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1. Introduction

Let F be a family of functions meromorphic in the complex plane C, and S

a subset of C. We call S a Picard set for F if every transcendental f(F assumes

every complex value with at most two exceptions infinitely often in C-,S. We use

the usual notation of the Nevanlinna theory, the Nevanlinna deficiency is defined by

ö(a,f):ti^^f ##
and the Valiron deficiency by

/(a,f):ti^ryOffi.
If F is the family of all functions meromorphic in the plane, the corresponding

class of Picard sets is denoted by P(M). Let P(P) be the class of Picard sets for
those meromorphic functions which have at least one Picard exceptional value.

By means of a linear transformation, we see that P(P) is the class of Picard sets

for entire functions. The class of Picard sets for those meromorphic functions which

have at least one Nevanlinna (resp. Valiron) deficient value is denoted by P(N)
(resp. P(Z)). We see immediately that

P(M) c P(V) c. P(N) c P(P).

In this paper we shall consider the question, under which conditions a set S

belongs to the classes P(N) or P(Z). First we shall consider countable sets and

then the case when S is a countable union of open discs.
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2. Countable sets of the class P(N)
We shall prove

Theorem l. Let E:{a*\ be a countable set whose points conuerge to infinity.
If there exists e>0 such that

(A)

for all large n, then E(P(N).

This theorem is best possible in the sense that, corresponding to each real-
valued function g(r) with lim"*- EU):-, there exists E:{o,} satisfying

[, l,oll , ,l..":,[z: 0 < lr_o,l = Elo,ll togla,l )

for all large n such that E|P(P)= P(N). The existence of such a set E is proved
in [1, pp.7-8].Since the condition (A) is the best possible one of this type for
P(P), too, there arises the question whether P(P):p11v,;. The answer to this
question is negative.

Theorem 2. There exists a countable set E:{a,} with liman:* such that
E€P(P)- P(N).

The following theorem shows that the condition (A) is not optimal for
linear sets.

Theorem 3. Let E:{a,} be a sequence of points lying on the positiue reai
axis and let ao** as n+@. If there exists e>O such that

(ts) on+t> o,(r*GåF)

for all large n, then E€P(N).

The condition (B) here is optimal, even for P(P), for it is proved in [12] that
if q(r) is an increasing function such that E(r)-* äs r+@, there exists a set
E:{o,} with lim an:- lying on the positive real axis such that E$P(P) and

Qn+r > o,(t +
g an)'E@,,) (

I
lo

for all large n.
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3. Results for the class P (V)

corresponding to Theorem l, we shall prove the following result for P(v).

Theorem 4. If there exists e>O such that the set E:{a,\ with lifiao:*
satisfies

(C) {z: O=lz-a,l- elq,l}oE:0

for all large n, then E(P(V).

This result is optimal, even for linear sets, for we shall prove

Theorem 5. Giuen any increasingfunction EQ) such that q(r)+@ as r+e)
there exists a set E:{a,} lying on the positiue real axis such that 4,** as n*-,
E{P(Y) and

(D)

Jor oll large n.

If in Theorem 5 E(r)*- sufficiently slowly &s /+6r then the corresponding

set .E belongs to P(N). Therefore P(V)*P(N). Between these classes there is

even a more essential difference. We denote by U(a,r) the open disc lz-al-v.
Theorem 10 proves that there exists a denumerable collection of open discs U(a,, d,)

with lim lanl:* such that the union of these discs belongs to P(N). The class

P(Z) does not have this property. We prove

Theorem 6. If U(a,,d,) is any sequence of open discs such thqt limlanl:*,
then the set

U(a,, dn)

does not belong to P(V).

1. Comparison of P (V) and P (M)

is proved in [10] that

la,*rl > tla,l'

n, then E(P(M), and
E - {r"} lying on the

a'i
an+1 > 

M

if the set E - {o"} satisfies

an+r > ,,(r*b#)

ö
n:1

As in Theorems 1 and 4. it

(1)

for some s>0 and for all large

E ?) * - as r -.> a, there exists

EqP@) and

in [1 2] it is proved that if
positive real axis such that

for all large n. We conclude that P(V)+P(M). The conditions (C) and (1) are

quite far from each other and therefore we try to characterize those functions
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which make the difference between P(V) afi P(M) so large. We denote by .X the
extended complex plane and prove

Theorem 7. If f is a transcendental meromorphic function such that the set

E:{a,}:f-r({O, 1, -}) satisfies the condition

(E) lim lao*rlanl : * ,

then
lim sup (sup n (r, D - lt! n(r, w)) < 2,

and for any two complex ualues a qnd b,lim sup,*- ln(r,a)-n(r,b)l=|.
Furthermore, we shall show that a meromorphic function may have at most

three so thinly distributed values that (E) is satisfied.

Theorem 8. If f is a transcendental meromorphic function in the plane and
wa is dffirent from 0, 1 and -, then the set E:{a,}:f-'({0, l,wa, -D satisfies

iiminfla'*'l=-.
r+6 I Ot I

In the other direction, we shall prove

Theorem 9. For any M>l there exists a transcendental meromorphic func-
tion f such that the set

(F) E: la,):I-r({0,1, M, *\)
safisrtes

(G) timinf lSrsl: *.

5. Further results for the class P(Äf

From the results of Anderson and Clunie [] it follows that if q>1, the set

E: {o,\ satisfies

(a) lan*rla,l = q

for all n, ald the radii dn are chosen such that

(b) (log la,l)'z:, (,"tå),

then the union of the discs U(an, d) belongs to P(N). It is proved in [15] that the
condition (b) here can be replaced by

(b') ,or/.,=K(log la,l)'?,
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where K>0 depends only on q, ar.|d still U U(a,,d,)€P(N), and in the other

direction, if K in (b') is taken too small,

(c) v- Ir\--'2logq'

there exist tJ(an, dn) satisfying (a) and (b') such that U u(a,, dn) does not belong

to P(P). We shall relieve (a) and prove

Theorem 10. Let E:{a*) be a complex sequence such that lima,:*,
la,l>e, and

(H) {r, o= l,-a,l=#,J ol:b

for some d.,O<a,=.|, andfor all n. If the radii dnare chosenby the equation

(I) log] : (og la,l)2+P,
&n

where §>2a, then the set

s:)jl(a,,d,1
belongs to the class P(N).

Here B cannot be smaller than2u, for it is proved in [13] that if B'<2u, there

exists S: l) U(an, d,) satisfying (H) and (I), and not belonging to P(P).

Theorem 3 follows as a special case from the following

Theorem ll. Let E:{ar} lie on the positiue real axis, e<.at<.q,<...',an*-
AS 1+@tt>0, And

(J) at+t>r,(t*ffir)

Jbr some u, O<d,=2, and for all n. If the radii dn are chosen by the equation

(K) ,.r;, H!osa)'*n,

where 11:4800(1+e-2)(100)2+', then the union of the discs U(a,,do) belongs

to P(N).

In the other direction, it is proved in [14] that if e:117, H=ll8 4ad Q<.q,=2,

then,E anddo satisfying (J) and (K) can be chosen such that the intersection of the

positive real axis and the union of the discs U(a,, d,) does not belong to P(P).
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6. Some results needed in the proofs

We denote U(*,ö):{z: lzl>llö\. We shall need the following

Lemma l. There exist positiue constants M1 and M, depending only on w, such

that if f is meromorphic in an annulus r<lzl<R and omits there three dffirent
ualues O, I and wr, then, if R>Mrr, the image of lzl:{rR under f is contained in

U(a, Mr(log(Rir)-'9

for some fi.nite or ffinite complex a.

Proof.Let f be meromorphic and omit thevalues 0, I and w, in r<lzl<R,
where log (Rlr)>8n. We denote zo:y'fr:exp((J. We choose g to be one of
the functions llf afi UU-D such that lg(zr)l=2. The function g(e() is regular
in (I((o,Ql2)log(,R/r)) and omits there two finite values. Therefore it follows
from Schottky's theorem that there exists Mr>0 depending only on w, such that
lg(ee)l=M, in l(-hl=Ql4) log (Ä/r). The function

h(o: s@c) - s@eo1

(-(,
is regular in U((o,

(i)
8M,

ih(Ot = r"fub

(Il4)1og(A/.)), and on the boundary of this disc h satisfies

It follows from the maximum principle that (D holds on the segment (:(o*iE,
-rt=E=tt, and we get

(ii) ls4)-s@o)l= = 
8nY?.

log (R/r)

ot lzl:1/iR. Lemma 1 follows from (ii) by an easy computation.

Lemma 2. Let f be meromorphic in the plane and

E:f _r({0,1, }rB»,

where w, is dffirentt from O and l. For any O4 =-0, there exists a constant K : K(M, ws)

such that if lf @)l>-2M and lf«)l=M, then the disc

u((, Klb -cl)
contains at least two points of E.

Proof. LetMrandMrbeasinLemma 1. Wechoose K>Ml so large thatif a
is any complexpoint,the set U(a,2d), where d:Mz(Q12)logK)-ua, contains at
most one of the values f (b) and f ((), and at most one of the points 0, 1 and wr. Let us

suppose that U((, Klb-(D contains at most one point of E. If U((,lb-(ll/K)^E
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:0, we set r:lb-(1, and otherwise we set r:lb-il{K.Then / omits the

values 0, 1 and wu in the annulus r<.lz-(l<ry'k, and it follows from Lemma 1

that the image of the circle y: lz-(l:yrlar is contained it tJ(a,d) for some

complex a. Let D be the open disc bounded by 7. Since the image of the boundary
of D is contained in U(a, d) and at least one of the values f (b) aÅ /(0 lies out-
side U(a, d), f takes in D all values lying outside U(a, d). This implies that / takes
ir D at least two of the values 0, 1 and wr, and we see that DcU((, Kl(-bl) con-
tains at least two points of E. So we have proved that the assumption that
U((,Klb-(l) contains at most one point of .8, leads to a contradiction. Lemma2
is proved.

Let f be meromorphic in the plane and let wr, w, and w, be three different
complex values. Let anbe the sequence of the distinct roots of the equations f (z):wr,
.f (r):w, and f(z):vr. We denote by n(r\ the number of the a, lying in lzl=r,
and

l/(r) - i
0

n(t)-n(o) il+/,(o) tog r.
t

From Theorem 2.5 of Hayman 15, p. 471we get the following

Lemma 3. Let f and N(r) be as aboue. Then

T (r, f) = (1 + o1t)).rr(r)

as r+@ outside a set B of finite linear measure.

Lemma 4. Let f be transcendental and meromorphic in the plane such that
ö(*, f)>0 and

(2)

fo, some finite M.

satisfies

(3)

lf@)l =1 in

(4)

T (r, f) : O ((1og ,)*)

If there exists o( >0 such that

E - {o,) -f -'(t0, 1})

for all large n, then there exists a real increasing sequence on such that o,** sg

ll*@t

min {l/(z)l: lzl: o,\: r,

/A=Vl=6n ond

tog lf (z)l = [+ *o(1))

fo, ott z lying in /A=Vl= onl2.

ö (-, f)T (lzl, f)
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Proof. It follows from (2) that we may choose 8,312<B=M, such that

(r) r(r,f): o((los r)P)

and

(ir) T(r,f) * o(losr)o-rrz7.
Since 

rz

n(r, a) logr < I 
N* dt : N(r2, a)- N(r, a),

we deduce from (i) that 
r

(iir) n(r, a): O((log r)e-')

for any complex a, and from (ii) it follows that there exists a real sequence R, with
lim R,: - §uch that
(iv) f @",f) = (log R)F-trz
for all n.

Let b be a complex value such that läl=1 and

(v) N(r,b): (t+o1t)r(r,/).

Let b, be the sequence of the ä-points of f and

, :,urU_ 

"u 
(b k, lb kl (log 

I bkl) -'z('+P)).

We denote d(z):v;n {lr-bolt k:1,2, ...}. Using the Poisson-Jensen formula,
we get for all z:reiQ,

toe lI k) - bi = * J" 
rorlf (Zreto) - bl ffi d0

-ru?=r,loglffil
This implies, together with the fact that m(t,b):s(7(t, fl), that

(oil toelfe)l= ({*rt,l) ö@,f)r(2r,f)-n(2r,b)bEh.

Let z:reiE lie in Ä,=lzl=R?, outside .8. Then

d (z) = r (2 log r)- 2(a+ F),

and we see from (iii) and (iv) that

n(2r, b)log(a4dQ)): O((log.R)r-t log log Ä,) : o(r(n,,f)).

Therefore it follows from (vi) that f satisfles (4) in R,<lzl<Rf; outside the set B.

Let us suppose that there exists some bolyirrg in 2R,<lzl<Rll2. The sum of the
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radii of those discs of the set B which meet the annulus lb*ll2=lzl<.2lbyl is at
most

2n(Rf;, b) Ibrl (log lbol)-z{a+a» : o(lb*l(log lbll)-"),

and we see that there exists do,

(vit) 0 = do < lbpl (log lbol)-'n,

such that the circle lz-bol:dr does not meet B. It follows from (3) and (vii) that
f takes at most one of the values 0 and 1 in U(by, de), and since (4) is true on the
boundary of this disc, we conclude from the minimum principle that

tog lbl : log l/(b1)l = ({*rf,l) ö@,f)r1bkl,f).

This is not possible if lå*l is large, and we deduce that

Bn{z: 4R, = lzl < Rll4} : fi
for all large n.

For large values of z, we may choose o,>Rll4 such that lf @)l-l in 4R,<
lzl<oo and

min {l/(z)l : lzl: on) : l.

Let (-reio lie h 1[o,=lzl=o,12. Since / has no å-points in 4R -.lzl=ot) we
conclude that n(2r,b):n(4R",b), d(O>-rl2 ard

n (2r, b) lo g (ar M «)) : O ((log RJp - 1 los 8) : o (r(,R,, 
"f)).

Now we see from (vi) that / satisfies @) in fi=lzl=o,12, and Lemma 4 is proved.
Following Hayman [6], we shall call an e-set any countable set of circles not

containing the origin, and subtending angles at the origin whose sum is finite.
Hayman [6] has proved the following

Theorem A. If an integral function f satisfies log M(r, .f):O ((loer)'), thm

toelfe)l: (t +o1t)) togM(r,f)

as z:reie-* outside an e-set.

Valiron [16] has proved the following

Theorem B. If a meromorphic function f satisfes T(r, fl:6 ((lorr)2), then

T(r,f) : (t +o(1)) max {N(r, a), N(r, b)\

for any two complex ualues a and b.
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7. Proof of Theorem 1

Contrary to the assertion of Theorem l, let us suppose that there exists a trans-

cendental meromorphic function / with a Nevanlinna deflcient value w such that
the set

E : {a*} : I -, ({w,., w z, ws})

satisfles (A) for some e=0 and for some choice of the three different values 1frt, wz

and wr. We may suppose, without loss of generality, that w: e, ilrr:O afld wr:1,
w, being an infinite or finite complex value, different from 0 and 1.

Let n(r\ be the counting function of E. It follows from (A) that

n (e') - n(e" -') : O (s'),
and we conclude that

This implies Lhat n(r):O ((logr)a), and therefore the integrated counting func-
tion of E satisfles N(r):g ((logr)a). It follows from Lemma 3 that T(r, f)=-
(l+o(l»N(2r) for all large values of r, and we deduce that f satisfies T(r, f):
o ((los r)a). This implies that we may apply Lemma 4.

Let the sequence on be as in Lemma 4. We choose bnlying on the circle lzl:o,
such that l-f @)l:1. Since .f is transcendental, we conclude that

fi* inf 1(''l) : -'r+a rOg r

Therefore we deduce from (4) that there exists a sequenco K, with limK,:-
such that
(r) toelfe)l > Kltogo,

on lzl:o,le. The function a(z):lsg(o"llrD is harmonic in the annultts onf e<

lrl=o,, and on the boundary of this annulus we have

n(e') - o(1)+ å("(ro)-n(uo-')) - o(2,4 - o(ru).

(ii) Loglf (z)l > Yz o(z) log o,,.

Since log l/(z)l is superharmonic it onfe=lzl=on, it follows from the minimum
principle that (ii) holds in this annulus. We set

/r)zo: b't'-1<,r"-t",J

Then it follows from (ii) that log lf k)l>K,, and we see from Lemma 2 that
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the disc ( $!l_)C,: ulb,, K"T;;W)

contains at least two points of .8. However, since lim Kn: -, it follows from (A)
that if n is large, then C, contains at most one point of E. We are led to a contradic-
tion and Theorem I is proved.

8. ProofofTheorem 2

Let rt:eLo and r,-r-log log log rn for n>2. We set

t k) :, .u,1(' - ;)' (t- ;-r;)')
Then n(r, -, f):(ll2+o(l))n(r,0, f), and we see that ä(-, f)=tlZ. This im-
plies that the set E:{a,}:f-t({0, 1,-}) does not belong to the class P(N). We
assume that the sequence a, is arranged in the order of increasing moduli. We
see by an easy computation that if k is large, then aa*-r:ry,-{|, and
Ae*.ypeU(ro,r;2) for p-0, 7,2. Let JG):l and (€ U(rk,r;2). Thet

and

(i)

(- 1)o+o(1) - rf-'\tr((- rn),

we conclude that

los l( - zl-t -

k-L
il

t:L

+(r-2+*) ,",

(r;'(r,- l/7)),

rxl o (1og log r,,)

for any choice (*2, 16, z\c {aoo, aa1,41, aa1,42\.

Let us suppose now that EqPe). Then there exists a trancendental entire
function g such that

E(s) : g-r({0, 1}) c EuU(0, ro)

for some ro>0. Since M(r,g)** &s /+@: we may conclude from Schottky's
theorem that IS(z)l>4 onthe circles yy:lzl:412 and .l-o: lzl:2rt for all large k.
We denote by Do the annulus which is bounded by ye and i-0.

Let us suppose that an(D1, is a multiple root of the equation g(z):0 with
multiplicity m>4. Since ISQ\=-q on the boundary of De and Do contains only
four points of d there exists a region GcC such that the image of the boundary
of G is contained in the segment w:u*iu: O<u=l,u:0. This implies together
with the maximum principle that Im g(z)=0 on G, and therefore g(z)=constant
on G. This is a contradiction, and we conclude that the equation g(z)=0 may
have only a finite number of roots with multiplicity m>4. It follows from Lemma 3
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(ii)

that T(r,g):O ((1og r)'), and we may write

oo

s(z) - P(z) II 0-zf an)'",
n:l

where P is a polynomial and s,€{0, 1,2,3\ fot any n.

If k is large and z is a boundary point of the disc U(re-{i,ttlZlli), then

log lg(z)l > 100log lzll-(n(2ro,0, g)-n(tel2, O, g)) log (8r;1/2),

and since n(2rp,0,g)-n(ry12,0,g)=12, we conclude that lsQ)l=-+. Since g

omits at least one of the values 0 and 1 in U(re-1/rp,Ql»trrl and lg(z)l>4 on

the boundary of this disc, it follows from the minimum principle that lg(z)l>/
in this disc. This implies that ro-li{n|), and therefore Dp contains at most

three points of E(g). As before, we see now that if n(2r1,,0,g)-n(rp|2,0,8)=3,
then there exists a region G contained in the open disc bounded by l-1 such that

the image of the boundary of G is contained in the real axis. However, this is im-

possible, and we conclude that n(2ry,0,g)-n(rul2,O,g)=2 for all large k. We

denote by pothe number of the roots of the equation g(z):Q in D6 when the multiple

roots are counted according to multiplicity. Then Pr=2 for all large k, and it
follows from Rouche's that the equation g(z):1 has pe roots in Dp, too.

Let k be large and P*=0. If pp:2, then one of the functions g and l-g
has a double zeto at one of the points aEretaart+tar'd anp*2, and takes the value 1

at the two remaining points. We may suppose that in this case g has this property.

In both cases, pp:2 ot p1,:1, we denote by ( the zero of g lying in Dp and let

z(Do be such a point that 8(z): l. Then {(, ,\c {aEr,, aE*+r, ano+r}. It follows

from (ii) and the choice of the sequence r, that there exists a positive integet m(k)

such that

0 : log lse)l : m (k) log r 1,* o (log r*-) * p*"tl+l
This implies that

logl(- zl-L : !@(U)-p*) log ry*o(loglog r1),
P*'

and comparing this with (i) we get (li4log rr,:o(loglogr). This is impossible

for large values of k, and therefore g has only a finite number of zeros. This implies,

together with the facts that g is entire and has order zero, that g is a polynomial.

We are led to a contradiction, and therefore Ee P(P). This completes the proof

of Theorem 2.
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9. Proof of Theorem 4

Contrary to the assertion of Theorem 4, let us suppose that there exists a mero-

morphic transcendental function / with Å(*, fl>O such that

E : {a,}:.f -r({0, 1, wr})

satisfi.es (c) for some 8>0, w, being different from 0 and 1. It follows from (c)
that the integrated counting function of E satisfies N(r):O ((logr)'), and we

conclude from Lemma 3 that / satisfies T(r, f):g ((los r)'z). Therefore we may

wite f (z):frk)lfrQ), where f, arrd f, arc entire functions with no zeros in

common and both of them satisfying T(r, f1):O ((logr)'z)' It follows from

Theorem B that
N(r'O'f) : N(r'}'f'): (l+o1))f (r'f)

and
N(r, *,f) : N(r,O'f): (t+o1t1)f 1r'7'1'

and from Theorem A it follows that

T (r, f) : (1 +o(l)) log M (r, fo).

Now we deduce from Theorem A that

(i) roelf(z)l: log lÅ(z)l -roslfr(z)l
: log M(r,f)-log M(r,fr)+o(r9,71)
: N(r, O,f)- N(r, *,f)+o(T(r,f))

outside an e-set.

We choose a sequence Ä, with limR,:- such that

(ii) trtr(R,: -, fi =[, - lU-, tr)rrR,,f)

for all r. It follows from Theorem B that

(iii) N(An,0,I): (t+o1t;)r1n,,7;.

For large values of n,we may choose r, su.ch that R,f2<r,=R, and that the circle

lzl:rn lies outside the e-set which is the exceptional set for the formula (i). Since

T(r, f):9 ((losr)'), we conclude that n(r,O, f):o (logr) and

N(r,,O,f):N(rR,, O,f)- I" "G'g'fl O,

: N(&, 0,/)+o(log &).

This implies together with (iii) that

N (rn, O, f) : (l + o (1)) r(,R,, 0,,f),
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and since N(to, *, f)=N(R", *, f), we see from (i) and (ii) that

(iv) toslf(z)l= (j*rf,l) Å@,f)r(Rn,f)

on lzl:rn. Since / is non-rational, it follows from (iv) that there exists a sequence

§ with lim K,: - such that

(v) toelfk)l > Kltogr,
on lzl-yn.

We choose g,<r, such that lf(z)l>l in q,<lzl=rn and that there exists
a point (,lying on lzl-gn such that lf(()l:1. On the boundary of the annulus
Hn: qo-<lzl<r, we have

(vD loglf(z)l > Kflog-' log(lzlls^)tn\ir@15 t

and from the superharmonicity of log lf (z)l we conclude that (vi) holds in II,.
Let I be deflned by the equation

toe(tlq)
log(r,lq) Knlogrn'

and let z,be the point on lzl:, which satisfies zrgz,:a1g(,. Then it follows
from (vi) that loglf @,)l>K,, artd for large values of n we get

lr,-hl='l=!=) .Kr'
Applying Lemma 2, we deduce that

,,(, 2-!Ill
v (sr: K^ t

contains at least two points of ,E for all large r. This is a contradiction with (C),
and Theorem 4 is proved.

10. Proof of Theorem 5

Let q(r) be an increasing function such that E(r)** as r+6. We denote
by (a,b) the open segment a=x<b on the positive real axis. We set

f,(r): n fi-----_)'
.p:1 \ l+(pln) )

and let xp,p:1,2, ...,2n-1, be the roots of the equation flk):O arranged
such that xp.r>xp. We see easily that

l2
xr: l-1 J- - x, - xr: |4-1 = xn=...< X2n-2< xzn-t:2,
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We denote
dn: mirn {f,(xro): P : 1,2, ...,n-1}.

Then d,>0, and we note that if O<.b=dol4 ar,'d the points !s,s=1,2,.",2n,
are chosen such that bl2-f (y)=.2b, y$(0, x), y"€(x,-1, x") for s:2,3, .",2n-1,
and yn ((2,3), then

(D min {ly"- xol: p : 1,2, ...,2n-1, s : 1,2, ...,2n} > u(n, b)

for some a(n,b\>O depending only on n arrd b.

We set t*:k! and the sequences roand g6 of positive real numbers are chosen

such that
(ii) tr, =- logloglogr*
and

(iii) ro < log qo < log log log rr+r

for every k. We set

f (r) : fi (f ,.Glro)(t - zlpo)-,'4.
t:1

We may write
,, \ //;r(l -zlz")J\z) : TITT_ zlL),

where the sequences z, arrd b" ate increasing.

We denote n1,:n(rpf2,0, /). Then n(rvl2, *, f):tt*, and we may assume

that the sequences r" ald g" are chosen such that if fro=lzl=rft and k>2, then

(iv) f (z) : (l +o(1»r-( zf rp) A1,,

where

(v) or: ii + 4

" #r ,"'= 4
and o(1) satisfies lo(1)l<1/100 in 1/ro=lzl=rfl.

Let xp,xL<xz<""'xztn-r, be the zeros of frl*'Ftom (iv) and (v) we get

f (11,12)>2, f (xrr-rr*):O for p:1,2, ..., ty, f (xrrr1,)>2 for p:1,2, ..., t*-\,
and f (311)=2. Therefore f has real l-points €*, k:1,..-, 2t1,, such that

h(Q*12, xrre), (r((xr-1ty1xrr1") for P:1,2, ...,ztk-1, and €zt*((2r1,,3ro). It
follows from (iv) that the points !e:(plh satisfy

);=f'.0')=+'
and we conclude from (i) and (v) that

(vi) lxo-l"| > q,(tk,llAk)

forallpands.Since l/(z)l>5 onthecircles lzl:{-r1, and lzl--l/r*r, itfollows

from Rouche's theorem that f has exactly 2ro l-points in 1/ro=121=/r*r, and
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we deduce that the only l-points of / lying in fi*=lzl={r*, ure the points
tp, P:1,2, ...,ztk.

Let E:{a*) be the set of the zeros, l-points and poles of /. Then.E lies on
the positive real axis. We assume that E is arranged such that 0-ar<ar-.so{....
It follows from (vi) that those points an which lie in fi*=lrl={rou satisfy

a n + L > 
",(, * i a(t o, t l,to1) .

Since the value of l1 does not depend on the choice of 4, we may assume that
r* is chosen so large that

a (t o, t I A ) > (e (1t-, )) - trz

Then E satisfies (D) for all large values of n.
If z is large, then

and 
N(rl,o,f) > tologru

N(4, *,f) = (6+o(t;)ro_r tog ro.

Since /o-r:tolk:o(to), we deduce now that Å(*, f):1. This implies that the
set .E doos not belong to the class P(Iz), and Theorem 5 is proved.

11. ProofofTheorem 6

Let U(an, d,) be as in Theorem 6. Taking a subset of the union of the discs
U(an,dn), if necessary, we may assume lhat larl>l00,laf;l=la,*rl and O<fln<l
for all n. We set

r@): .[,['-({_,r)'"),
where the sequence tr grows at least so rapidly that lf (z)l<.2 outside the union
of the discs U(a,, d,). Furthermore, we assume that

(D 2nt,-rloglo,l = * ,,rw lri\J,
for n>2. We have

nf (a,1, 0, f) = N (la,l, O, f) - N (la,l - d,18, 0, f)

= n(la,l - d,18, O, n be lo%
I la"l

= , ,, tos lof:iJr,
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and
N(la,l, *,f) = n(la"l-1, *,f) log lo,l = 2t,-rlogla,l,

and these estimates imply together with (i) that

I
N(la,l, *,f) =; N(1a"1,0, f)

for n>2. Therefore A(*, f)- l, and since / is bounded in the complement of
the union of the discs U(a,, d,), it omits at least three values outside the discs

U(an, dn). Therefore the set

!L-,uto,, 
a,)

cannot belong to the class P(Z), and Theorem 6 is proved.

12. ProofofTheorem 7

Let f be transcendental and meromorphic in the plane and and let the set

E:{a,}:f-t({0, l, -) satisfy the condition lim lanalf anl:*.
We denote

yn:{z: lzl:l@*rl},
s,: {z: lzl : la"ll2\,

S,: {z: lzl :2lq,l),

and let Do be the annulus which is bounded by ?,-, and yo.

It follows from Lemma l, applied in the annuli 2la,l<lzl<.lan+rll2, that
there exists a sequence U(bn,d) such that limdn:g and that f(y")cu(b",d)
for all large n. It does not mean any restriction to assume that the sequence d, is
decreasing.

Letno be so large that d,o<1/100. Let n>no and let us suppose that

U(b,-r, d,-r) nU(b,, dn) : 0.

Joining T,-r to y,by apath yc.Dn we see that f takes in D, atleast one value

lying outside the union of the discs U(å,, d,) and U(bn-r,d,-r). Since the image

of the boundary of Dn is contained in this union, we deduce that f takes in D,
all values lying in the complement of this union. This is possible only in the case

that for some combination {wr,rr, wr}:{0, 1, -} we have wr(U(bn-r,dn-r),
-f (a,):wr, and ur€U(b",d"). We note that U(b"-1,.d,-)cU(wr,2dn-). Let us
suppose that

U(b,-t, d,-r) aU(b,, d,) * 0.

In this case the union of the discs U(bn-r, d,-r) and U(b,, d,) contains at most one
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of the values 0, I and o, ätrd since / omits at least two of these values it D,, we
conclude from the maximum principle that f (D") is contained in the union of these

discs. We note that

f (D,) c U(bo-r, d*-r)vU(b,, do) c U(f (o,),4d,-r).

Combining the estimations above, we conclude that, if n>not then /(y,)c U(co, 4d),
where c,€{0, 1, -}, and just one of the following two cases for Dn occurs:

(r) {r,-r,f (on), c,} : {0, 1, -}, or

(iD f (D") c U(f (o"),4d,-r) and c,,-1: f (an) : cn.

Let us suppose that the case (ii) happens for all large n, say for n=nl>no.
Then we have

cor_r : f (ar) : cn, : f (anr+ r) : cq+ r : f (arr+ z) : ...,

and we see that the image of the set lzl>la,,l is contained in U(f (a,,),4d,,_r).
This is impossible, and we conclude that there exist arbitrarily large values of n
such that the case (i) happens.

Let the case (i) occur for D, with n>no. We assume first that cn-r:O, f (a,):l
and c,:-. Let us suppose that an is a multiple root of the equation f (z):1.
Let Jbe the segment on the positive real axis which joins the points 0 and 1. Then
there exists a region GcDn such that the boundary of G is contained in yn-ru
f-'(J) and that anisa boundary point of G. Then the image of the boundary of
G is contained in "IuU(0,4dn-r), and since / takes in G near the point a,atleast
one value lying outside JvU(0,4dn-t), we conclude that f takes in G all values
lying outside JvU(0,4d"-r). This implies that f takes the value - in Dn, and
we are led to a contradiction. Therefore a,isa simple l-point of /. Since / has no
zeros or poles in lz-a"l=la,ll2, we conclude from the maximum and minimum
principles thatlf (z)l takes the value I at some point of lr-a,l:la,ll2. Applying
Schottky's theorem, we see that there exists an absolute constant 4>0 such that
lf k)l=q on sn and lf Q)l=llq on S,. Then it follows from Rouche's theorem
thaL n(la,llZ,b):n(la"ll2,O) for b€U(0, q) and n(2la,l,b):n(2laol, *) for
b(U(*, q). Modifying these results for the general case, we get the following con-
clusion: If the case (i) happens for Dn aud n=no, then an is a simple root of the
equation f(z):f(a") and

(iii) n(la"ll2, b) : n(la"ll2, cn-r)
for b(U(cn_r, q), arrd

(iv) n(2la"l, b) : n(2la,l, c))

for b(U(c,,q). Here q>0 is an absolute constant.
We denote by l, the radius of the circle y,,.Let the case (i) happen for n,n>no,

and let p>n be the smallest integer such that the case (i) happens for p, too. In
orddr to simplify the notations, we assume that c,-r:O, f (a,):1 and cn:a.
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It follows from (ii) that cr-t:- ard that the image of the set tn=lzl=tr-, is

contained in (/(-,4d,). Furthermore, we deduce from (i) that {f(ar),cr}:{0, 1}.

We denote kn:n(tn,l). Applying Rouche's theorem, we get

n(t,-r,O): n(tn,O): n(tn,l): kn,

and we conclude that
(v) n(r,O) : n(r,l) : k"

for la,l=v<1qr1.
Let lanl<r-larl. Let us suppose first that wiU(O,q)vU(1,4). We apply

Rouche's theorem repeatedly, and conclude that

(vr) n(r,w) = n(to-r,w): n(tn-r,l): k,-1,
and

(vii) n(r,w) = n(to,w) : n(to,I@)) : 1r,a|

because of (v). Combining (vi) and (vii) we conclude that

(viii) ln(r,w)-k,l = I

for w(U(O,q)vU(l,q). Let us suppose now that w(U(O,q). Then it follows
from (iii) that

(ix) n(r,w) > n(la*ll2,w): n(la"ll2,O) : n(tn-r,O) : k,.

If f(an):O, we get

(x) n(r,w) = n(t*w) : n(t0,0) : kn+ l,

and if f (a):1, it follows from (iv) that

(xi) n(r,w) = n(2larl,w) : n(2lapl,0) : kn.

Combining the estimates (ix), (x) and (xi), we deduce that (viii) holds for w€U(0, q).

By a similar consideration, we conclude that (viii) holds for w(U(\, q), too.
Since (viii) is valid for all w(Z ard for all r,la,l<r=lapl, we conclude that

for any large r, there exists a positive integer ft(r) such that

(xii) ln(r,w)-k(r)l = t

for all w€X. This implies that

lim:up §:gr(., 
w) - rnfrn(r,w)) = 2.

It follows from (v) that two of the numbers n(r,0),n(r,7) ar,d n(r, -) are

equal to k(r) and that the third of these numbers satisfies (xii) for all large r. This
implies that
(xii) ln(r,wr\-n(r,wr)l < I

if r>ro and {wr,wr}c{0, 1, -}.

281
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Let a be any complex value different from 0, 1 and -, and let z be so large
a cannot belong to any of the discs U(0,4d"), U(1,4d) and U(-, 4d).lf the
(ii) happens, then

that
case

(xiv)

for tn-t€r= tn,

r = tn, then we

and

n(r, a) : n(r,lrr) : n(r,wr)

{*r,w}-{0, 1,..}- {f (o")}. If the case (i) happens and tn-t=
see from (v) that

n(r, a,) = n(tn, a) : n(t,,f (o")) - n(r, cn-r)

n(r, a) = n(tn-r, a) - n(t,-r,f (a)) - n(r", cn).

Since z(r, cn-r):l*n(r,c), we conclude that either n(r,a):n(r, cr) or n(r,a):
n(r, co-). This implies together with (xiv) that for all large values of r, there exists
w(r,a)€{0, l, -}suchthat n(r,a):n(r,w(r,a)). If a({0, 1, -}, we set w(r,a):a
for all r.

Let a and å be two complex values. Then we get for all large r,

ln (r, a) - n (r, b)l : ln (r, w (r, a)) - n (r, w (r, b)) l,

and we deduce from (xiii) that ln(r,a)-n(r,b)l=-t. This implies that

lim*s;rp ln(r, a)-n(r, b)l = l,

which completes the proof of Theorem 7.

13. Proof ofTheorem I

Let f and,Ebe as in Theorem 8. Contrary to the assertion of Theorem 8, let
us suppose that

]l;r-lo,*rlo,l:*.
Let y,, Dn and U(b,, d") be as in the proof of Theorem 7.lf n is large, then the set

A,: U(bn-1, d,-r)vU(b", d,)

contains at most two of the points 0, l,wn and -. Then / omits in D, at least one
value lying in the complement of A,, and since the image of the boundary of D,
is contained in An, we conclude from the maximum principle that f (D*)cA,.
Since Dn is a connected set, /(D,) is connected, and we deduce that

U(b,-r, d,-r) nU(b,, d) * g.

This implies together with the fact that f (a)€,4" tnat

f (D") C An. U(f (a),4d")
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for all large n, and in the same manner as in the proof of Theorem 7, we see now

that if z is large, then the image of the set lzl>la,l is contained inU(f (a"),Ad).

This is impossible, and therefore we may conclude that

liminf la,*rlanl =*.
This proves Theorem 8.

14. ProofofTheorem 9

Let M>l,rt:€ ärrd r,-1:loglogrn fot n>2. We set

f(r): , 
,E r,-zfr)zt-r1".

It follows from the considerations made in [1], p. 16] that all except a finite number

of the l-points and M-points of / lie on the positive real axis on the union of the

segments Ini rslz = v - v,i, and that if n is large, then 1, contains exactly one l-point
and one M-poirrt of f. Letthese points be bn and zn, arcanged such that bn<z,.

lf x(In, then the logarithmic derivative of / satisfies

49: (t+o(tt\ (-l)'.
f(x) x '

and we get

tos M : ltosf (2,)-tocf @)l:1,{" # *l

: (t+o(l)) ,f +: (1+o(1)) tog(z,lb).

This implies that
(D z,lbn: 14r+o(L) * fu[

as /r+€. Since r|/2= bn<zo-.l r"u for all large z, we conclude from (i) that
the set E defined by (F) satisfi.es the condition (G). This proves Theorem 9.

1.5. Two Iemmas

Lemma 5. Let f be meromorphic in the half disc

P:{z:lzl=r,Imz=0}
and satisfy lf (z)l=l there. There exists an absolute constant Kr>O such that

for anv z€ (I (ir 12, r I B). 
tog lf (z)l 

= + -i' 
toe lf @)l dx
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Proof. Let z(w) map the unit disc lwl< 1 conformally on to D such that w(0):
irl2. From the superharmonicity of logf Qfryl it follows that

(i) toglfQ(qet.»l=* j bgvkktl)l;ffi6;pnr
for q=1. Since there exist absolute constants ffir>o and mz<l such that

la%l=n,tldwl
if z lies on the segment l-rl2,rl2l, and lwl=m, if z(w)(U(irl2,rl8), it follows
from (i) that

log l/(ol = 6ffffi^, _1,' 
rortf(x)t dx

for (€U(irl2,rl8), and Lemma 5 is proved.

Lemma 6. Let u be harmonic in the annulus H: r<lzl<p, non-negatioe and
continuous on its closure, and u(z):g on lrl:r. Let

p(R,u): * f" u@ei*)dE.
zlt i

Then

(5) u(z)= p(R,u)Pä
and(6) u(z)=p(R,u)(+#-ffi###)

for all z(H, and if R>re36, then

(7) u(z)=lu@,r)

for those z which lie in Rl4<lzl=R12.

Proof. The function

u(pei) : + j" tt (Rei,1 ffi ,-

is harmonic in lzl<R, continuous on its closure, and u(z):s1r1 on lzl :Å. On
lzl:r we have u(z):O=u(z), and since

(i) u(z)= p(R,u) {*l'lR-lzl
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in lzl< R, (5) follows from the maximum principle. We see from (i) that

(ii) tt(z) * u(r) - tt(R,,r; 
(1+')lle ({/l'l)
(Å - r) log (Rlr)

on the boundary of H, and we conclude from the maximum principle that (ii) holds

in I1". Since

u(r)= tt(R,u) \--YI
a+lzl

in lzl=R, we get (6) from (ii). The condition (7) is a direct consequence of (6).

Lemma 6 is proved.

16. Proof of Theorem L0

Contrary to the assertion of Theorem 10, let us suppose that there exist

d, §, E, dn arrd S as in Theorem 10 and a transcendental meromorphic function

f with ä(-, /)>0 such that

"f 
-t({0, l, wr}) c U(0, ro) u,S

for some ro, wu being different from 0 and 1.

It follows from (H) that the number of the a, which lie in the annulus r<lzl<2r
is at most 4 (log r)2'. Therefore, if r is large, we may choose q, r < g<2r, such that

((,) 1,, s-GG?s)* .< lzl -<a+Gd?)*-)ns: 0.

Since / is transcendental and ö(*, J)>0, we have

* { 
rls+ lf (reio)l d'P -lo logr

for all large r. This implies that we may choose E, and Er, lpr:Era(Log Q)-s,
such that

(ir) t' ,or* lf ket*)ldq > to(log e)-'.
Q1

We set s«):f (rt)- It follows from (ii) that

Qz

(iii) 
I 

,ot* leloee*iq)ldE =- 10(loe o)-'z.

We denote Er:{(: r:(E}. We see from (H) that if b(EEand Reä is large, then

(iv) {r' o = t(_ bt -#*} aEl: g,



286 Snranr Toppna

and from (I) we deduce that g omits the values 0, 1 and w, in

c : {(: Re ( = d-oPr, U(b, d(b))

if yo>0 is chosen sufficiently large and d(b) is defined by the equation

_11loCfu: 
,(P.eb)z+F.

We assume that log q>100*7s, and we conclude from (i) that

(v) {r, t*"(-toect - ffir*}- c.

Let J be the segment Re(:1st Q, et=lm(,=Er. It follows from (iii) that
there exists (o€./ such that lg((o)l>1. Since

u(t,, r*f;). c,

we deduce from Schottky's theorem that there exists Mu>0 depending only on
w, such that Is(01>Mu in

u(r,,4fu).
Applying Lemma 5 in the half disc

O : {(: Re ( = log q, l(-(i l2)(Er+q)-log ql = (log e)-'},
we conclude now from (iii) that there exists (r(D such that

(vi) loelg($| >Krlogq
in l(-(,1=Gos Q)-5.

Let bQEan{(: GlO log q<Re (<(413) log e}. It follows from (iv) that

(vii) u(r,55$)-u@, d(b)) c G.

We choose d,0<d<1/1000, such that the set U(a,8d) cannot contain two of
the points 0, I and w, for any a(E. We see from Lemma 1 and (vii) that there
exists M.>0 depending only on w, such that the image of the circle

(tll'r: t(: l(-bl: mreWI
is contained in some set U(wr(b),d) and. the image of

yo: {* l(_bl: Msd(b)\

is contained in some U(wr(b), d).If
U(wr(b), d) au(wr(b), d) : A,
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then g would take at least one of the values 0, 1 and w, in

ou: 
l€, 

M6d(b) = l(-bl= ,,^*r---f-)

This is impossible, and we deduce that there exists w(å)€.E such that

(viii) f(Dr) cu(w(b),2d).

Let C6 be the disc l(-ål=(log e)-t. Let us suppose that there exists -R,

(log g)-5=,R<100, such that lS(Ol=Z in

{(: (1og s)-o = l(-('l =,R}- u?r,"u

and that there exists (, such that lg((Jl:2 and that

6€{(: l(_hl: 
^}_,!,, 

Q.
Let

Er: {b€Er: CunU((r, R) * g}.

It follows from (viii) that lg(Ol>1 on D6for b(Er, and from (iv) we conclude

that the number of the points of E1 is at most

(ix) q :320000 (log q)".
The function

..,(r\ _ loe(R/l(-('l)_ s log(3R/l(-bl)
u1§'r : hclE[CA5 - ut,tog1ni(u@

is harmonic in
,q.: {(: (loe o)-u = l(-hl = R}-rPr, U(b, MBd(b)),

a(O=l on l(-(rl:1logQ)-6, and ro(0=0 at the other boundary points of ,4.

Since lg(Ol=1 it A, it follows from (vi) that

G) log lg(01 > Krar(0log s

on the boundary of A, and from the superharmonicity of log lg(01 in ,{ we con-

clude that (x) holds in l.
It follows from (v) that U(h,(og q)-'z)nE:0. Therefore we may choose

s, l=s<2, such that the point

G : h* (6-(r) (t - s(log q)-(1+4)/2)

lies outside the union of the discs C6, and we deduce from the definition of d(b)

and (ix) that

@ (( J = ic _#rE 6* - o (grrsrrsgo 
" 

s d, -J

- 
(log q)(t-olln

log g
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if q is large. This implies together with (x) that lg((Jl>I0, and since g((r)<2,
we deduce from Lemma 2 that there exists å(E6 such that

lb-Crl= 2Klh-hl = 4KÄ(log Q)-o+a)tz.

This implies that both of the points (, and (, lie in

u(u, *firy),
and since (rand. (r lie outside the union of the discs C6, we conclude fr&h,Cz(Dt.
This contradicts (viii) because ls«)l=z and lg(()l>10. Therefore we deduce
nowthat lg(01=Z ln

u((1,100)-åu 
rru

Combining this with (viii) and letting g grow, we see that there exists log qo>O
suchthat IS(01=1 in

{(: Re ( = tog eo\-uU 
,U(U, 

M6d(b)),

which, written for f, means that lf Q)l=l in

{z: lzl= a.}-,!, (J(an, t,),

where the rudii to are chosen by the equation

(xD ,"r* {fro, bnt),*F.

We choose a sequence r,,rr>(4qqo)too, such that rj_r=rn=2r!_r, there
are no poles of f on lzl:r,, arrd

(xiD {,,i,,_tal- 
^fu}ns.: 

s,

where §o is the union of the discs U(ao, to), and x, is chosen such that ila$ofT<
x,<rtlroo and that (xii) is satisfied if r, is replaced by xn.

Let u be the function harmonic in B,: xo<lzl<r, which satisfles u(.2):
loglf(z)l ot lzl-rn and u(z):g on lzl-x,. For aolyir,g in B, we set

a,.( z\ :1og (2r 
"l 

lz - a oD 
-*n\-' 

log\2rrltr)
It follows from Lemma 6 that

u(z) = 2m(rn,4"+l-:ol,
'rr-laol
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on lz-aol:\o, and therefore we may conclude that

(xiii) toelf G)l = u(z)-2m(r^, 4 Z^#*oQ)
on the boundary of Bn-,sr, and from the superharmonicity of log l/(z)l it follows

that (xiii) holds in B"-,S0, especially on lzl:rn-r.
Let lzl:rn-'. lf r*12=laol=rn, then we see from (xii) and (xi) that

m a*(z) :' (#J : o ((rog r)-')'

and since the number of these points a1,is O ((logr,)'), we deduce that

Z,THavQ):e(11'

where the sum z1 is taken over those c1 which lie in r*12=lzl=r'. lf x'<laol-.rnf2,

then (xi) implies that

TH."*(z):r(d#*),
and since the number of these points a* is o((los r)'*'\ and B=2a, we conclude

that

z'ffi'eQ): o(t)'

where the sum ), is taken over those ak which lie in x'<lzl<r'f2, combining

these estimates with (xiii), we get

loglf (z)l = u(z)*o(m(tn, -)),

and using the condition (6) of Lemma 6, we get

(xiv) toslf(z)l= ffi*rfl))m(r,, -)
ot lzl:vn-r.

From (xiv) we conclude that

(xv) m(r,, -)= # m(rn-r, *)

for all large values of n, say for n>p. Then, if we write ö:ö(*, f),

r 1rf; , f) = T (r o+t,, f) = | * @ o*0, -)

= 
,"(glo *(r,, *),-ä(98/'
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and we deduce
implies that
(xvi)

that if Ar: ,3u, then T(Ro, f)- o((l"g Ro)r/t) as k**. This

T(r,f) : O((log.)'/t).

we denote by zo and bothe zeros and pores of f, andby a, (resp. un) the number
of zeros (resp. poles) of / lying in lz-anl<llla). we choose ( lying on lz-anl:tn
such that l?b*l=-tnlun for any &. Apprying poisson-Jensen formura with R:2la,l
we obtain, since l/(Ol > l, that

(xvii) 0<loslf@l

= 4m(Ä, -) *,,,A^Los lffil -,,Ä,", 
I Wl

* (un-un) los 
+.O(T(R,f))*untos un*O(n(R, -) log R).

It follows from (xvi) that n(R, -):O((logfi)t/.), and therefore we may con-
clude from (xvii) and (xi) that

This implies that

(xviii)

(un-u,) (log A)' = Q((tog A)'/t).

unsu, for all large n) and therefore

n(r,0) = O(l)+n(r, *)
for those large values of r which lie outside the union of the intervals lall -lllaol-.t<a**lllaol. Therefore we may deduce from (xviii) that ä(0, f)=ö(*,/). This
is impossible, since the growth condition (xvi) quarantees that / has at most one
deficient value. we are led to a contradiction, and rheorem l0 is proved.

17. A lemma needed in the proof of Theorem 1L

Schottky's theorem is proved

Schottky's theorem. If S is
and l, then

los* lsk)l =
We shall need the following

Lemma 7. Let E and dn be as
meromorphic in the plane such that

by Ahlfors in the following form.

regular in lzl<l and omits there the ualues 0

I -l_l-l

ffi(t +los* lg(o)l).

in Theorem 11 and let f be transcendental and
ä (- , f)=0 and that

ö
n:L

f -t ({0, 1, ,r}) c t/(0, ro) U U(an, dn)
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for some ro>O,,,rs being dffirent from 0 and l. Then there exist sequences Ro,
Är*- AS n+@, And K' Kn-* AS n*@, SUCU thqt

(8) toglf (z)l > K! tog R,

for any z lying on lzl:ftn.

Proof.If / satisfies T(r, f):O((loer)') for some finite lz, it follows from
the proof of Lemma 4 that there exist large values of r such that

tog tf (z)l= ({*,«,1) ö @, f)r (r, f)

on lzf :r, and we may choose the desired sequences Ä, an Kr.
Let us suppose that T(r, f)*O((lo9r)100). Let r be large and chosen such

that m(r, -)>(log r)100. We choose t, r=t<2r, such that U(t,2t (log l)-3)n.S:0,
where

s: ö (J(an, do).
N:L

Then, if r is large, m(t, -)>(logt)se.
We set g(O:f@\ and §E:{(: e(e^S}. Since

t?"
; I 

log+ lg(log t+idldE > (tost)se,

we may choose q, and Ez,0=EL<Ez:et*(logt)-5=2n, such that

(1) t' ,rr* lg(togt*iq)l dE =(os r)nr.
Qr

We may assume that 0<Er=n, for the case when n=ez=2n, is symmetric.
We choose eo, e1<rpo<.Er, such that lg (log l+iEo)l>1. Applying Schottky,s

theorem in the disc
U (los t * iE n, (log r) -s),

we conclude that there exists I1r>0 depending only on w, such that loglg(Ol=
-H, it

U(logt*iEo, Qogt)-).

Therefore we may deduce from Lemma 5 and (i) that there exists

( oeU (loe t * i cp o, (log r) -5)
such that Im(o>0 and

(ir) log lg(01 = (log /)e2

in the disc U((o,(2log r)-5).



tc the function llh, and get

(iii)
for all ( lying in
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We denote Q:Re(o. W" choose h to be one of the functions g and 1-g
such that lh(O+in)l>112. We apply Schottky's theorem in the disc

U(e * in, 7T, -(1og t)-')

los lh(Ol = -(1og /)-'

U(e * in, TE -(1og ,) -u).

Let us suppose that E1<4n15. We denote

R : z-Im (r-(log r)-6.

The length of the arc of the circle l(-(q*iz)l :p which lies in lJ((o,(2 log t)-5)
is at least (log r)-6, and since log lå(01 is superharmonic in U(q*ir, R), we con-

clude from (ii) and (iii) for (:piin*rei" lying in U(q*in,nll}) that

2n (R' - rr) d)dq(iv) los lh(Ol = t_rc 
d

t* 
!" los lh(e * in * ReiqY

1 rE - (log t)-u
a^G 

-

^"o l(-(e*fz)l

= 
(logt)85.

If 4nf5=rpr=n, the same argument as above shows that (iv) holds on

l(-k+in11:2n15, and then it follows from the superharmonicity of log lå(Ol
that (iv) is valid h U(q*in,z/10), in this case, too.

We set

c,t(o:
log log /

Then o(O is harmonic in

C : {(: rc-(logr)-u = l(-(s+ in)l= fllo},

co(O:o on I(-(s+rz)l :n-(log t)-G and a(O=l on l(-(s+rz)l :n110.
From (iv) and (iii) we deduce that

los lh(Ol = (los /)'u @(O - (log r)8(v)

on the boundary of G, and from the superharmonicity of log lft(Ol we conclude

that (v) holds in G. Especially, if ( lies in the disc

,q, : {(: l( - (s + in)l -< n -2(log t) -6},
then

(vi) log lh(01 > (1og l)?8.

It follows from Schottky's theorem, applied in

u (q* i (log t)-u ,4 (log t)-u),
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that los lh(Ol = - log t in

We set

log
(1og t)-n

V -(o + i (1og /) -')lw(o:--i;aiA;-
It follows from (vi) that

log lh(01 = 
(log t)78w(Q-logt

on the boundary of the annulus

(log r)-5 = l(-(s+;(log r)-5)l < (log r)-a,

and therefore we conclude that

(vii) log lh(Ol > (log r)7?

in u(o*i (tog r)-5, (logt)-al2).
iombining the estimates (vi) and (vii) we deduce that log lå(Ol>(og r)??

on the segment

- {(: Re ( : g, -(log t)-414 = Im ( = 2ft-(logt)-5\.

This implies that log l/(z)l=(1og t)71 for all z lying on the circle lzl:en,
and we conclude that, if T(r, fl+O((log r)100), then the desired sequences Å,
and K^ exist in this case, too. This completes the proof of Lemma 7.

L8. Proof of Theorem 1"1

Let an and dn be as in Theorem 11. We denote

U(o* i (1og t)-u, 2(log t)-u).

,s- Ö u(a,,cln).
n:1

(1)

Contrary to the assertion of Theorem 11, let us suppose that there exists a trans-

cendental meromorphic function / such that ä(-, /)>0 and

(z) ,f -'(t0,1, w,)) c u(0, ro)us

for some ro>0, ws being different from 0 and 1.

Using LemmaTrwe choose sequences År,Är*- as n+@) and Kn,Ko**
äs /t+@t such that
(3) toslf(z)l = K,2logÄ,

for any z lying on lzl:P,.
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Let d=1/1000 and Mu be as in the proof of Theorem 10,

(to, If ,:lz: lz-a,l: l,f;&r;"j,
y,: {r, lz-a,l : M6iln),

and wn is chosen such that
(4) f(D) cU(w,,2d),

where Dn is the annulus bounded by y, and f ,.
We set

-_- ,/_\ _ 1000*log (aollz-aol)
wk\z) - loö0-+6t67@/-»

Then o4(z):g on lz-aol:akerooo and ae(z):l on ln. If lr-aol=_
a1,(logal)-e, then

19 log log aotor\z)= T*ffi
Let z lie outside the union of the discs [/(a", a" (log a")-,). We denote

E, : {ap: lzle-soo = oo = lrl"uo'\.

From (J) it follows that there exists -8, depending only on e such that the number
of the points of E, is at most &(log lzl), and we conclude that there exists .8,
depending only on e such that

(5) )"(z):,fi,arok)='-ffi
if lzl is sufficiently large and z lies outside the union of the discs (J(a,, a"(log aJ-r).

Let k be fixed. Let us suppose that there exists ,R, Ä1<-R<.Rpe37, such that
lf Q)l=z in

{z: R,=lzl=A}- Ö ,b,W#r")
and that there exists

(6) z*{z: trl : A}-,!, u(r,,nfu)
such that lf k)l:2. From (4) we see that lf G)l=t in

{z: R1,=lzl=Å}-,!, (J(a,, Mudn).

We set f1q:7(R+(,) and let h(O:R*(, be the function which maps
Im(=0 onto the z-plane. We denote

A : h-r({z: lzl < R),
Ar: h-r({z: lzl = Ro\)

and (r:7-r(zr). Then (, lies on the boundary of A and nf 4=arg(r-.3n14.
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tf t=(l/r-l){R, then U(i/n,t)cA. Let us suppose that there exists l,

(7) (tr-r)tr-n= t=/n(r-a*-^),
where Bn :6in {(1og n)trt, /&} such that I S«)l=2 in U(i { A, t) - A and that there

exists (, lying on le-iltal:t outside ,4 satisfving ls(6)l:2.
we denote G:u(i1f-R,t1-Ar, and let ar(0 bethe harmonic measure with

respect to G of that part of the boundary of G which is common with ,41. There

exists an absolute constant .8.>0 such that U(i1/A,+nr1t-n)c,nr. On the bound-

ary of G we have

(8) co(o = 
!ekM4{Rl)w\s'' : 
rog (r(,a, /nD '

and from the harmonicity we conclude that (8) holds in G.

Let p be the greatest integer such that 1lecU(O,R). For n=P, we denote

Q,: {(: R*(z€yn,Im( = 0},

ancl Vn is the open domain bounded by Q,. If V,aG*O, we denote by u, the

harmonic measure of Q,aG with respect to G, and

u(O: 
n^å*,r"(0.

Let Go:Q-l)I=rV,. We note thar u"(O=a"(R*(') in Go and conclude from
(5) that

(9) u(o = )"(R+c,) = 
2",,loe!?yR-

(1og R)'?

if ( lies in

Q : G -{C: 0 < Im ( -{-a,lRe (l = t&-(log n)-6}.

We choose (n by the equation

h-iy-n: ((,- i{D(t- = ,l ).(' Blrog R)'
We may assume that (n(Gr,

(10) a((n) =l'c#r?rrra
It follows from (3) that
(11) loe lg(01 > Kf 1ogÄo(a(O-,t(0)

on the boundary of Go, and since log Ig(Ol is superharmonic in Go, we conclude

that (11) holds in Ge. Therefore we may deduce from (9) and (10) that

log ls((Jl=-ffi.
Since now ls(h)l=-2, I s((.)l = 

10 and

lf -f l- t 
-lss t4t:= 

Bz log-rR'
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we conclude from Lemma 2 that the disc

/ KJ-)
'[G'Er.r^J

contains at least one zero, l-point or wr-point of g. This is not possible, since from
(7) and the fact that (r lies outside ,4 it follows that f omits the values 0, I and
w, in

u(e,,1{5;v)
Therefore we conclude now that lg(01>2 in

,f,*,iu(,-E#o)J-,
This implies that

2{R
l(rl < 

un 1o* a

because (1lies on the boundary of A and lg(()l:2. If we choose

" _ 8(1 +DlG
tu - - Bo lo€rR- '

then (u lies outside A, and we see in the same manner as above, (u taking the role
of (0, that
(r2) loe lg((Jl = \Eo.

We set zr:R]-(?. Then lf (z)l>10 and

lzr- zrl= l(rl'f 16u;' = -J994-.- B!(1ogR)z'

Using Lemma 2 again, we conclude that the disc

/ 1q5g_)co: ulz,. ;lii;;orj
contains at least one point of S. From the choices of Bn and z, it follows that if
k is large, then Co cannot contain any point of ,S, and we conclude that, if k is large,
then lf (z)l=2 in

{z: Ry= lrl= R*e,,}- Ö u(o,,r#r*),
which implies together with (4) that 

n:r

(13) lfQ)l = t
in

{r, Ro s lrl = Roer'} - Ö (l(a,, Mu d.).
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We begin with /r:-iqo, where k is large, and choose Qr, Roe36=Qz=R*€37,

such that there are no poles of / on lzl: Q, and that

(ea")-
ule,, q6ffi)n,s: o.

Ill 7, is a boundary comPonent of

Gr: {z: Ro= lrl= Qr}- (-) ,(o,, Mudn),

we denote by u, its harmonic measure *tr, ,Jrtp"", to Gr. Let u bethe function

harmonjc in Äe<lzl<p, which has the boundary values log l/(z)l on lzl:Q,
and 0 on lzl:Är. We denote frr:max{u(z): z€yp} if a, lies in R1"<lzl<pr.

On the boundary of G, we have

(14) loglf (z)l = u(z)- Z fr ou,(z),

and from the superharmonicity of log l/(z)l it follows that (14) holds in Gr, especi-

ally on lzl:t, where /r, Q2f 4<tr<.qrf2, is chosen such that ltr-o,l=gr(log gr)-B

for all n.
Let z lie on the circle lzl: tz. If (8 19) p;= a r-.pr, then we see from Lemma 6

that
§n = l6m7qr, -)6-1(log g2)o.

Since

,, *\ < loe(2prll(- arl)
up\5): 

bg(2qrl(M6dr))

in Gr, we conclude from (K) that
2log 8u,(z)sEdW

TIre number of the points a, satisfying (819)gr=ar=q2 is at most e-1 (log gr)',

and we see that the sum ). over these a, satisfles

Z, frouoQ) = 
:2# m(Qz, *) = ) m@,, *1.

lf Rp<ao<(8/9)er, then it follows from Lemma 6 that Ae:O(m(qr, -)), and

we conclude from (5) that the sum ), over these a, satisfies

Z, § ro r(z) = o (m (qr, *) )" (z)) : o (m (Q r, q) 
= + m (Qz, *)

if fr was chosen sufficiently large. Combining these estimates with (14), we deduce

that

tos lf (z)l = u (4 - + m(Qz, *)
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on lzl:tr, and from Lemma 6 we see now that

(15) tos lf k)l = + m(Q,, -)
for all z lying on lzl:tr.

Since

lrsW:-,
taking tz instead of R,,, we get I f k)l = 

1 for

zQ{z: tr= lrl = tr"r,}- ngrU(a,, 
Mud),

and continuing this process inductively, we conclude that there exists Åo>0 such
that lf (z)l>1 for all zlyingin

{z: lzl = "rt-,!, 
(J(an, Mudn).

We choose a sequence r, rr>(4+_iRo)100, such that rz_r-r,<2rl_t, there
exist no poles of f on lzl:rn, ?,ifrd

(16) a(,,,ffin,s:0.
The sequence x, is chosen such that rllloof2<.y.=r,t/roo and that (16) is satisfied
if r, is replaced by x,.

Let u be the function harmonic in x,<lzl<.ro which has the boundary values
log l/(z)l on lzl:ro and 0 on lzl:xn. For those a, which lie in x,<lzl=r,,
we set

loe(2r,llz-arl)wo\z): T;s(FmA»
Using Lemma 6 as in the proof of Theorem 10, we deduce that

(17) toglf(z)l> u(z)-2m(rn, -) Z ff;*,frl
on lzl:rn-r.

Let lzl:rn_r. lf rnf2<ar<rn, then

rn* en 32 (log r,)n log 8;=;tu'('-)=ffi'
the number of these a, is at most 2e-1 (logr,)n, and the sum ), over these ap sar-
isfies

(r8) z,#woe)=Y#=#.



If xn=ar-.ynl2, thet

(re) #twee)=Ec#ffi,;*-,
Let n(r) be the counting function of the sequence ar. From (J) we get

n(ek)-n(ek-'l = å r,,
which implies that

n(ek)=*å,'*r,,): (å*,r ») i *0..

From this it follows that n(r)=8e-1(log r)1+o for all large r. Therefore the number
of a, satisfying xn-.an=r,12 is at most 36,-r (log rn)'tn, and we deduce from (19)
that the sum ), over these a, satisfies

(20) Z,#w,k)=3#=#.
Combining the estimates (18) and (20) with (17) we conclude that

(21) log l/(z)l = ;G)-* m(r,, *)
on lzl:7n-r.

From Lemma 6 we get

u(z) =# f t * o (t)) m(r,, *),

and this implies together with (21) that

Q2) ffi(rn-t, q=-*m(rn,*1.

In the same manner as in the proof of Theorem 10, we see that (22) implies
that

T(r,f): O((logr)'t'),

andthatthisleadstotheimpossibilitythat ä(0, f)=ö(*, fl. Theorem ll isproved.
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