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DIFFERENTIALS UNDER QUASICONFORMAL
DEFORMATIONS
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Introduction

In this paper we shall investigate a continuity property of certain holomorphic
Abelian differentials with respect to the Dirichlet norm under the quasiconformal
deformation of Riemann surfaces. In the case of compact Riemann surfaces related
studies have been made by L. Ahlfors, L. Bers and others. However, when we
generalize such results to the class of open Riemann surfaces, we encounter many
difficulties. For example, we do not generally know the existence of Teichmiiller
mappings, nor the existence and uniqueness of (square integrable) holomorphic
differentials with prescribed periods along A;-cycles. Hence we have to restrict our
consideration to either certain classes of open Riemann surfaces over which some
theorems used in the case of compact Riemann surfaces can be generalized, or
certain classes of differentials on general surfaces with appropriate boundary
behaviour. ’

In Chapter 1 we shall provide first some basic estimates for the variation under
quasiconformal deformations of holomorphic differentials with fixed A-periods
and holomorphic reproducing differentials. For such differentials we shall prove
in Chapter 2 the continuity theorems with respect to the Dirichlet norm in the
Teichmiiller space of a given surface. In the case of compact Riemann surfaces
these results are essentially due to L. Ahlfors [2], but we can show further in
Chapter 3 that the continuity of holomorphic reproducing differentials still holds
under the squeezing deformation about a non-dividing simple loop on a compact
Riemann surface.

1. Variation of holomorphic differentials

1.1. For compact Riemann surfaces, L. Ahlfors [2] showed the continuity
(or variation) of normal holomorphic differentials with respect to the Dirichlet
norm, which played a fundamental role in his remarkable theory on Teichmiiller
spaces. To extend this continuity theorem to general Riemann surfaces we need
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Riemann’s bilinear relation as in [2]. However, in the case of open Riemann sur-
faces, it does not generally hold in its classical form even if the differentials are
square integrable. Thus to use a generalized bilinear relation we consider first a re-
stricted class O” of Riemann surfaces introduced by Kusunoki [10]. For the sake
of convenience we recall the definition. Let R be an open Riemann surface and
E={R,};>., a canonical exhaustion (cf. [4]) of R. Let %, be the set of l-cycles y
in R—R; such that each y consists of (piecewise smooth) dividing curves on R and
is freely homotopic to dR,. This means that every y€ %, consists of the same number
of conrected components y; (y,ny;=0, i#j) as oR,=2§; and dividing curves
y; and §; are freely homotopic. We denote Z=J_, &, and by O” the class of
Riemann surfaces whose element admits a canonical exhaustion E for which the
extremal length A(%y) vanishes. It is known ([10]) that 0”& O; in general, but

=0; whenever the genus is finite, and that on every Riemann surface R of
class O” a generalized bilinear relation holds for harmonic differentials with finite
Dirichlet norm.

For later use we shall extend it slightly as follows.

Proposition 1. Let R be an open Riemann surface of class O” and E={R,}
be a canonical exhaustion of R such that (%;)=0, and let {4;, B;}4_, be a canon-
ical homology basis with respect to E modulo dividing cycles'), where g (= + )
is the genus of R. Then for any two square integrable closed C*-differentials w and
o there is a sequence {n} of integers for which the bilinear relation

1 w, *c —hm w|[é—|ow |

0 ot 3 [ fofo-fo[d]

holds, where *o is the conjugate dlﬁ‘erentzal of 0. In partzcular, zf w and o have vanish-
ing periods along all A-cycles, then we have

2) (@ %)== [wrG=0
R

Proof. By means of the orthogonal decomposition I',=I,+TI,, (cf. Ahlfors—
Sario [4]) we can write
0= W,+w0,, and o =0,+0,,

where @, 6,6, and w,g, 6.0€ 1. Since Iy, I',o and *I',, are mutually orthogonal,
we have
(@, "0) = (wy, *o3).

Now, we know that the bilinear relation for w, and o, holds on R€ O” because (1)

1) For each R,, the subset {4;, B;}%L,, g,(<=) being the genus of R,, forms a homology
basis on R, (modaRn), for which 4; X Bj =0;5, A;XAj=B; X B;j=0 for every i, j=1, ..., &,. The
intersection number 4 X B of two cycles A and B is taken here so that it has the positive signature
when B crosses A from right to left. Note that it has the opposite signature to that in [4].
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is valid for w=w, and =0, with suitable {n} (cf. [10]), where {1} may depend
on o and o. Since w and o are Cl-differentials, w,, and o, belong to I',ynIC
T,nIM=TI1. Consequently, they are written as w,=df and o¢,=dg with C2-
functions f and g on R. It follows that

fa)hz fw and fa,,:fo-,
AJ- Aj Aj Aj
and analogously for B-periods, which proves the assertion.

1.2. Let R, be a marked Riemann surface of class O” with a canonical homology
basis {4;, B;}Y_, modulo dividing curves as in Proposition 1. We consider a C*
quasiconformal mapping fz of R, onto another Riemann surface R, where C?
means the property of being continuous up to the second derivatives. Then fy
induces on R canonical homology basis modulo dividing curves, which we denote
also by {4;, B;}9_,. It is easy to see that R also belongs to the class O”. Let 0, be
a holomorphic Abelian differential on R, with finite norm, that is, 8,€I',(R,). We
shall now show that there exists on R a unique differential 8x€I",(R) having the
same A-periods as 6,. Actually, we have more generally the following

Proposition 2. Let S be an arbitrary open Riemann surface and w be a closed
C-differential square integrable on S. Then there exists a square integrable Abelian
differential 0 having the same periods with w along all A;-cycles where {A;, B;}i_,
is a canonical homology basis on S modulo dividing curves. In particular, if S belongs
to O”, then 0 is uniquely determined.

Proof. Let w=w,+w,, be the orthogonal decomposition where w,¢I", and
Geo~l 0. Since w€TI, w,o€I™* hence w, has the same periods as w. Set

fw: fa)h=aj+V_—_T-bj
Aj Aj

for every j with real numbers a; and b;. We write o=+ —1-w,, where o,
and w, are real harmonic differentials in I',. Then ¢k=wk+l/j-*wk k=1,2)
are holomorphic and

f(plzaj‘*"l/*‘_l'ci’ and f(pzzbj“l“l/.——l‘dj
4; A4;

for every j with some real ¢; and d;. Then by Virtanen—Kusunoki’s theorem
(cf. [11], [12]) there exist holomorphic differentials 0, and 0, in I', such that

f01 =a; and f02= b; for every j.
4 4;
Hence 6=0,+) —1-0, is a holomorphic differential in I, with the same A;-
periods a;+} —1-b; as w.
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Note that on S€O” every holomorphic differential with finite norm is uni-
quely determined by its A-periods, which follows from Proposition 1.

Corollary 1. Let Ry, R and 0, be as before. There exists on R a unique differ-
ential Og€T',(R) having the same A-periods with 0.

Proof. First we show that the pull-back w=0,0fz" belongs to I''(R). Writing
fR=AJI=\f12—| % and O,=a(w)dw, we have

1600/ 1% =2 [ (@ )PIAR+] £ dx dy
R

o [y [ 1+k
=2 [Naent g s dxdr = 7z 10nlk,

where z=x+}—1- y stands for the generic local parameter on R and
k=supg|f;|/| £, (<1) is the supremum of the modulus of the complex dilatation of f.
Hence w€I''(R), and it is easily checked that wéI:(R).

Next, noting that [ 4,00= f 4, @ for every j, we see from Proposition 2 that
there exists a holomorphlc square integrable differential 6 on R having the same
periods as 6, along A-cycles. q.e.d.

Remark. Let wg€I'*(R) be given (1=k=<o), and f be a C**'-quasiconformal
mapping from R, onto R. Then as in the proof of Corollary 1, we can show that
wig of€T*(Ry). Moreover, if wzx€I,(R), then it is easily seen that wgo fETE(Ry).

1.3. Now let R, again be a non-planar Riemann surface of class O”. Let f
be a C*-quasiconformal mapping from R, onto R, E={R,}>>, be a canonical ex-
haustion of R such that 1(%;)=0, and {4;, B;}%_, be a canonical homology ba-
sis with respect to E. Suppose that a differential 9R°€ I',(R,) is arbitrarily given. Then
by Corollary 1 there exists a unique 6x€¢I',(R) having the same periods as Ok,
along all A-cycles, and we can show the following

Theorem 1. Let Ry€ O” and f be a C?-quasiconformal mapping from R, onto R.
Then, given GROEF +(Ry), there exists a unique Ox€I',(R) with the same A-periods
as O, and we have

2k
[0gof— OROHRO ”9R0”Ro,

where k=supR0 | LI (<), ie. K=(14k)/(1—k) is the maximal dilatation of f.

Proof. Write 0g=a(w)dw on R, and set w=0zof" —0g,. Then, since w has
vanishing periods along all A4;-cycles, we have by Proposition 1

(0, "w) =
which implies immediately

(@ of)fe(2)dz—0g %y —lI(a of) -fe(2)dZ]%, = O.
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As | f=k|f,|l, we have
(@ of) f.(2) dz—0Or,lr, = kll(aof) -f.(2) dz|g,,

and hence
1
(aof)-f.(2)dzl|g, = % [[0Roll R -

Thus the assertion follows from the inequality

10 o f = Orgllro = (@ 0f) -f.(2)dz— O llr,+I(a of) Sz dZ|g,-

1.4. Next let R be an arbitrary Riemann surface, and a simple closed curve
c on R be given. There now exists a unique differential 6, z€I',(R) which satisfies
the condition

f o= (0, Reb, g) forevery wéel,(R).

We call 0,z the holomorphic reproducing differential for ¢ on R (cf. [4], [12]).
This differential has several extremal properties, and especially [Re 0, >
(=1/26,,x]» is equal to the extremal length of the homology class of ¢ on R.

For simplicity, we write hereafter a curve corresponding to ¢ on another sur-
face again as c¢. As for 6, we can show the following

Theorem 2. Let Ry Opyp and a simple closed curve ¢ be given (on R,), and
f be a C?-quasiconformal mapping from R, onto a surface R. Then, if we let
k=supg, | f/ 1], it holds that
2k

10c,r ©.f =0c, roll e = 77 10c, Roll Ro-

1-k

Proof. Write w=0,rof—0, . Now we find w€lY(R,) as before. So w can
be decomposed in the form

® = o, +dgi+V—1- (@, +dgy)
with real w;€I,(R,) and real dg;€I5(Ry) (j=1,2).
Note that for every l-cycle d on R,
Im [0, z,=cxd=1Im J .z
d d

Hence w,€@.(R,), and, further, w,=0 because Ro€Opp ([h(Ry)={0}), and
we have

(0, *w) = (w1+dg1+ V—1-dg,, *a)1+*dg1+]/—_1 *dgz)
=(w1a*w1)=‘—fcl)1/\a)1=0.
Rg

Thus by the same argument as in the proof of Theorem 1, we can prove the
assertion.
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1.5. Finally, to obtain a similar result as Theorem 2 for an arbitrary Riemann
surface, we must restrict ourselves to reproducing differentials for a suitable sub-
class of I',. Namely, we consider the holomorphic I'y,-reproducing differential
GC(F,,O(R)) for a given ¢ on R, which is characterized by the condition that
Re 0, (I} (R))€T0(R), and

f o = (o, Re 0,(I'y(R)) for every w€l,(R).

Note here that Im 0,.(I'yo(R))="Re 0,(I},,(R)).
Now let R, be an arbitrary Riemann surface, and f be a C2-quasiconformal
mapping from R, onto a surface R. First we show the following

Lemma 1. Re0,(I'y(R))of €T ,(Ry) NI (Ry).

Proof. Tt is clear that 0,(I',,(R)) of€I'*(R,). Next note that the mapping F
defined by
F(dg) = (dg)of for every dg€Ii(R)

maps I'y(R) onto I'(R,).
Also we have

(Re 0, (I'y(R) of, *F(dQ))g, = — [Re0(Iho(R)of ndgof
Ry
=— [Re0.(T}(R) A dg =(Re 0,(I',(R)), *dg)x = 0
R

for every dg€I:(R). And since TI'*(R,) is dense in I',(R,), we conclude that
Re Hc(r 1O (R)) of€*I'.(Ro)* =T 1p(Ry).
Now we can show the following

Theorem 3. Let Ry, R and f be as above and k=supRo | 2l Then it holds
that

100 (R) o 0T (Rl gy = 1o 10T (Ro) s

Proof. Write @=0,(I';y(R)) of—0.(I',o(R,)). Then by Lemma 1 Re @€ ,(Ry)N
I''(Ry), and by the orthogonal decomposition I',y(Ry)=TI0(R,)+TI,(R,) We can
decompose w in the form

w = a)1+dg1—|—1/——_1 (wy+dg),

where ; and dg; are real, w,€I,,(R,), w,€I,(R,) and dg; €l ,(Ry)NI(Ry)
I';(Ry) (j=1,2). Moreover, we know that w,€I,.(R,), for it holds as before that

Jo:=Tm [0.([,(R)—Im [0.(I4(Ry)=0
d d d



A continuity property of holomorphic differentials under quasiconformal deformations 213

for every l-cycle d. So noting that (w;,*wy)=0 because ;€ I'o(R,) and
*02€ *T e (R) =Ty (R NI (Ry), we have
(0, *w) = (wl +dg;+ ‘/"—1 (wytdgy),* o+ *dg,+ V:_l (P, +*dg2))
= "21/___1 “(@y, *oy) = 0.
Thus by the same argument as in the proof of Theorem 1, we have the assertion.
Corollary 2. Let R, Ryand fbe asin Theorem 3, and 0.(T" se(Ro)) and 0,.(T s (R))
be the holomorphic Ty.-reproducing differentials for ¢ on R, and R respectively. Further

suppose that Ry€Ogp. Then it holds that

HOC(Fhse (R)) Of— 06‘ (Fhse (RO))I lRo = l 2—kk

60 (Fhse (RO))I ‘Ro .

This follows from Theorem 3, since R € Oxp if and only if Iy (Rp) =1 (Ro)-

2. Continuity theorem on the Teichmiiller spaces

2.1. Let R* be a fixed Riemann surface with the hyperbolic universal covering
surface, and consider all pairs (R, f), where R is a Riemann surface and fis a quasi-
conformal mapping from R* onto R. We say that (Ry, f) and (R,. f) are equivalent
if f,0f;"! is homotopic to a conformal mapping from R, onto R,. The equivalence
classes are, by definition, the points of the Teichmiiller space T(R*) with the base
point R*=(R*,id), which are called marked Riemann surfaces and denoted simply
by R etc. The space T(R*) has the natural Teichmiller metric. (See for example [3].)
Now let G* be a Fuchsian group representing R*, then T(R*) can be canonically
identified with the reduced Teichmiiller space T*(G*), which coincides with the
Teichmiiller space T(G*) if and only if G* is of the first kind. Also note that
dim T(R*) is finite if and only if G* is finitely generated (cf. [8]) and that if R*¢ Oy
then G* is of the first kind ([13]).

In the case of general open Riemann surfaces, the existence of the so-called
Teichmiiller mappings is not known. Actually, for given R, and R, in T(R*) there
exists an extremal quasiconformal mapping f from R; to R, (which preserves the
markings), but such an f is not unique in general, and even if it were, it would not
be known whether f has such regularity as Teichmiiller mappings. Hence we want
to begin by showing the existence of a smooth quasiconformal mapping between
points on T(R*) sufficiently near each other.

2.2. Let Ry€ T(R*) be fixed in the sequel, and /g be the Poincaré metric on R,.
We say that a Beltrami differential u on R, is canonical if the quadratic differential
- )%0 is holomorphic on R,, and that a quasiconformal mapping f from R, onto
another surface is canonical if the complex dilatation p(f) of f is a canonical Bel-
trami differential. In particular, a canonical Beltrami differential has a coefficient
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of C®-class and hence a canonical quasiconformal mapping is of C®-class (cf. for
example [6]). Now let d( , ) be the Teichmiiller distance on T'(R*), and set

By _ SXp [d(RO’R)]_‘l
kR = exp [d(R,, R)]+1

for every R€ T(R*). Then by definition k(R) is equal to the L=-norm of the complex
dilatation of any extremal quasiconformal mapping from R, to R.

We do not know whether a canonical quasiconformal mapping from R, to R
exists for every R€T(R*), but we can show the following

Lemma 2. Suppose that k(R)<1/3 (i.e. d(R,, R)<log2). Then there exists
a canonical quasiconformal mapping from R, to R whose maximal dilatation is not
greater than (14 3k(R))/(1—3k(R)).

Proof. Let f be an extremal quasiconformal mapping from R, to R, and p
be the complex dilatation of f. Recall that ess supg, |4l =k(R). Let G, be a Fuchsian
group acting on the unit disk U such that R,=U/G,. Then u can be lifted to a
Beltrami coefficient for G, on U, which is also denoted by p. Now there exists a
unique quasi-conformal automorphism F of the extended z-plane C fixing 1, J —1
and —) —1 whose complex dilatation is u on U and zero on C— U. Next let ¢
be the Schwarzian derivative of F considered as a schlicht function on C— U. Then
Kithnau—Lehto’s theorem ([9], [15]) states that

(1=1z?|¢p(2)| = 6-k(R) (<2) on C-T.

This in turn implies (cf. [3], [5]) that there exists a unique quasiconformal auto-
morphism g on C such that
(i) the complex dilatation of g is equal to

—%(1—1212)2%(—;‘] [?})4 on U, and

Oon C-U, and
(i) g(z)=F(z) on C-U.

Now by (i) it is seen that the complex dilatation of g is a Beltrami coefficient
for G, and (i) implies that FoGyo F~1=goG,0g~! on C. Thus g can be pro-
jected to a quasiconformal mapping from R, onto R (=F(U)/FoGyoF ~1), which
is canonical by (i). And noting that

__;_(1 — 212205 [%] (%)

5 (=125 (2)

sup
U

= 3-k(R),

= sup
Cc-U

we have the assertion.
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2.3. By Lemma 2 above one can restate Theorem 1 as follows.

Theorem 1’. Let R*¢0”, and a point Ry€T(R*) and O €T ,(R,) be given.
Suppose that d(R,, R)<log 2, and let O be the differential in I ,(R) having the same
A-periods with Og . Then there exists a canonical quasiconformal mapping fr from
R, to R such that

6-k(R
10 ofg—Or,llre = ﬁ(k—_()f{—)— 0k, /I ro -

Corollary 3. Using the same notation as in Theorem 1’, we have
1)

Jim [|0xlx = 0g,lx,» and
2) lim

R—-Ro!OR = !91{0 for every l-cycle d.

Proof. For R sufficiently near R, there is a canonical quasiconformal mapping
Jr of R, onto R. Let Op=ar(w)dw with w=fg(z). Then

l0gle = [2 [ lagofzl?(((fRE—I(fR)2) dx dy]™
Ry

= [[0r o frllr, =

” HR OfR - HRo”Ro + ” 0R0||Ro .
Hence by Theorem 1’ we see that

lim sup 10| = 10, -

On the other hand, writing k=k(R), we have

16kl ro = 110k 0 = Orollro + 110k Sl R,

1+ k27
= |0g o fr—Og,lr,+ [w] 0kl x>
and consequently the inequality

lim inf | Ol = 1Oyl

It is well-known that for a fixed I-cycle d, the linear functional L(w)= f a0
is bounded on I''(R,), that is, there is a constant C, such that

|fco| = Cylwllg, forevery weIL(Ry).
d

Noting that 6 ofz€I'f(R,) we have therefore

]dferdfeko = C,l10g 0 fx—Or,)|z, -

Thus the assertion 2) follows from Theorem 1’,
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Remark. The equation 2) in Corollary 3 implies that when R€O” and a cano-
nical homology basis {4;, B;} on R is suitably chosen, then the period matrix with
respect to this basis varies continuously on T(R) (equipped with the Teichmiiller

topology).

2.4. Similarly we have the following results from Theorems 2 and 3 respectively.

Theorem 2’. Let R*¢ Oy and a simple closed curve ¢ be given. Suppose that
d(R,, R)<log2. Then there exists a canonical quasiconformal mapping fg from
R, to R for which

6-k(R
10050l = Tg ey [Oerln

1A

Corollary 4. Using the same notation as in Theorem 2’, we have

1) Jim 10c,xlx = 10,5l n,e and
2) Iy—»l%o 3/.6C’R = &/BC,RO for every 1-cycle d.

Theorem 3’. Let R* and a simple closed curve c be arbitrarily given. Suppose
that d(R,, R)<log 2. Then there exists a canonical quasiconformal mapping f from
R, to R for which

HO (FhO(R)) ofg—0 (FhO(RO))HRo = '15—31((]%)— H@c(rho(R))HRo-

Corollary 5. Using the same notation as in Theorem 3’, we have
FhO (RO))‘ ’Ro s d

2) I%i*n}{0 df 0.(r(R) = ,}/. 0.(Fuo(Ry)  for every 1-cycle d.

1) 11m |

2.5. Here we shall consider quasiconformal mappings not necessarily of class
C2. Let R,€T(R*) converge to R,¢ T(R*), where R* is arbitrarily given, and let f,
be a quasiconformal mapping of R, to R,. We call a sequence {f,};-, admissible
if the maximal dilatation of f, converges to 1. Then we can show the following

Proposition 3. If we let 0 be a holomorphic Abelian differential on R, with
finite Dirichlet norm for every n, "then the following two conditions are equivalent,

1) For some admissible sequence {f,}., we have
A3) lim [0g, © f, =0, = 0-

2) For any admissible sequence {f,}w_,, the above (3) holds.
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Proof. 1t is clear that 2) implies 1). Now suppose that for an admissible sequence
{£.}:=, the condition (3) holds, and let any admissible {g,};, be given. First note
that

Q) 16, © 81— Oryl %o

_|_ 2
= 21 k2 I]GRnOgno(gn o n) ORoo(gn © n)”Roa

where k,=essg sup (g of)l/I(gy tof,),l. In fact, for any square integrable
differential 0=a(w) dw+b(w)dw, and any quasi-conformal mapping w=F(z)
of R, onto itself, it holds that

100 1% = f 2(la0 F(2)+ F,(2)+bo F(2)- F(2)P

+la OF(Z)- F:(2)+boF(z2)-F(2)*)dxdy
=4 f (la o FI2+|bo F®(|F,[+|F;[?) dxdy

1+k

sS4 f(|a oF|24+|boF|2)-Jdxdy
1+k 14+ k2
=41 f(|a(w)12+|b(w);2)du dv =275 10/,
where k= essg, sup |F|/|F,l, J=|F,]*—|F,|* with generahzed L2-derivatives F,
and F,. So, putting 0=~0g og,o(g; tof,)—0g o(gn of)), and F=(g;'of)™"
we have (4).
Next

[0g, 0840 (gt ofw)—0r, (gt of)lir,
= |0k, o f,—Oryl Ry + 10k, — Ok, © (25 0 f)ll Ry

and the first term of the right hand side converges to 0 by assumption. To complete
the proof it therefore suffices to show that

(5) 1im (|0, —0Or, 0 (85" 0 f,)lIr, = O

For this purpose, let G, be a Fuchsian group acting on U={|z|<1} such that
Ry=U/G, let a(z) dz with holomorphic a(z) be the lift of 0 and F,(z) be the lift
of (g;'of,) such that F,og=goF, for every gcG,. Note that g, and f, are homo-
topic. Fix a normal fundamental region D for G, and any positive ¢. Then there
exists an ro<1 such that a(z)ll, p_ b, =% where D,=Dn{|zl<r} and ||} =
ZfE | f1? dxdy for any subset E in U. Slnce D, is compact in U for any r<1, |a(z)|
is bounded on D,. Since {f,} and {g,} are admissible and homotopic, F,(z) converges
uniformly to the identity mapping on D,, and

lim [|(F,): = 1s,p, = lim [(F):llz,pr = 0.
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(Cf. [14] IV Theorem 5.2 and V Theorem 5.3.) Hence we conclude that
lim sup [|0g, — g, © (& * o fu)llr,
= limsup[flaoF,-[(F).—le,p,+ lla o Fy- (Fll2,n,
+lla—aoFllo,p,+lall2,p-p,
+(D fD 2|a o F,2(I(F).1+I(F,):I?) dx dy)""]

2
n

12
= [la(2)|e,p-p, +limsup |=——5| -la(Dlls,r,0-0,
kil G pe
= 2¢,

where ry<r<1. Since ¢ is arbitrary, we have (5).
Thus using Proposition 3 we obtain from Theorem 1’, 2’ and 3" the following
theorems.

Theorem 4. Let R*€0”, R,£ T(R*) converge to R, T(R"), and 0y be as in
Theorem 1’. Then for every admissible sequence {f,}m_,

lim |0, o fu—0g,llr, = 0-

Theorem 5. Let R*€ Oy, and R,€ T(R*) converge to Ry¢ T(R*). Then for every
admissible sequence {f,}7 .

lim [10,,, ., 0, o = 0.

Theorem 6. Let R* be arbitrary and R,€ T(R*) converge to Ry€ T(R*). Then
for every admissible sequence {f,}:>,

JLII; ||90(Fh0(Rn)) ofn_ec(FhO(RO))“Ro =0.

2.6. Finally we note that Theorem 5 can be extended to arbitrary Riemann
surfaces. That is, we can prove the following

Theorem 5. Let R* be an arbitrary Riemann surface, a simple closed curve
¢ be fixed, and R,€ T(R*) converge to Ry€ T(R*). Then for every admissible sequence

{fdrea
(6) }LIE, ” HC,R,. ofn_ec,Ro“Ro =0.

Proof. Suppose first that every f, is canonical, and let o, g, =Re 0, g for every
n. Then one can see that o, & Iz, converges to lo.. R llz,» for llo, zl% is equal to
the extremal length of the homology class of ¢ on R. Hence it holds that

Kn_'l”O-c,Ro”%(o = ”GC,R,.”%Q) = Kn”ac,Ro”%(w
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where K, is the maximal dilatation of f,. Note also that
“ac,R,. Ofn—ac,ROH?(o

= 0,7, oSl ka—2 [ 0.k, 10c, R0
[

= |0, g, 0fullke— 2110c, R, Ik + 10c, RollRo-

Now set 0, g =a,(z,) dz,, (hence 20, =a,(z,) dz,+a, a,(z,) dz,), on R, with

z,=f,(z). Then 0. x,f=01/D[(a, o, (). + anofo F0s) dz + @y a+
a,of,-(f,),) dz], and thus we have

loe, &0 ullRo

= % |I[(an Ofn : (fn)z+an Ofn * (fn)f] leI%zo

= _;,_ fia” ofnlz(l(fn)zl“i'l(fn)il)zz dx dy

n

1
= 5 K0}, = Kok -

Hence, we conclude from above that

nlilg ”o-c,K,. Ofn _ac,Ro”Ro =0.
Since
V2 ” Crc, ofn c,Ro”Ro

= "[an Ofn ° (fn)z+a_nofn ° (T)Z.—aol dZ”Roa
we have
]IBC,R,. Ofn_ec.Ro”Ro
= |[auofy+ (f):— Gol dzllr, + ll@no S (f)z dZlI,
= Vi “oc,Rn Ofn—ac,Ro”Ro_l_z“an Ofn * (fn)z dz”Ro‘

Here |a,of,-(f,):4zllg, also converges to 0, because

”an Ofn '(fn)idE]lRo = kn"an Ofn * (fn)de”Ro

1+k2)
= ol 5, ol = V[T 10l

where k,=supg, (f,):/I(f)l-
Thus if every f, is canonical, we have (6), and the assertion follows if we use

Proposition 3.
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3. A remark for the case of compact Riemann surfaces

3.1. For a compact Riemann surface R* of genus g (=2), T(R*) is usually
denoted by T, and we have the following corollary to Theorem 5, which is essenti-
ally due to Ahlfors.

Corollary 6. Let R,€T, converge to Ry T,, and a non-dividing simple closed
curve ¢ be given. Then for every admissible sequence {f,}:-; we have

}Ll’l;lo ”0c,Rn ofn_OC,Ro”Ro =0.

If we let G* be a Fuchsian group corresponding to R*, T, can be identified
with the Teichmiiller space of G*, and is considered to be embedded in the (finite
dimensional) space of G*-invariant bounded holomorphic quadratic forms on the
lower half plane (cf. [3], [7]). In the sequel we fix a non-dividing simple closed curve
¢ on R* (hence for every R€T,), and by using the same notation and terminology
as in [17], we shall consider the space 9,7, for ¢ and the fine topology on .7, b=
T,00.T,. Here we recall some definitions. First, 9, T, is the set of marked Riemann
surfaces with one single node corresponding to ¢. Next, by letting S, be the set
of points R of T, on which 62 ; has a closed trajectory freely homotopic to ¢, we
can construct a mapping F; from S, onto T,_, ,, and set

2.0, g

TR

@) F,(R) =Re f
B,

for every R€S,, where my is the modulus of the characteristic ring domain of 62 ;
for con Rand {4;, B;}9_, is a canonical homology basis on R such that 4, is freely
homotopic to ¢. Then F=(F;, F;) can be extended to a bijection from S.uUd, T,
onto T,_; XU, where U={z: Im z=0}u{e} is equipped with the usual fine (cusp)
topo]ogy The fine topology is, by definition, the induced topology by F from
T, 1.xU.

In this case we say that a sequence {(R,, R,, f,)}i=., of deformations (cf. [1])
is admissible if for every neighbourhood K of the (single) node of R, and every
positive ¢ there exists an N such that f;;—ll(Ro—K) is (14 ¢)-quasiconformal for every
n=N (cf. Chapter 2), and set

8) O = 20, S for every Ré€T,, and
10, &ll%
0x - g for every R€9.T,,

where R’=F,(R) and ¢g is the elementary differential of the third kind on R’
with poles at two punctures.
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It is known that if R,€ T, converges to Ry€0.T, in the sense of the conformal
topology (cf. [1]), then it holds that

9) lim [|0g [z, =+, thatis, lim [0, g|lz, =0.

Now using the fine topology on ch, we can extend this slightly by stating the main
theorem of this section.

Theorem 7. Suppose that R, €T, converges to Ry T, in the sense of the fine
topology. Then for every admissible sequence {(R,, Ry, f,)},=1 of deformations we
have

(10) '}Ln; [0k, of 't —Oryll(ro-x) = O

for every neighbourhood K of the node of Ry, where we assume that K=0 if R,€T,.
Note that (9) is derived from (10), because

||9R0”(R0 K) = ”911,, of, ! 0R0||(R0—K)+[|9Rn Ofn_lll(Ro—K),

_ 1+k;
HOR,, ofy “(Ro k)= — 2 HHR,,l (Rn— 12 Y(K))»

and [0 llz,—x) tends to +eo as K shrinks to the node of R,.

3.2. The proof of Theorem 7 will be given in Section 3.3 after preparing the
lemmas below. First we construct an admissible sequence satisfying the condition
(10). Our construction of such a sequence is based on Corollary 6 and for later
use we modify it as follows.

Lemma 3. Suppose that R,€T, converges to Ry€T,. Let fx, be the Teichmiiller
mapping of R, to R,, and f,=fz*. Then the admissible sequence {(R,, Ry, fo)},—y
satisfies the condition (10).

Proof. It is clear that the given sequence is admissible, and noting that
lim, [0, R,.” Rn:uec, Ro” R, (cf. Corollary 4), the assertion follows from Corollary 6

and the following inequality:
[0, o f * = Ok,ll ro

2
= _ . OC
|nec,Rnn%n ) 10 ml

2
”0 2 “?{ 'HGC,R" Ofn—l_oc,Ro”Ro'

Now let a positive y, be fixed, and write
X={ReS,.: F(R)=V—1-y}.
Let {5,JcX be a sequence converging to S,€X, and R;=F,(S,) for every n.
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Then R} is canonically embedded in a compact Riemann surface, say R,, of genus
g—1, and R,— R, consists of two points, say {p.}?_,, for every n. Next let R,=
F~'(R;, ). Then 0 is, by definition, (V—_/Zn) - ¢r;,. Denote the characteristic
disk of BR atp’ on R, by Di (i=1, 2). Map each D! conformally onto D={|z|<1}
so that pj, corresponds to z=0. Then under the natural embedding =, of S,—Cy
into R, (where Cs, is the center trajectory of the characteristic ring domain Wy
of 05 forcon S ), the images of the boundaries of S,—Cjy are loops in D} and
D? correspondlng to the circle {|z|=r,} in D for every n "with Fo=exp [— 7yl
Finally let W, , be the ring domain in Wy S, containing Cg such that the
boundaries of W, , are mapped by 7, to the loops in D} and D? corresponding to
{lzl=r} in D, where ro<r<1. (See [16], [17] for more detailed preliminaries.)

Lemma 4. Let S,, Ry and W, ,, be as above, and let a finite number of constants
{0,¥;=1 such that 0<6,<6,<...<d6,<(1—ry) be given. Then there exists a sequence
{(S,, Ry, f,) )=, of deformations satisfying the following condition: for every positive
e (<l—ry—9,) we can find an N such that for every n=N

(a) f,,"ll(Ro_ xp 15 (1+e)-quasiconformal,

(b) ”0 o —1 Ro“(Ro kp =& and

© £ KNS W, o (=1, eers) and £ (N(RY)=Cy,
where K is the nezghbourhood of the node N(R,) of R, corresponding to {|z|<r,+9J;+¢}
in D, and F;=ro+0;.

Proof. Let fy be the Teichmiiller mapping from S, to S,. Then it is known
([16] Corollary 2) that we can find and N; such that

1y Is. Wi ) DWW, (Gi=1,...,9)

for every n=N,, where r;=r;+e. Hence in particular we can consider each
Ty O fisill(s,,—cs y (n=N,) as a quasiconformal embedding from S, —C;_into R,CR,,
which we denote by g,. Here we can assume (cf. [16]) that n, is conformally ex-
tended to a suitable neighbourhood of the boundaries of S,—Cs in Wy, .

By deforming g, in W, »—Cs,» we can now make a deformation (S,,, Ry, f)
such that f,"Y(N(Ry))=Cs, and f, coincides with g, on S,— W, , for every n=N,.
By taking any suitable deformations for n<N;, we arrive at a sequence of defor-
mations. We show that this sequence satisfies the conditions in Lemma 4.

First by Lemma 3 for a given ¢ we can find an N (=N;) such that

(12) fs, is (1+e)-quasiconformal, and
(13) (05, 0fs,—Os,lls, <& forevery n=N.

Note that 7mo(So— Wy, )=Ry—K; (j=1,...,5) and 0 omy'=0 on R,—K;.
Hence from (11) we have

fn(Sn_Wr ,n) = gn(Sn_Wr ,n) ) nO(SOAWr‘/,,O) = RO_Kj9
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that is, f,”'(R,—K)cS,—W, , (j=1, ...,s) for every n=N,. Thus we conclude
that f,"'(K;)D W, . (j=1,...,s) for every n=N,;, which implies that f,~'=
Sfstomgt on R ——Kl, and hence I I(Ro— xp is (1+e)-quasiconformal for every
n=N by (12).

Next, from (13) we have

HGSn Ofn_l—BR_o” (Ro—K1) — ”95,. ofsn © 7.[0_1 - 030 © RJIH(RO_KI)
= 1165, ©fs, = Os,llso-wri o) =

for every n=N, which completes the proof.
Now we can show the following

Lemma 5. Suppose that R,€0,T, and converges to Ry€0.T,. Then there exists
an admissible sequence {(R,, Ry, fo)}e, of deformations satisfying the condition (10).

Proof. Let K* be the neighbourhood of the node of R, corresponding to
{lz|l<1/k} in D for every n. Fix a positive integer k arbitrarily, and let R, ,=
F-YR,, (Y =1/m)log (k+1)), where R;=F,(R;). Then using Lemma 4 with
S,=Ry . yo=(1/m)log (k+1) (, hence r,=1/(k+1)), and §,=e=¢,=
(1/2)(1/k 1/(k+1)), we have a sequence {(R,,,R,, f,,,,)} >, of deformations
satisfying the condition; there exists an N, such that for every n=N,

() firlre—xe i (1+&)-quasiconformal,

(i) 110z, ofin —Or,ll(ry-xk) < &> and

e 1 1
(]ll) fk (Kk) SW. . (Wlth r= % (—11; + m)] and
fk-:y:.l(N(RO)) = CRk,n .

Now let 7, " be the natural embedding of R, ,—Cg . Then we have an em-
bedding fk nom , from R, — K into R, for every n=N,, and deforming 7, ,
in W, we can make a sequence {(R”, Ry, & te wen, of deformations such
that gkn_ﬁ”,onk » on m (R, ,—W, ,), which contains g, H(Ry—K¥) by (iii).
As in the proof of Lemma 4, it is easily seen from (i) and (ii) that

(V) gillro-kg 1S (1+8&)-quasiconformal, and
(V) 10k, © gics — Orell (Ro— k%) < &

for every n=N,. Here we assume that N,,,=N, for every k.

Finally define a sequence {(R,,R,, f,)}r—, of deformations by taking as f,
the above g, if Ny=n=N,,;—1. By (iv) and (v) we find that it is a desired
sequence.

Lemma 6. Suppose that S,€T, and converges to Ry€d.T,. Then there exists
an admissible sequence {(S,, Ry, fu)}rey of deformations satisfying the condition (10).
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Proof. From the definition of the fine topology ([17]), we may assume that
{S,};=., is contained in S,. Let F(S,)=(R;,z,) and R,=F (R}, <) for every
n, and K¥ and ¢, be as in the proof of Lemma 5. Then since R, converges to R,,
using Lemma 4 as in the proof of Lemma 5, we can construct a sequence
{(R,, Ry, g»}r, of deformations satisfying the condition: for every positive integer
k, there exists an N, such that for every n=N,

() g 'ro-x% is (1+8&)-quasiconformal,

@) 10k 0 &7 Oyl cro-xty = &» and
i) g (KD DK (=1, ..., k).

Next, let k, be the largest integer such that x,(S,—Cjy )nK"#ﬂ (that is,

7, (S,—Cs,) D R,—K;) for every n. Then k, tends to + e, for l/k >exp (—n+Im z,)

for every n and lim,  _ Im z,=- . Deform each «, in =, *(K*") as before, and

we have a sequence {(S,, R,, ,)}r, of deformations such that 4, (==,) is con-
formal on S, —x; }(K*).

Finally let f,=g,oh, for every n. We can now show that {(S,, R,, fo}i .
is a desired sequence. In fact, for every neighbourhood K of the node of R, and
every positive ¢, there exists a k, such that K> Kfe and g, <¢. Thus we can
find an N (=N, ) such that k,=ky+1 (, hence fTH K)ok (KE) by (i), and
(i) and (i) hold with k=k, for every n=N. Then noting that f, '=n,tog !
and Og om,'=0p on S,—f,'(K) for every n=N, we have the assertion.

3.3. Proof of Theorem 7. We consider only the case in Lemma 6, for other
cases can be treated similarly as in Proposition 3. Let S,, Ry and f, be as in Lemma
6, G,£T(G*) correspond to S,, and let U, be the component of G, such that
S,=U,/G,. Also let G, €9dT(G*) correspond to R,, U, be a non-invariant com-
ponent of G,, and F, be the lift of f,7! from U, into U,. Then it is seen (cf. [1])
that F, converges locally uniformly on U, to the identity, and U, is a component
of the Carathéodory kernel of {U,}> ;.

Let a,(z) dz and a,(2) dz be the lifts of 05 on U, and BR on U,, respectively,
and fix zy€ U, and a small ¢ such that D,,= {|z zo| =29} is contained in U, (hence,
in U, for every sufficiently large ») arbitrarily. Then similarly as in the proof of
Lemma 2 in {2], we can show that there exists an M such that sup, Dy, la, @) =M
for every sufficiently large n. It also holds that

la,(z0) —ao(zy)| =

1
V2m?

n(Z) _an(Fn(Z))H2,DQ+ ||an(Fn(Z)) [(Fn)z - l]l IZ,DQ

+ Han(Fn(Z))(Fn)z - aO(Z)I |2,Da]
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Hence using Lemma 6 and Theorem V 5—3 in [14], we can show that a,(z)
converges to ay(z) pointwise, hence locally uniformly on U,.

Finally take any admissible sequence {(S,,R,, f;)}s=; and neighbourhood
K of the node of R,, and fix them. Let F,, be the lift of f,~* from U, into U,, and
E be a relatively compact region in U, which covers R,—K. It is then easily seen
from above that a,(F;(2)) is uniformly bounded on E and a,(F,(2)) converges to
a,(z) uniformly on E. Hence from the inequality

[0s, 0 fn =t —Orllro-x) = |lan(F1:(Z))[(Fr:)z—1] !2,E

+ I Ian(Fr: (Z)) _aO(Z)H2,E+ Han(Fr: (Z))(F;:)zqu

and Theorem V 5—3 in [14], we can conclude that

}L@Jl%n ofat=0gll(ro-x) = O
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