*) correspond to S,, and let Un be the component of G, such that
Sn:(Jnf Gn. Also let Go QT(G*) correspond to Ro, Uo be a non-invariant com-
ponent of G6, and Fn be the lift of l|1 from Uo into Q. Then it is seen (cf. tll)
that Fn converges locally uniformly on U0 to the identity, and t/o is a component
of the Carath6odory kernel of {t/,,}Lr.

Let a,(z) dz and aoQ) dz be the lifts of 0r" on Un and 0Bo on Uo, respectively,
and fix zo€Uoand a small g such thal. Drn:{lz-zrl=2p} is contained in Uo (hence,

in t/, for every sufficiently large n) arbitraily. Then similarly as in the proof of
Lemma 2inl2], we can show that there exists an M such that sup,.rr,la,(z)l=ttl
for every sufficiently large n. It also holds that

lo,(, o) - a oe r)l = åF il o,(r) - A oe)ll 2,D e

=#lllo-(,)_an(Fnk))ll,,,-+llo,(r-G))l(F,),-1]ll,,,,

+ llo.(r "Q)) 
(F *), - a o@ll r, rnl .
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Hence using Lemma 6 and Theorem V 5-3 in [14], we can show that a,(z)

converges to ao(z) pointwise, hence locally uniformly on U0.

Finally take any admissible sequence {(S,,Ro, f:>\7, and neighbourhood

K of the node of Å0, and flx them. LeL Fi be the lift of fi-r from Uo into (n, and

E be a relatively compact region in Uo which covers Ro- K. It is then easily seen

from above that a,(Fi@ is uniformly bounded on E and a"(FiQ)) converges to

ao(z) uniformly on E. Hence from the inequality

and Theorem V 5-3 in U4l, we can conclude that

Jltll 0s,, 
" fi,-1 - 0R,ll (Ro-K) : 0.
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