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PICARD SETS FOR MEROMORPHIC FUNCTIONS
WITH A DEFICIENT VALUE

SAKARI TOPPILA

1. Introduction

Let F be a family of functions meromorphic in the complex plane C, and S
a subset of C. We call S a Picard set for F if every transcendental f€ F assumes
every complex value with at most two exceptions infinitely often in C—S. We use
the usual notation of the Nevanlinna theory, the Nevanlinna deficiency is defined by

. .. m(r,af)
d(a, f) = lim inf ——==~
@f) =t =7
and the Valiron deficiency by
. m(r, a, f)
A(a, ) = limsup ———.
(@F) =P =76 7)

If F is the family of all functions meromorphic in the plane, the corresponding
class of Picard sets is denoted by P(M). Let P(P) be the class of Picard sets for
those meromorphic functions which have at least one Picard exceptional value.
By means of a linear transformation, we see that P(P) is the class of Picard sets
for entire functions. The class of Picard sets for those meromorphic functions which
have at least one Nevanlinna (resp. Valiron) deficient value is denoted by P(N)
(resp. P(V)). We see immediately that

P(M)c P(V) < P(N) < P(P).

In this paper we shall consider the question, under which conditions a set .S
belongs to the classes P(N) or P(V). First we shall consider countable sets and
then the case when S is a countable union of open discs.
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2. Countable sets of the class P(N)
We shall prove

Theorem 1. Let E={a,} be a countable set whose points converge to infinity.
If there exists ¢>0 such that

, _ glay| } _
(A) {z. O<|z—a,] < Tog]a] NE=90

for all large n, then E€P(N).

This theorem is best possible in the sense that, corresponding to each real-
valued function ¢(r) with lim,  ¢@(r)=eco, there exists E={a,} satisfying

|a|

o a)log a] Jor=0

{z: O<|z—a,| <

for all large n such that E¢ P(P)> P(N). The existence of such a set E is proved
in [11, pp. 7—8]. Since the condition (A) is the best possible one of this type for
P(P), too, there arises the question whether P(P)=P(N). The answer to this
question is negative.

Theorem 2. There exists a countable set E={a,} with lima,= such that
EcP(P)—P(N).

The following theorem shows that the condition (A) is not optimal for
linear sets.

Theorem 3. Let E={a,} be a sequence of points lying on the positive reai
axis and let a,—~< as n—o. If there exists ¢=0 such that

€
(B) Apy1 > 4y, (1+W]
for all large n, then E€ P(N).

The condition (B) here is optimal, even for P(P), for it is proved in [12] that
if @(r) is an increasing function such that @(r)—>e as r—oo, there exists a set
E={a,} with lima,=< lying on the positive real axis such that E¢P(P) and

1
Ayir=a, |1+ ————]
o ( ¢(a,) (log a,)*

for all large n.
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3. Results for the class P(V)

Corresponding to Theorem 1, we shall prove the following result for P(V).

Theorem 4. If there exists ¢>0 such that the set E={a,} with lim a,=<
satisfies
(©) {z: 0<|z—a,|<¢la,}nE=10

for all large n, then E€P(V).
This result is optimal, even for linear sets, for we shall prove

Theorem 5. Given any increasing function ¢ (r) such that @(r)—>oo as r—e,
there exists a set E={a,} lying on the positive real axis such that a,—<> as n--ee,
E¢P(V) and

D) Api1 = Ay [1+~(p(la,,)]

for all large n.

If in Theorem 5 ¢ (r)—~<> sufficiently slowly as r—oo, then the corresponding
set E belongs to P(N). Therefore P(V)=P(N). Between these classes there is
even a more essential difference. We denote by Ul(a, r) the open disc |z—a|<r.
Theorem 10 proves that there exists a denumerable collection of open discs U(a,, d,)
with lim |a,|=oco such that the union of these discs belongs to P(N). The class
P(V) does not have this property. We prove

Theorem 6. If U(a,, d,) is any sequence of open discs such that lim |a,|= oo,
then the set
U U(a,, d,)
n=1
does not belong to P(V).

4. Comparison of P(V) and P(M)

As in Theorems 1 and 4, it is proved in [10] that if the set E={a,} satisfies
(1) |an+1| = 8[(1"‘2

for some ¢=0 and for all large n, then E€ P(M), and in [12] it is proved that if
@(r)—oo as r—oo, there exists E={a,} lying on the positive real axis such that
E¢P(M) and

a;

¢(a,)

for all large n. We conclude that P(V)#P(M). The conditions (C) and (1) are
quite far from each other and therefore we try to characterize those functions

Apy1 =
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which make the difference between P(V) and P(M) so large. We denote by Z the
extended complex plane and prove

Theorem 7. If f is a transcendental meromorphic function such that the set
E={a}=f"({0, 1, =}) satisfies the condition
(E) lim [a,.4,/a,) = =,

then
lim sup (sup n(r, w)— inf n(r, w)) = 2,
r>co wes wer

and for any two complex values a and b, lim sup,_ . |n(r, @) —n(r, b)|=1.

Furthermore, we shall show that a meromorphic function may have at most
three so thinly distributed values that (E) is satisfied.

Theorem 8. If f is a transcendental meromorphic function in the plane and
w, is different from 0,1 and o, then the set E={a,}=f"1({0, 1, wy, «}) satisfies

Apt1
an

iiminf

n—>co

<< oo,

In the other direction, we shall prove

Theorem 9. For any M=1 there exists a transcendental meromorphic func-
tion f such that the set

(F) E={a,}=f"({0,1, M, =})
satisfies
(G) lim inf | 22| = .

n

5. Further results for the class P(N)

From the results of Anderson and Clunie [1] it follows that if g=1, the set
E={a,} satisfies
(a) [an+1/an = g

for all n, and the radii d, are chosen such that

®) (og a,* = o 10z 7

n

then the union of the discs Ul(a,, d,) belongs to P(N). It is proved in [15] that the
condition (b) here can be replaced by

/ 1 5
(®) 10g7 = K(loga,|)%,
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where K=0 depends only on ¢, and still UU(a,, d,)¢P(N), and in the other
direction, if K in (b’) is taken too small,

1

© K= 2logqg’

there exist U(a,, d,) satisfying (a) and (b’) such that U U(a,, d,) does not belong
to P(P). We shall relieve (a) and prove

Theorem 10. Let E={a,} be a complex sequence such that lim a,=-ce,
la,|=e, and

) _ |a,] } _
(H) {z. O<|z—a,l < _——(log ) NE=20

for some a,0<a<1, and for all n. If the radii d, are chosen by the equation

M log - = (og la,)* .
where B=2u, then the set

s=U Ula,,d)
belongs to the class P(N). i

Here § cannot be smaller than 2o, for it is proved in [13] that if f<2«, there
exists S=UU(a,, d,) satisfying (H) and (I), and not belonging to P(P).
Theorem 3 follows as a special case from the following

Theorem 11. Let E={a,} lie on the positive real axis, e<a;<ay=<..., @y—>°
as n—oo, >0, and

o) ""“>""(1+®ny]

for some o, 0<a=2, and for all n. If the radii d, are chosen by the equation

(K) log 7~ = Hlog a,)"**,

where H=4800 (1+&72)(100)2*%, then the union of the discs U(a,,d,) belongs
to P(N).

In the other direction, it is proved in [14] that if e=1/7, H=1/8 and O0<a=2,
then E and d, satisfying (J) and (K) can be chosen such that the intersection of the
positive real axis and the union of the discs U(a,, d,) does not belong to P(P).
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6. Some results needed in the proofs

We denote U(ee, 8)={z: |z|>1/6}. We shall need the following

Lemma 1. There exist positive constants My and M, depending only on wy such
that if f is meromorphic in an annulus r<|z|<R and omits there three different
values 0, 1 and wy, then, if R>Mr, the image of |z|=VrR under f is contained in

U(a, My(log (R/r))~%)
for some finite or infinite complex a.

Proof. Let f be meromorphic and omit the values 0, 1 and w,; in r<|z|<R,
where log (R/r)=8n. We denote zo=VRr=exp ({;). We choose g to be one of
the functions 1/f and 1/(f—1) such that |g(zo)|=2. The function g(¢°) is regular
in U(y, (1/2) log (R/r)) and omits there two finite values. Therefore it follows

from Schottky’s theorem that there exists M;>0 depending only on w; such that
lg(@@®)|=M,; in |{—{/=(1/4)1og (R/r). The function

g(e") — g(eb)

W) =
©® (=t

is regular in U((,, (1/4) log (R/r)), and on the boundary of this disc 4 satisfies
. ' — 8M3

It follows from the maximum principle that (i) holds on the segment {={,+ip,
—n=p=mn, and we get

(i) 18(:)—g(z)l = -IOZ—”(j‘f/—)

on |z|=}rR. Lemma 1 follows from (i) by an easy computation.

Lemma 2. Let f be meromorphic in the plane and
E :f—l({oa 19 WS});

where wg is dijj‘eren‘t fromOQand 1. For any M =0, there exists a constant K=K(M, wj)
such that if |fO)\=2M and |f(O|=M, then the disc

U KIb—=LD
contains at least two points of E.

Proof. Let My and M,beasin Lemma 1. Wechoose K=M? so large that if a
is any complex point, the set U(a, 2d), where d=M,((1/2)log K)~**, contains at
most one of the values f(b) and f({), and at most one of the points 0, 1 and w;. Let us
suppose that U({, K|b—{|) contains at most one point of E.If U((, |b—C|]/I—<)nE
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=0, we set r=|b—{|, and otherwise we set r=|b—(|/K. Then f omits the
values 0, 1 and w, in the annulus r<|z—t|<rVK, and it follows from Lemma 1
that the image of the circle y: |z—{|=K*r is contained in U(a, d) for some
complex a. Let D be the open disc bounded by y. Since the image of the boundary
of D is contained in U(a, d) and at least one of the values f(b) and f({) lies out-
side U(a, d), f takes in D all values lying outside U(a, d). This implies that f takes
in D at least two of the values 0, 1 and w,, and we see that D U((, K|{—b|) con-
tains at least two points of E. So we have proved that the assumption that
U(¢, K|b—{]) contains at most one point of E, leads to a contradiction. Lemma 2
is proved.

Let f be meromorphic in the plane and let w,, w, and w; be three different
complex values. Let a, be the sequence of the distinct roots of the equations f(z)=w;,,
f(2)=w, and f(z)=w;. We denote by n(r) the number of the a, lying in |z|=r,
and

N() = frw dt+n(0)logr.

0
From Theorem 2.5 of Hayman [5, p. 47] we get the following
Lemma 3. Let f and N(r) be as above. Then
T(.f) = (140(1) N ()
as r—o outside a set B of finite linear measure.

Lemma 4. Let f be transcendental and meromorphic in the plane such that
d(eo, /)=0 and

@ T(r,f) = O((log r)™)

for some finite M. If there exists o=0 such that

E={a,}=7({0,1})

satisfies

3 {z: 0<|z—-a,,|<(nglalZ|T}nE=ﬂ

for all large n, then there exists a real increasing sequence o, such that o, as

n—-»oo,

min {|f(2)]: |z] = 0.} = 1,

| f@|=1 in Vo,<|zl<c, and

@ log /() = (- +0()) 6=, NT(21,1)

for all z lying in Vo,=|z|=0,/2.
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Proof. Tt follows from (2) that we may choose f,3/2=f=M, such that

(@) T(r,f) = O((log r)F)
and

(ii) T(r,f) # O((logr)f~1/2).
Since

n(r, a)logr = f 209 4y = N2, -V a)

r

we deduce from (i) that
(iii) n(r, a) = O((log r)#~1)

for any complex a, and from (ii) it follows that there exists a real sequence R, with
lim R,=<~ such that

@iv) T(R,.f) = (log R,)P~'/*
for all n.

Let b be a complex value such that |b|<1 and
W) N(r,b) = (1+o(M)T(r,f).

Let b, be the sequence of the b-points of f and
B= U U(by, b (log|by|)=2*P).

|b,|>e

We denote d(z)=min {|z—b,|: k=1,2,...}. Using the Poisson—Jensen formula,
we get for all z=re',

[— 1 - i0 (2r)2_r2
log |f(z)—bi = %Of log |/ (2re™) bl (2r)2—4r2cos (0 — @) +r?
B @2r)2—b,z
52 S 2rG— by |

This implies, together with the fact that m(z, b)=0(T(z, f)), that

vi) log|f(2) = [-—;’—+0(1)] 6(s=, /)T Qr, f)—n(2r, b) log%-

Let z=re'” lie in R,<|z|<R: outside B. Then
d(z) = r(2log r)~2e+P,
and we see from (iii) and (iv) that
n(2r, b)log(4r/d(z)) = O((log R,)*~*loglog R,) = o(T(R,, f))-

Therefore it follows from (vi) that f satisfies (4) in R,<|z|<R3 outside the set B.
Let us suppose that there exists some b, lying in 2R, <|z|<R3/2. The sum of the
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radii of those discs of the set B which meet the annulus |b|/2<|z]<2|b,| is at

most
2n(Ry, b) |byl (log |b) 2= *+# = o(]by| (log|bel) =),

and we see that there exists d,
(vii) 0 < dy < |by| (log |b)~*,

such that the circle |z—b,|=d, does not meet B. It follows from (3) and (vii) that
f takes at most one of the values 0 and 1 in U(by, di), and since (4) is true on the
boundary of this disc, we conclude from the minimum principle that

tog 18] = log 76| = (5 +0(1)) 8(e=, N T(1hel ).

This is not possible if |b,| is large, and we deduce that
Bn{z: 4R, < |z| < R}/4} =0
for all large n.
For large values of n, we may choose ¢,>R3/4 such that |f(z)|>1 in 4R,<
|z| <o, and

min {f(2)]: |zl = 0,) = 1.

Let {=re lie in Vo,=|z|=0,/2. Since f has no b-points in 4R,<|z|=0,, we
conclude that n(2r, b)=n(4R,, b), d({)=r/2 and

n(2r, b) log (4r/d(()) = O((log R,)*~* log 8) = o(T(R,, f)).

Now we see from (vi) that f satisfies (4) in V6,=|z|=0,/2, and Lemma 4 is proved.

Following Hayman [6], we shall call an e-set any countable set of circles not
containing the origin, and subtending angles at the origin whose sum is finite.
Hayman [6] has proved the following

Theorem A. If an integral function f satisfies log M(r, f)=0 ((log r)?), then
log|f(2)] = (1+o(1)) log M(r, f)
as z=re"®—~oco outside an e-set.
Valiron [16] has proved the following
Theorem B. If a meromorphic function f satisfies T(r, f)=0 ((log r)?), then
T(r,f) = (1+0(1)) max {N(r, a), N(r, b)}

for any two complex values a and b.
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7. Proof of Theorem 1

Contrary to the assertion of Theorem 1, let us suppose that there exists a trans-
cendental meromorphic function f with a Nevanlinna deficient value w such that
the set

E= {an} =.f_1({wla Wa, W3})

satisfies (A) for some ¢>0 and for some choice of the three different values wy, w,
and w,. We may suppose, without loss of generality, that w=-oo, w;=0 and w,=1,
ws being an infinite or finite complex value, different from 0 and 1.

Let n(r) be the counting function of E. It follows from (A) that

n(e)—n(e) = 0(s?,
and we conclude that

n(e) = 0(1)+k§s1 (n(@)—n(Y) =0 (51 k%) — O(s%).

This implies that n(r)=0 ((log r)?), and therefore the integrated counting func-
tion of E satisfies N(r)=0 ((logr)*). It follows from Lemma 3 that T(r, f)=
(1+0o(1))N(2r) for all large values of r, and we deduce that f satisfies T(r, /)=
O ((log r)*). This implies that we may apply Lemma 4.

Let the sequence o, be as in Lemma 4. We choose b, lying on the circle |z|=g,
such that |f(b,)|=1. Since f is transcendental, we conclude that

lim inf

F—>oo

T¢f) _
logr

Therefore we deduce from (4) that there exists a sequence K, with lim K, =<0
such that

@ log|f(2)| = K} logo,

on |z|=0,/e. The function w(z)=log (g,/|z|) is harmonic in the annulus o¢,/e=
|zl=0,, and on the boundary of this annulus we have

(i1) log |f(2)| = K2w(z) logo,.

Since log | f(2)| is superharmonic in o¢,/e=|z|=0,, it follows from the minimum
principle that (i) holds in this annulus. We set

1
= b”[l_Knloga,,]'

Then it follows from (ii) that log|f(z,)|=K,, and we see from Lemma 2 that



Picard sets for meromorphic functions with a deficient value 273

the disc

_ K|b,| )
Cn = U(b”’ K, log|b,|

contains at least two points of E. However, since lim K,=oo, it follows from (A)
that if » is large, then C, contains at most one point of E. We are led to a contradic-
tion and Theorem 1 is proved.

8. Proof of Theorem 2

Let ri=e and r,_;=logloglogr, for n=2. We set

f(2) = zn]j1 [[1 —5]2(1 _r,,—zyﬁ]_l]'

Then n(r, e, f)=(1/24+0())n(r, 0, f), and we see that 5(, f)=1/2. This im-
plies that the set E={a,}=/"1({0, 1, =}) does not belong to the class P(N). We
assume that the sequence a, is arranged in the order of increasing moduli. We

see by an easy computation that if k is large, then a4k_1=r,‘—1/;; and
a4k+p€U(rk,rk_2) for p=0,1,2. Let f({)=1 and (€ U(r, r;?). Then

P k—1
(—DF+o(l) = 521y C=ro? 1T (r72(r— V1)),

and we conclude that

@) log|{—z|71= %(k——2+—%—] log r,+o(loglogr,)

for any choice (#z, {{, z}C{ay, dy. 1, dyis}-
Let us suppose now that E¢ P(P). Then there exists a trancendental entire
function g such that
E(g) = g7'({0, 1) < ELU(0, ro)

for some r;=>0. Since M(r,g)—~o as r—o, we may conclude from Schottky’s
theorem that |g(z)|=4 on the circles y;: |z|=r;/2 and I';:|z|=2r, for all large k.
We denote by D, the annulus which is bounded by y, and I';.

Let us suppose that g,£D, is a multiple root of the equation g(z)=0 with
multiplicity m=4. Since |g(z)|=4 on the boundary of D, and D, contains only
four points of E, there exists a region GcC such that the image of the boundary
of G is contained in the segment w=u+iv: 0=u=1,v=0. This implies together
with the maximum principle that Im g(z)=0 on G, and therefore g(z)=constant
on G. This is a contradiction, and we conclude that the equation g(z)=0 may
have only a finite number of roots with multiplicity m=4. It follows from Lemma 3
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that T(r, g)=0 ((logr)?), and we may write

(ii) g(2) = P(2) ﬁ (1—z/a,yn,

where P is a polynomial and s,€{0,1,2,3} for any n.
If k is large and z is a boundary point of the disc U (rk—l/r_k, (1 /2)1/2‘), then

log |g(2)] = 100 log |z|+(n(2re, 0, g) —n(r¢/2, 0, g)) log (Br™7),

and since n(2r, 0, g)—n(r/2,0,8)=12, we conclude that |g(z)|=4. Since g
omits at least one of the values 0 and 1 in U(rk—Vr—k, (1/2)Vr,) and |g(2)|=4 on
the boundary of this disc, it follows from the minimum principle that |g(z)|=2
in this disc. This implies that re—Vr¢é E(g), and therefore D, contains at most
three points of E(g). As before, we see now that if n(2r, 0, 8)—n(r/2,0, 2)=3,
then there exists a region G contained in the open disc bounded by I'; such that
the image of the boundary of G is contained in the real axis. However, this is im-
possible, and we conclude that n(2ry, 0, g)—n(r/2,0,g)=2 for all large k. We
denote by p, the number of the roots of the equation g(z)=0 in D, when the multiple
roots are counted according to multiplicity. Then p,=2 for all large k, and it
follows from Rouche’s that the equation g(z)=1 has p, roots in Dy, too.

Let k be large and p,=>0. If p,=2, then one of the functions g and 1—g
has a double zero at one of the points ay, dg,, and a, ., and takes the value 1
at the two remaining points. We may suppose that in this case g has this property.
In both cases, p,=2 or p,=1, we denote by { the zero of g lying in D, and let
zeD, be such a point that g(z)=1. Then {{, z}C{ay, ay 1> Ao} It follows
from (ii) and the choice of the sequence r, that there exists a positive integer m (k)
such that

0 = log|g(2)| = m(k)log r,+O(log r—1)+ pilog ?’ .
k
This implies that
1
log|[{—z|7t = o (m(k)— pi) log 1+ o(log log 1),
k

and comparing this with (i) we get (1/4)log r,=o0 (loglogr,). This is impossible
for large values of k, and therefore g has only a finite number of zeros. This implies,
together with the facts that g is entire and has order zero, that g is a polynomial.
We are led to a contradiction, and therefore E€P(P). This completes the proof
of Theorem 2.
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9. Proof of Theorem 4

Contrary to the assertion of Theorem 4, let us suppose that there exists a mero-
morphic transcendental function f with A(e, f)=>0 such that

E = {a,,} =f_1({05 17 W3})

satisfies (C) for some &=0, w, being different from 0 and 1. It follows from (C)
that the integrated counting function of E satisfies N(r)=0 ((log r)?), and we
conclude from Lemma 3 that f satisfies T'(r, /)=0 ((logr)?). Therefore we may
write f(2)=f,(2)/f,(z), where f; and f; are entire functions with no zeros in
common and both of them satisfying T(r, f,)=0 ((logr)?). It follows from
Theorem B that

N(V, Oaf) = N(V, O’fl) = (1 +0(1))T(7‘,f1)

N(r, o=, f) = N(1, 0, f5) = (1+0(D) T (r. f),
and from Theorem A it follows that
T(r,fi) = (1+0(1)) log M(r, fo).
Now we deduce from Theorem A that
@ log [f(2)| = log|f1(2)] —log|fx(2)l
= log M(r, f) —log M(r, f) +o(T (r.f))
= N(r,0,/) = N(r, =, f)+o(T(r,f))

and

outside an &-set.
We choose a sequence R, with lim R,=< such that

. 1
(i) Ny o f) < (1% 4o, D) TR, 1)
for all n. It follows from Theorem B that

(iid) N(R,,0,f) = (1+0(D)T(R,.f).

For large values of n, we may choose r, such that R,/2<r,=R, and that the circle
|z|=r, lies outside the e-set which is the exceptional set for the formula (i). Since
T(r, f)=0 ((logr)?), we conclude that n(r,0, f)=0 (log r) and

Rn
N(ry, 0. ) =N(R,,0,f)— f &,to’ﬁdt

Tn

= N(R,,0,f)+O0(log R,).
This implies together with (iii) that

N(ry,0,f) = (1+0(1))T(R,,0,/),
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and since N(r,, <, f)=N(R,, <, f), we see from (i) and (ii) that

(iv) log ()] = (3-+0) 4(=, NTR,. 1)

on |z|=r,. Since f is non-rational, it follows from (iv) that there exists a sequence
K, with lim K,=< such that

™) log|f(2)] = K logr,

on |z|=r,.

We choose ¢,<r, such that |f(z)|=1 in g¢,<|z|=r, and that there exists
a point {, lying on |z|=g, such that |f({,)]=1. On the boundary of the annulus
H,: ¢,<|z|<r, we have
v log ()] = K¢ log r, oE\ZVe).

log (r,/e.)

and from the superharmonicity of log| f(z)| we conclude that (vi) holds in H,.
Let ¢ be defined by the equation

log (/o) _ 1
log (r,/e,)  K,logr,’

and let z, be the point on |z|=¢ which satisfies argz,=arg{,. Then it follows
from (vi) that log|f(z,)|=K,, and for large values of n we get

215l
=

n

]Zn_zn, =

Applying Lemma 2, we deduce that

oo 2

contains at least two points of E for all large n. This is a contradiction with (C),
and Theorem 4 is proved.

10. Proof of Theorem 5

Let ¢ (r) be an increasing function such that ¢(r)—< as r—-e. We denote
by (a, b) the open segment a<x<b on the positive real axis. We set

@ =1 1 ‘Tp/)]

and let x,,p=1,2,...,2n—1, be the roots of the equation f,(z)=0 arranged
such that x,,,=>x,. We see easily that

1 2
X = 1+7 < Xy < X3 = 1+7<x4<‘..<x2n_2<x2n_1= 2.
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We denote

d, = min {f,(x,): p=1,2,...,n—1}.
Then d,=>0, and we note that if 0<b=d,/4 and the points y,,s=1,2, ..., 2n,
are chosen such that b/2<f (yy)<2b, y1€(0, X1), ys€ (x;—1, X;) for 5=2,3,...,2n—1,
and y,,€(2, 3), then

() min {|y,- x,l: p=12,...,2n—1, s =1,2, ..., 2n} = a(n, b)

for some a(n, b)=0 depending only on n and .
We set £,=k! and the sequences r, and g, of positive real numbers are chosen
such that

(i1) t, = logloglogr,
and
(iii) r, < log g, < logloglogry

for every k. We set
f(2)= ]Y (fu (z/r) (1 = 2/ @) ).

We may write
sz (l—2z/z)
I (1=2/by)’
where the sequences z, and b, are increasing.
We denote n,=n(r/2,0, f). Then n(r,/2, =, f)=n,, and we may assume
that the sequences r, aid g, are chosen such that if Vri<lzl<r? and k=2, then

fl@ =

(iv) f(2) = (1+o(D)f,, (21 4
where
) S

and o(1) satisfies |o(1)]<1/100 in Vrk<|zl<r,%.

Let x,,X;<X,<..<X, _;, be the zeros of f;. From (iv) and (v) we get
FrdD=>2, f(xgp—1r)=0 for p=1,2, .., t, f(xspr)=2 for p=1,2,...,t;,—1,
and f(3r)=2. Therefore f has real l-points &, k=1, ..., 2¢, such that
ELE(r/2, X110, Ep€(xpqry, Xp1) for p=1,2,...,26,—1, and 62,k€(2rk, 3r). It
follows from (iv) that the points y,=¢&,/r; satisfy

2
4. <ftk(yp) = a1
and we conclude from (i) and (v) that
(VI) |x —ysl (x(tln 1/Ak)

for all p and s. Since | f(z)[=5 on the circles |z|=Vr, and |z|=Vres1, it follows
from Rouche’s theorem that f has exactly 2f, 1-points in Vr,=|z|=Vre,,, and
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we deduce that the only 1-points of f lying in Jr,=|z|=Vr.,, are the points
&, p=1,2,...,24,.

Let E={a,} be the set of the zeros, 1-points and poles of f. Then E lies on
the positive real axis. We assume that E is arranged such that 0=a,<a,<a;<....
It follows from (vi) that those points @, which lie in Vr=|z|=Vr,,, satisfy

1
Api1 = 0y (l+za(tka l/Ak)] .

Since the value of 4, does not depend on the choice of r,, we may assume that
r, is chosen so large that

a(ty, 1/4) = (gD(Vr_k)) -1/2

Then E satisfies (D) for all large values of n.
If n is large, then
NG 0,f) =t logr,
and
NG}, . f) = (6+0(1))tk—1 log 7.

Since t;,_;=t/k=0(t,), we deduce now that A(e, f)=1. This implies that the
set E does not belong to the class P(V), and Theorem 5 is proved.

11. Proof of Theorem 6

Let U(a,, d,) be as in Theorem 6. Taking a subset of the union of the discs
U(a,, d,), if necessary, we may assume that |a,|>100, |aZ|<|a,.,] and 0<d,<1
for all n. We set

where the sequence #, grows at least so rapidly that |f(z)|<2 outside the union
of the discs U(a,, d,). Furthermore, we assume that

la,|

L g1l
O8I,

@ 2nt,-,logla,| = -

for n=2. We have

*

N(Ianla Oaf) = N(lanls Oaf)——N([anI _dn/g’ Osf)

a"
= 1oy ~d, . 0.1 log
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and
N(la,l, =, f) = n(la,|—1, =, f) log|a,| = 2t,_, log|a,|,

and these estimates imply together with (i) that

Na), =,f) = = N(la,}, 0, )

for n=2. Therefore A(e, f)=1, and since f is bounded in the complement of
the union of the discs Uf(a,, d,), it omits at least three values outside the discs
U(a,, d,). Therefore the set

U U(a,, d)

cannot belong to the class P(¥V), and Theorem 6 is proved.

12. Proof of Theorem 7

Let f be transcendental and meromorphic in the plane and and let the set
E={a,})=f"1({0, 1, ==}) satisfy the condition lim |a, ,/a,|= .

We denote
=1zt 12l = Viaya, 0},
sy ={z: |z] = la,l/2},
Sy ={z: |zl =2la,},

and let D, be the annulus which is bounded by y,_; and y,.

It follows from Lemma 1, applied in the annuli 2la,|<|z|<|a,,4]/2, that
there exists a sequence U(b,, d,) such that limd,=0 and that f(y,)cU(b,,d,)
for all large n. It does not mean any restriction to assume that the sequence d, is
decreasing.

Let ng be so large that d, <1/100. Let n>n, and let us suppose that

U(bn—l, dn—l)nU(bn9 dn) = @'

Joining y,_; to y, by a path yc D, we see that f takes in D, at least one value
lying outside the union of the discs U(b,, d,) and U(b,_;, d,_,). Since the image
of the boundary of D, is contained in this union, we deduce that f takes in D,
all values lying in the complement of this union. This is possible only in the case
that for some combination {w;, w,, wy}=1{0, 1, =} we have w,€U(b,_1, dy_1),
f(a,)=w,, and wscU(b,, d,). We note that U(b,_,, d,_))=U(wy, 2d,_,). Let us
suppose that
Ub,_,,d,_)nUD,,d,) = 0.

In this case the union of the discs U(b,_;, d,_,) and U(b,, d,) contains at most one
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of the values 0, 1 and -, and since f omits at least two of these values in D,, we
conclude from the maximum principle that f(D,) is contained in the union of these
discs. We note that

f,) cUb,-y,d,-)0U(b,,d,) = U(f(a,), 4d,-1)-

Combining the estimations above, we conclude that, if n=>n,, then f(y,)c U(c,, 4d,),
where ¢,€{0, 1, =}, and just one of the following two cases for D, occurs:

(@) {¢i-1.f(a,), ¢} = {0,1, =}, or
(ll) f(Dn) c U(f(an)’ 4dn—-1) and Cpn-1 :f(an) - cn'

Let us suppose that the case (ii) happens for all large n, say for n=n,>n,.
Then we have

cn1—-1 :f(anl) = er :f(an1+1) = cn1+1 :f(anl+2) s

and we see that the image of the set |z|=|a, | is contained in U(f(a,), 4d, _;).
This is impossible, and we conclude that there exist arbitrarily large values of n
such that the case (i) happens.

Let the case (i) occur for D, with n=>n,. We assume first that ¢,_;=0, f(a,)=1
and ¢,=-=. Let us suppose that g, is a multiple root of the equation f(z)=1.
Let J be the segment on the positive real axis which joins the points 0 and 1. Then
there exists a region GcD, such that the boundary of G is contained in y,_;u
f71(J) and that a, is a boundary point of G. Then the image of the boundary of
G is contained in JuU(0, 4d,_,), and since f takes in G near the point a, at least
one value lying outside JuU(0, 4d,_,), we conclude that f takes in G all values
lying outside JuU(O, 4d,_;). This implies that f takes the value - in D,, and
we are led to a contradiction. Therefore a, is a simple 1-point of f. Since f has no
zeros or poles in |z—a,|=|a,|/2, we conclude from the maximum and minimum
principles that | f'(z)| takes the value 1 at some point of |z—a,|=]a,l/2. Applying
Schottky’s theorem, we see that there exists an absolute constant ¢=0 such that
|f(2)]=q on s, and |f(2)|<1/q on S,. Then it follows from Rouche’s theorem
that  n(la,|/2, b)=n(la,)/2,0) for beU(,q) and nQ2|a,l, b)=n2la,|, <) for
beU(==, g). Modifying these results for the general case, we get the following con-
clusion: If the case (i) happens for D, and n=n,, then a, is a simple root of the
equation f(z)=f(a,) and

(ii) n(la,l/2, b) = n(la,l/2, ¢,-1)
for beU(c,_1, q), and
(iv) n2la,l, b) = n(2la,l, c,)

for b€ U(c,, q). Here ¢g=0 is an absolute constant.

We denote by 7, the radius of the circle y,. Let the case (i) happen for n, n>n,,
and let p=>n be the smallest integer such that the case (i) happens for p, too. In
order to simplify the notations, we assume that c¢,_;=0, f(q,)=1 and c¢,=oo.
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It follows from (ii) that ¢, ;=< and that the image of the set 7,=|z|=7,_, is
contained in U(ee, 4d,). Furthermore, we deduce from (i) that {f(a,), c,}=1{0, 1}.
We denote k,=n(z,,1). Applying Rouche’s theorem, we get

n(tn—lao) = n(tnao) = n(tn’ 1) = kn9
and we conclude that
W) n(r,0) =n(r,1) =k,
for |a,|=r<la,|.
Let |a,|=r=<l|a,|. Let us suppose first that w¢ U(0, 9)uU(1, q). We apply
Rouche’s theorem repeatedly, and conclude that

(Vl) n(r’ W) = n(tn-—law) = n(tn-la 1) = kn—l:
and
(vii) n(r,w) = n(t,, w) = n(t,,f(a,) = k,+1

because of (v). Combining (vi) and (vii) we conclude that
(viii) In(r,w)—k,| =1

for w¢ U(0,q)uU(1, g). Let us suppose now that weU(0, g). Then it follows
from (iii) that

(ix) n(r,w) = n(la,l/2, w) = n(|a,|/2,0) = n(t,-1,0) = k,.
If f(a,)=0, we get
x) n(r,w) = n(,,w)=n(,0 =k,+1,

and if f(a,)=1, it follows from (iv) that

(xi) n(r,w) = n2la,l, w) = n2la,l, 0) = k,.

pla

Combining the estimates (ix), (x) and (xi), we deduce that (viii) holds for we U(0, g).
By a similar consideration, we conclude that (viii) holds for weU(l, q), too.

Since (viii) is valid for all weX and for all r, |a,|=r<la,|, we conclude that
for any large r, there exists a positive integer k(r) such that

(xii) In(r,w)—k(r)] =1
for all weX. This implies that

lim sup (supn(r, w) — inf n(r, w)) = 2.
€x wer

r—> oo w

It follows from (v) that two of the numbers n(r, 0), n(r, 1) and n(r, =) are
equal to k(r) and that the third of these numbers satisfies (xii) for all large r. This
implies that
(xiii) In(r,w)—n(r,wy)| =1

if r=ry and {w;, w,}c{0, 1, =}.
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Let a be any complex value different from 0, 1 and <=, and let n be so large
that a cannot belong to any of the discs U(0, 4d,), U(1, 4d,) and U(ee, 4d,). If the
case (ii) happens, then
(xiv) n(r, a) = n(r, wy) = n(r, wy)
for t, ;=r=t,, {wy, w}={0, 1, o} —{f(a,)}. If the case (i) happens and ¢, ,=
r=t,, then we see from (v) that

n(ra a) = n(tna a) = n(tnaf(an)) = n(ra cn—l)
and

n(r, a) = n(fn—la a) = n(tn—lsf(an)) = n(r, Cn)’

Since n(r, c,_1)=1+n(r, ¢,), we conclude that either n(r, a)=n(r, c,) or n(r,a)=
n(r, ¢,_,). This implies together with (xiv) that for all large values of r, there exists
w(r, a)€{0, 1, oo} such that n(r, &)=n(r, w(r, a)). If ac{0, 1, =}, we set w(r,a)=a
for all r.

Let a and b be two complex values. Then we get for all large r,

In(r, a)—n(r, b)| = |n(r, w(r, @) —n(r, w(r, b)),
and we deduce from (xiii) that |n(r, @)—n(r, b)|=1. This implies that

limsup [n(r, a)—n(r, b)| =1,
F—>o0

which completes the proof of Theorem 7.

13. Proof of Theorem 8

Let f and E be as in Theorem 8. Contrary to the assertion of Theorem 8, let
us suppose that
5im Ja1/a,] = .
Let y,, D, and U(b,, d,) be as in the proof of Theorem 7. If n is large, then the set
An = U(bn—19 dn-l) Y U(brn dn)

contains at most two of the points 0, 1, w, and . Then f omits in D, at least one
value lying in the complement of A4,, and since the image of the boundary of D,
is contained in A,, we conclude from the maximum principle that f(D,)cA,.
Since D, is a connected set, f(D,) is connected, and we deduce that

U(bn—-l’ dn—l) N U(bn’ dn) = 0‘
This implies together with the fact that f(a,)¢A4, that
f(D,) < 4, < U(f(a,), 4d,)
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for all large n, and in the same manner as in the proof of Theorem 7, we see now
that if » is large, then the image of the set |z|>l|a,| is contained in U( £ (ay), 4dy,).
This is impossible, and therefore we may conclude that

liminf |a, 1/a,] <.

This proves Theorem 8.
14. Proof of Theorem 9

Let M=1,r,=e and r,_,=loglogr, for n=2. We set

ﬂ@=aéﬂ—dm%“ﬁ

It follows from the considerations made in [11, p. 16] that all except a finite number

of the 1-points and M-points of f lie on the positive real axis on the union of the

segments I,: r¥?=x=r?, and that if n is large, then I, contains exactly one 1-point

and one M-point of f. Let these points be b, and z,, arranged such that b,<z,.
If x€I,, then the logarithmic derivative of f satisfies

I =
f(x) _(1+0(1)) x

and we get

log M= “ng(zn)—k)gf(bn)l (X) l

f()

= (1+0(1)) f 7" = (1+0(1)) log (z,/b,).
This implies that o
(i) Zn/bn = M1t . Af

as n--oo. Since r¥?<b,<z,<Vr,,, for all large n, we conclude from (i) that
the set E defined by (F) satisfies the condition (G). This proves Theorem 9.

15. Two lemmas

Lemma 5. Let f be meromorphic in the half disc
D={z: |zl =r, Imz =0}
and satisfy | f(2)| =1 there. There exists an absolute constant K;>0 such that

r/2

loglfI =22 [Tloglf @)l dx

—r/2

for any zeU(ir/2, r[8).
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Proof. Let z(w) map the unit disc |w|<1 conformally on to D such that w(0)=
ir/2. From the superharmonicity of log|f(z(w))| it follows that

f tog (- ()| gt

@) log |f(z(ce™)| = “Zgeos(o-Die "’

for ¢<1. Since there exist absolute constants m,>0 and m,<1 such that

dz(w) | _
Taw | =M

if z lies on the segment [—r/2, r/2], and |w|=m, if z(w)e U(ir/2, r/8), it follows
from (i) that

1 r/2
W f log|f(x)|dx

—r/2

log [f(OI =

for (eU(ir/2,r/8), and Lemma 5 is proved.

Lemma 6. Let u be harmonic in the annulus H: r<|z|<R, non-negative and
continuous on its closure, and u(z)=0 on |z|=r. Let

1 2n .
(R, u) = Eof u(Re*)do.

Then
©) u(2) = u(R, u) RHE:
and
_ R—|z]  (R+7r)log(R/|z])
(6) u(z) = u(R, ”)( R+1zl ~ (R=n)log (R )

for all zc¢H, and if R=re*, then

@) u(z) = %u(R, u)

Sfor those z which lie in R/4=|z|=R)2.

Proof. The function

2n

. 1 ; RE—p?
v(ge'”) = 5 f u(Re'?) = 2
0

—2Ro cos (¢ —a)+ o?

do

is harmonic in |z]<R, continuous on its closure, and v(z)=u(z) on |z|=R. On
|z|l=r we have u(z)=0=v(z), and since

. R+|z

0 0(2) = (R, w R
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in |z]<R, (5) follows from the maximum principle. We see from (i) that

(R+r)log (R/|z])

(i) u(2) = v(2)—pn(R, u) (R—r) log (R/7)

on the boundary of H, and we conclude from the maximum principle that (ii) holds
in H,. Since

_ R—|z|

U(Z) - ‘U,(R, u) R+]Z!

in |z|]<R, we get (6) from (ii). The condition (7) is a direct consequence of (6).
Lemma 6 is proved.

16. Proof of Theorem 10

Contrary to the assertion of Theorem 10, let us suppose that there exist
%, B, E,d, and S as in Theorem 10 and a transcendental meromorphic function
f with 0(ee, f)=0 such that
f—l({o) 1’ WS}) c U(Oa "O)U S

for some r,, wy being different from 0 and 1.
It follows from (H) that the number of the g, which lie in the annulus r<|z|<2r
is at most 4 (log r)*. Therefore, if r is large, we may choose g, r<g<2r, such that

@

C o Qe ¢ =
{Z'Q 16(10gg)2“<lz|<Q+16(logg)2“}ms 0

Since f is transcendental and (e, f)=0, we have
1 2n
+ ip -
2nf log* |f(re®)| de = 10logr

0

for all large r. This implies that we may choose ¢, and ¢@,, @;=¢;+(log )73,
such that

@2
(ii) [ log* [f(ee') dp =10 (log )2
(31

We set g({)=f(e"). It follows from (ii) that

P2
(iii) [ log* Ig(log o+ig)| dp = 10(log 0) >

(31
We denote E,={(: ¢*¢E}. We see from (H) that if b€ E; and Re b is large, then

(@iv) {C:0<|C—b|< }mE§=0,

1
2(Re b)*
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and from (I) we deduce that g omits the values 0,1 and w; in
G={(: Re{=1y}— U U(b, d(b))
bEE,
if yo>0 is chosen sufficiently large and d(b) is defined by the equation

1 —_—
@) ~

We assume that log ¢=>100+47,, and we conclude from (i) that

log —;—(Re b)+h,

1
) {C: [Re {—logo| C W} cG.

Let J be the segment Re(=log g, p;=Im{=¢,. It follows from (iii) that
there exists {,€J such that |g({,)|=1. Since

1
U(ﬁo, 32 (log 9)2‘"] <6

we deduce from Schottky’s theorem that there exists M;>0 depending only on
wy such that |g())|=M; in

1
v [CO > 64 (log Q)Z“J )
Applying Lemma 5 in the half disc
D = {{: Re{ =logo, I{—(i/2)(ps+¢:)—log | = (log 0)~%},
we conclude now from (iii) that there exists {,€D such that
(vi) log|g(D)l =K, log e

in [{—{|=(log 0)~°.
Let b€ E,n{(: (3/4) log g<Re(=<(4/3) log o}. It follows from (iv) that

.. 1
(vii) U(b, m] —U(b, d(b)) c G.

We choose d,0<d<1/1000, such that the set U(a, 84) cannot contain two of
the points 0, 1 and w; for any a€X. We see from Lemma 1 and (vii) that there
exists My=0 depending only on w, such that the image of the circle

1
Fb - {C' 'g—bl - MG(RW}
is contained in some set U(w;(b),d) and the image of
7o = {{: [{—b| = Myd(b)}
is contained in some U(w,(b), d). If

U(wy(b), d)nU(wy(b), d) = 0,
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then g would take at least one of the values 0,1 and w; in

1
Db —_ {C. Msd(b) = lc_bl = —‘—Ms(Reb)a}.
This is impossible, and we deduce that there exists w(b)€Z such that

(viii) £(Dy) < U(w(b), 2d).

Let C, be the disc |{—b]<(log 0)~3. Let us suppose that there exists R,
(log 9)"*<R<100, such that [g({)|=2 in

{{: Qogo)~*=-GI=R}— U G,
. béEc

and that there exists {, such that |g({,)|=2 and that
el IE-GI=R}= U G,
bEE;
Let
El = {bEEﬁZ Cme(Cla R) # 0}.
It follows from (viii) that |g({)|=1 on D, for b€E,, and from (iv) we conclude
that the number of the points of E; is at most

(ix) — 320000 (log o).
The function
©) = log (RIIE=GI) log (3R/|{—b|)
log (R(log 0)%)  »€%, log (3R/(Mgd(b)))

is harmonic in
A={{: (logo) = |{-GI= R}_ng U(b, Mgd (b)),

w(@)=1 on |{={|=(oge)"% and w({)=0 at the other boundary points of 4.
Since |g({)|=1 in A, it follows from (vi) that

) log gDl = Ky () log ¢

on the boundary of 4, and from the superharmonicity of log|g({)| in 4 we con-
clude that (x) holds in A4.

It follows from (v) that U((y, (log @)~?)nE;=0. Therefore we may choose
s, 1=s5=2, such that the point

(3= G4+ (C—{)(1 —s(log @)~ F7)
lies outside the union of the discs C,, and we deduce from the definition of d(b)
and (ix) that

1 _O(qloglogQ)
7(log 0)****loglog ¢ (logo)*+#

_ (log )~
— loge

o) =
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if ¢ is large. This implies together with (x) that |g({;)|=>10, and since g({y)=2,
we deduce from Lemma 2 that there exists b€E, such that

|b—Lol = 2K, — (5] = 4KR (log @)=+,

This implies that both of the points ¢, and ¢, lie in

(e meny)

and since {, and {, lie outside the union of the discs C,, we conclude that {5, {,€ D, .
This contradicts (viii) because |g({,)|=2 and |g({;)|>10. Therefore we deduce
now that |g()|=2 in
U, 1000— U Gy
beE,
Combining this with (viii) and letting ¢ grow, we see that there exists log g,=0
such that |g({)|=1 in
{¢: Re¢=log g}~ U U6, Med(®)),
3

which, written for f, means that |f(z)|=1 in

{Z: IZI = QO}_ L—Jl U(an’ tn)a

where the radii #, are chosen by the equation

(x) log+ = 7 (logla,)***.

We choose a sequence r,, r;=(4+400)'°, such that r? ;<r,<2r2 ., there
are no poles of f on |z|=r,, and

(Xll) {Z: 17'"_|ZH <T6‘(10r;—r)21—}(-\5():0,

where S is the union of the discs U(q, #,), and x, is chosen such that r2/*°°/2 <
x,<ry® and that (xii) is satisfied if r, is replaced by x,.
Let u be the function harmonic in B,: x,<|z|<r, which satisfies wu(z)=

log|f(2)| on |z|=r, and u(z)=0 on |z|=x,. For g, lying in B, we set

_ log (2rn/lz_akl)
() ==
It follows from Lemma 6 that
rn + Iakl

u(Z) = 2m(rn’ °°) r _Iak'
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on |z—a]=t;, and therefore we may conclude that

wy(2)

(xiii) log|f () = u(2)—2m (s, ) 2r,.+|akl

a.€B, rn—l kl

on the boundary of B,—S,, and from the superharmonicity of log | f(2)] it follows
that (xiii) holds in B,—S,, especially on |z|=r,_;.
Let |z|=r,_y. If r/2=|a|<r,, then we see from (xii) and (xi) that

r,,+|ak! a)k(Z) — O[M] = 0((10g 7',,)—2),

rn_laki (lOg rn)z-H3

and since the number of these points a, is O ((log r,)**), we deduce that

> +}“’j 0u(2) = o(1),

where the sum > is taken over those g, which lie in 2=zl <. If x,<l|a ] <ri/2,
then (xi) implies that

rn+ |akl _ [ 10g T'n ]
a2 = o)’

and since the number of these points a; is O((log r,)'***) and p>2«, we conclude
that
r +|ak|

o=l

et =o(D),

where the sum >, is taken over those g, which lie in Xp<|z|<r,/2. Combining
these estimates with (xiii), we get

log|f(2)| = u(2)+o(m(r,, =),

and using the condition (6) of Lemma 6, we get

(xiv 108131 = [ +o0) m(r =)

on |z|=r,_;-
From (xiv) we conclude that

(XV) m(rn9 °°) = 19989 m(rn -1 )

for all large values of n, say for n=p. Then, if we write 0=06(, f),
2
T2 1) S Tpein]) = 5 M psss =)

2 (199)F
=5 (58) mew
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o

and we deduce that if R,=r2", then T(R,, =0((og R)"®) as k—oo. This
implies that

(xvi) T (r,f) = O((log r)*®).

We denote by z, and b, the zeros and poles of f, and by u, (resp. v,) the number
of zeros (resp. poles) of f lying in |z—aq,|< 1/la,]. We choose { lying on |z—a,|=1,
such that |{—b,|=1,/v, for any k. Applying Poisson—Jensen formula with R=2|a,|
we obtain, since | f({)|=1, that

(xvii) 0 = log|f ()

R(—z) R(—b))
= 4 oo —_— —_—
= m(R, )+,Zk|2<'R log Rz—ZkC ]bk!<R Rz—“BkC

= (v,—u,)log t—i+0(T(R,f))+v,, logv,+0(n(R, <)log R).
It follows from (xvi) that n(R, «)=0((log R)"®), and therefore we may con-
clude from (xvii) and (xi) that
(u,—v,)(log R)* = O((log R)*"®).
This implies that u,=v, for all large n, and therefore
(xviii) n(r,0) = O(1)+n(r, )

for those large values of » which lie outside the union of the intervals la] —1/|a] <
r<ay+1/|a|. Therefore we may deduce from (xviii) that 0(0, )=6(e, f). This
is impossible, since the growth condition (xvi) quarantees that f has at most one
deficient value. We are led to a contradiction, and Theorem 10 is proved.

17. A lemma needed in the proof of Theorem 11

Schottky’s theorem is proved by Ahlfors in the following form.

Schottky’s theorem. If g is regular in |z|<1 and omits there the values 0
and 1, then
1+]z
log* () = 12 (7-+log* s )

We shall need the following

Lemma 7. Let E and d, be as in Theorem 11 and let f be transcendental and
meromorphic in the plane such that 5(es, f)=0 and that

740, L, we}) U, ryu U Ula,, d,)
n=1
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Jor some ry=0, w, being different from O and 1. Then there exist sequences R
R,—~o as n—o, and K,,K,> as n-—o, such that

® log|f(2)] = K7 log R,

n»

for any z lying on |z|=R,.

Proof. If f satisfies T(r, f)=0((logr)™) for some finite m, it follows from
the proof of Lemma 4 that there exist large values of r such that

log /()1 = (5 +0(1)) 6=, NT(r.1)

on |z|=r, and we may choose the desired sequences R, an K,.

Let us suppose that T'(r, )= O((logr)'®). Let r be large and chosen such
that m(r, )= (log r)!®. We choose #, r=t=2r, suchthat U(z, 2t (log t)~%)n S=0,
where

s= U Ua,, d,).
n=1

Then, if r is large, m(t, «=)=>(log ¢)*.
We set g(0)=f(¢*) and S,={(: &cS}. Since

2r
5= [ Tog* Ig(log t+ig)] do = (og 1),
0

we may choose ¢; and ¢,, 0=¢;=¢,=¢,+(log?)"*=2n, such that

P2
@ f logt|g(log t+ip)| do = (log £)®.
1

We may assume that 0=¢,;=n, for the case when n=¢,=2n, is symmetric.

We choose @, o;<@,<@,, suchthat |g (log t+ip,)|=>1. Applying Schottky’s
theorem in the disc

U(log t+ig,, (logt)~3),

we conclude that there exists H,>0 depending only on w, such that log|g({)|=
_Hl in
U(log t+ig,, (logt)™).

Therefore we may deduce from Lemma 5 and (i) that there exists

{o€U(log t+ip,, (log 1) ~9)
such that Im {,=0 and
(i) log [g(O)] = (log 1)

in the disc U({,, (2 log t)7%).
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We denote ¢=Re{,. We choose & to be one of the functions g and 1—g
such that |h(e+in)|=1/2. We apply Schottky’s theorem in the disc

U(o+in, n—(log#)~7)
to the function 1/4, and get
(ii) log|h({)] = —(log?)~®
for all { lying in
U(o+irn, n—(logt)~®).
Let us suppose that ¢,<4n/5. We denote
R=rn—Im{,—(logt) 8.

The length of the arc of the circle |{—(g+im)|=R which lies in U({,, (2 log t)~°)
is at least (log ¢)~%, and since log |A({)| is superharmonic in U(g+in, R), we con-
clude from (ii) and (iii) for {=g+in+re™ lying in U(g+in, 7/10) that

(R*—r1)dg
2—2rRcos (¢ —o)+r?

. 1 . ;
(iv) loglh(C)IZEOf log |h(e+in+Re') -

= (logt)%.

If 4n/5=¢,=mn, the same argument as above shows that (iv) holds on
| —(o+in)|=2n/5, and then it follows from the superharmonicity of log |A({)
that (iv) is valid in U(g+in, 7/10), in this case, too.

We set

n—(logt)~®
O G iml

o) = loglogt

Then w({) is harmonic in
G = {{: n—(log?)™* = [{=(¢+im)| > n/10},

o@®=0 on |{—(o+in)|=n—(ogt)™® and w()<l on |{—(¢+in)|=n/10.
From (iv) and (iii) we deduce that

™) log|h(0)] = (log )® w({) —(log 1)°

on the boundary of G, and from the superharmonicity of log |i({)] we conclude
that (v) holds in G. Especially, if { lies in the disc

A={{: |{=(¢+in)| < n—2(logt)~%},
then

(vi) log [h(O)| = (log ).
It follows from Schottky’s theorem, applied in

U(e+i(log?)~5, 4(log?)™),



Picard sets for meromorphic functions with a deficient value 293

that log|A(()|=—logt in
U(o+i(logr)=5, 2(log 1) ™).
(logt)~*

o
¢ |t —(o+i(log1)~?)|
log log ¢ )

We set
1

w() =
It follows from (vi) that

log [n())] = (log ) w({)—log ¢
on the boundary of the annulus
(log)=® = |{—(e+i(log?)~®)| < (log )™,
and therefore we conclude that
(vii) log |h({)| = (log )™

in U(o+i(log1)~% (log £)7%/2).
Combining the estimates (vi) and (vii) we deduce that log|h({)|=(log )"
on the segment

{¢: Re{ =9, —(logt)™*/4 =Im{ = 2n—(log?)~°}.

This implies that log|f(z)|=(log?)” for all z lying on the circle |z|=e?,
and we conclude that, if T(r, f)=O((logr)'™), then the desired sequences R,
and K, exist in this case, too. This completes the proof of Lemma 7.

18. Proof of Theorem 11

Let a, and d, be as in Theorem 11. We denote
M) s= U Ua,, d.
n=1

Contrary to the assertion of Theorem 11, let us suppose that there exists a trans-
cendental meromorphic function f such that (e, f)=>0 and

(2) F2{0, L, w}) cUQO, ro)usS

for some r,>0, w, being different from 0 and 1.
Using Lemma 7, we choose sequences R,, R,—~<> as n—co, and K,, K~
as n—oo, such that

(€) log|f(2)] = K7log R,

for any z lying on |z|=R,.
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Let d=1/1000 and Mg be as in the proof of Theorem 10,
ea,
w= {Z’ =zl =57, (loga,,)“}’
Yn= {Z: IZ—anI = Mﬁdn}a
and w, is chosen such that
@ fD,) € U(w,, 2d),
where D, js the annulus bounded by v, and I,.
We set
_ 1000+log (a/|z—ay))
2(2) = 75001 Tog (a/ (M, dy)

1000

Then w,(2)=0 on |z—aql|=a.e and wi(z2)=1 on vy,. If |z—agl=
a; (log a;)~°, then

_ 19logloga,

- (loga)*te ~

Let z lie outside the union of the discs U(a,, a; (log a,)~°). We denote

o (2)

E, = {a;: |z]e™% = q, = |z|e5™)}.

From (J) it follows that there exists B, depending only on ¢ such that the number
of the points of E, is at most B;(log |z])*, and we conclude that there exists B,
depending only on ¢ such that

B, loglog|z|
5 A(2) = o (z) = 2 ==
( ) ( ) akEZVEz k( ) (Ioglzl)z
if |z] is sufficiently large and z lies outside the union of the discs U(aj, a (log a,)~°).
Let k be fixed. Let us suppose that there exists R, Ry=R<R,¢*, such that

1/ @=2 in
o ea,
{z: Ry= 2| = R}—}:{U[""’ W]
and that there exists
oo Sa"
© acter o= 0= 0 Vo o)

such that |f(z)|=2. From (4) we see that |f(z)|=1 in
{z: Ry =|z| = R}— L_jl U(a,, Myd,).
We set g()=f(R+{?) and let h({)=R+{*> be the function which maps
Im {=0 onto the z-plane. We denote
4 =h7'({z: |z| < R}),
A, =h7'{z: |zZ]| = R))
and {;=h"1(zy). Then {, lies on the boundary of 4 and n/4<arg{,<3n/4.
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If t=(Y2—1)VR, then U(iVR,r)CA. Let us suppose that there exists 7,

— _ — 1
(7 (VY2-=1)VR = t<1/R[1—m],

where B,=min {(log R)'%, YK,} such that |g()|=2 in U(i VR, t)—A and that there
exists {5 lying on ‘C—ilfl_{|=t outside A satisfying |g({y)|=2.

We denote G=U( VR, t)—A4;, and let o({) be the harmonic measure with
respect to G of that part of the boundary of G which is common with A4;. There
exists an absolute constant B,>0 such that U(i VR, 4B, VT{)CAI. On the bound-
ary of G we have
®) o = 1 UE—VR)

log (1/(B; YR))
and from the harmonicity we conclude that (8) holds in G.
Let p be the greatest integer such that y,cU(0,R). For n=p, we denote

0, = {{: R+{%€y,, Im{ =0},

and V, is the open domain bounded by Q,. If V,nG#0, we denote by v, the
harmonic measure of 0,nG with respect to G, and

v@=_2 .
V,NG#o

n

Let Go=G—J?_, V,. We note that v,(()=w,(R+{? in G, and conclude from
(5) that

9 v =R+ =

if ¢ lies in

2B,loglog R
(log R)?

G, =G—{{: 0<Im{ <VR,|Re{| <VR(log R)~%}.
We choose {, by the equation

. = ) 1
G=iVR= (6=iVR (1~ )
We may assume that (4G,
1

(10) @) = 55 (1B, Bilog R
It follows from (3) that
(11 log|g ()| = K¢ log R (e (D) —v (D)

on the boundary of G,, and since log|g({)| is superharmonic in G,, we conclude
that (11) holds in G,. Therefore we may deduce from (9) and (10) that
log |2 =VE,.
Since now |g({3)|=2,1g({)|=10 and
t
IGs—Cal = —ME s
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we conclude from Lemma 2 that the disc

Kt
(6 Fiogz)

contains at least one zero, 1-point or wy-point of g. This is not possible, since from
(7) and the fact that {, lies outside A it follows that f omits the values O, 1 and
wy in

t
U(C3’ 2B,logR ]

Therefore we conclude now that [g({)|=2 in

. 1 )
This implies that B
2YR
Gl < 5=—=%
B,log R

because {; lies on the boundary of 4 and |g({,)|=2. If we choose
o 80+DVR
57 "B,logR ’

then (; lies outside 4, and we see in the same manner as above, {; taking the role
of {,, that
(12) log|g () = VK.

We set z,=R+(%. Then |f(z,)|>10 and

500R
— = 22 s e
|Zl ZZI = |Cll T|é5| == Bi(log R)z .
Using Lemma 2 again, we conclude that the disc
500KR ]
€= {1 5i0g 7

contains at least one point of S. From the choices of B, and z, it follows that if
k is large, then C, cannot contain any point of S, and we conclude that, if k is large,
then | f(2)|=2 in

2 Ry = |z = Rye¥)— U(an,L],
e Re=1e = Ree) = 1 Ul S log ay

which implies together with (4) that
(13) If(a) =1

m

(z: Ry = |z = Ree¥y— U Ula,, M, d,).
n=1
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We begin with #,=R,, where k is large, and choose g,, Rye**<g,<Rye”,
such that there are no poles of f on |z]=p, and that

U(gz, 4—(1-69—)—]05 0.

If y, is a boundary component of
G, = {z: R, < |z| < go}— L_jl U(a,, M¢d,),

we denote by v, its harmonic measure with respect to G,. Let u be the function

harmonic in Ry,<|z|<g, which has the boundary values log|f(z)] on |z|=¢,

and 0 on |z|=R,. We denote f,=max{u(z): z€y,} if a, lies in Ri<|z]|<0,.-
On the boundary of G, we have

(14) log|f(2)| = u(2)— 2 B,v,(2),

and from the superharmonicity of log | f'(2)| it follows that (14) holds in G,, especi-
ally on |z|=1, where t,, 0,/4<t,<0,/2, is chosen such that |f,—a,| = g,(log 0,)°
for all n.

Let z lie on the circle |z|=1,. If (8/9)g;=a,=<@,, then we see from Lemma 6
that

B, = 16m(gz, <=)e 7 (log 02)".

Since
o () = log (20,/IC—a,|)
" log (202/(Ms p))

in G,, we conclude from (K) that

2log8
v,(2) = g

H—(log 0¥’

Tue number of the points a, satisfying (8/9)¢,=a,<g, is at most ¢~ (log g,)",
and we see that the sum >, over these a, satisfies

32 og8

21/317 p( )< ( °°) = m(025 °°)

If Ry<a,<(8/9)g,, then it follows from Lemma 6 that f,=0(m(gq, =)), and
we conclude from (5) that the sum >, over these a, satisfies

34 B,2(2) = 0(m{s, =) = o(m (e, =) = 57 1(2s. =)

if k was chosen sufficiently large. Combining these estimates with (14), we deduce
that

log ()] = u(z) 5 m(e, =)



298 SAKARI TOPPILA

on |z|=t,, and from Lemma 6 we see now that

s log|f(2)l = M(Qz, <)
for all z lying on |z|=1,.
Since
lim _m(r, =) =oo,
r-e logr

taking ¢, instead of Ry, we get |f(2)|=1 for
ZE{Z t2 IZI = t2637} U U(aru M6 n)a

and continuing this process inductively, we conclude that there exists Ry=0 such
that | f(2)|=1 for all z lying in

{Z: lzl = RO}_ !1 U(an9 MG dn)
We choose a sequence r,, r;>(4+Ry)1%, such that ry_y<r,<2rl_,, there
exist no poles of f on |z|=r,, and

(16) U[”’4(l n)'z]nS 0.

The sequence x, is chosen such that r}/*%/2<x, =M1 and that (16) is satisfied
if r, is replaced by x,.

Let u be the function harmonic in x,<|z|<r, which has the boundary values
log|f(2)] on |z|]=r, and 0 on |z|= For those a, which lie in x,<|z|<r,,
we set

ne

log 2r,/|z—a,)
log (2r,/Mqd,))

Using Lemma 6 as in the proof of Theorem 10, we deduce that

wy(2) =

r, +a
(17 log|f(2)l = u(z)— —2m(r,, =) 2 —=—Ew,(2)
on |z|=r,_;.
Let |z|=r,_,. If r,/2=a,<r,, then
Trata, (2) = 32 (log r,,)“ log 8
r—a, Wpl2) = " He(logr,)?+* ’

the number of these g, is at most 262 (log r,)?, and the sum 21 over these a, sat-
isfies

_ 64 log § 1

r,+a
5 nT%p

(18) 3t

n

IIA
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If x,<a,<r,/2, then

(19)

r,ta, _ 6logr,
Tu- 4, *»(2) = F00 Tlog ryes

Let n(r) be the counting function of the sequence a,. From (J) we get

n(e—n(e~) = % k*,

which implies that
k

8 k

n@=— >s+0(1) = [§+o(1))fx~dx.
€ s=1 & b

From this it follows that n(r)=8¢~* (log r)*** for all large r. Therefore the number

of a, satisfying x,<a,<r,/2 is at most 8¢~ (log r,)' ™%, and we deduce from (19)

that the sum >, over these a, satisfies

r,+a,
r,—a

48(100%*+ 1
(20) 2 — & =100

Combining the estimates (18) and (20) with (17) we conclude that

wy(2) =

o) log [f () = 4(2) ~5 m(ry» =)

on |z|=r,_q-
From Lemma 6 we get

u(z) = —19918(1 +o(D))m(r,, =),

and this implies together with (21) that

. 9
(22) m(rn—la w)éiam(rm ).

In the same manner as in the proof of Theorem 10, we see that (22) implies
that

T(r,f) = O((log r)*"),
and that this leads to the impossibility that §(0, f)=6(<, f). Theorem 11 is proved.
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