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MER.OMORPFIIC FUI§CTIONS ON CERTAIN
RIEMAI{N SURFACES WITH SMALL BOUNDARY

PENTTT .riinvr

Introduction

In this paper we study meromorphic functions on certain Riemann surfaces

with ,,removable" ideal boundary, in particular functions which admit continuous
extensions to the ideal boundary (MC-functions). Our purpose is to generalize

or extend certain results of Heins ([3], [4D, L. Myrberg (17)), Ozawa ([9]) and Royden

([0]). In particular, two composition theorems, originally due to Heins ([3, p. 304],

[4]), will be unified to statements on MC-finctions on Riemann surfaces satisfying

the absolute AB-maximum principle in the sense of Royden. An essential feature

in the considerations involved is the coincidence of the class MC with the class of
constants and of meromorphic functions of bounded valence. Motivated by this fact,
we will, in Chapter 2, make an attempt to characterize those Riemann surfaces

for which these two classes coincide. This effort leads also to further extensions of
some results obtained in Chapter 1.

The author wishes to thank Professor K. L Virtanen for valuable comments.

1.. Riemann surfaces with the absolute lB-maximum principle

1.1. Let W be an open Riemann surface and iet V be a subregion of W with
compact (possibly empty) relative boundary 0V. Let B denote the Kerdkjärtd-
Stoilow ideal boundary of W arrd Pv the relative Ker6kjärtö-Stoilow ideal bound-
ary of V (seell2, p. 3661). Denote by A(V) or A(V)the class of analytic functions
on V or V:VvDV and by M(V) or M(V) the class of meromorphic functions
on V or 7, respectively. The class constituted by the bounded functions h A(It)
or A(V) is denoted by AB(Y) or AB(T), respectively. The subclass of A(V)
(resp. M(V)) consisting of functions which have a finite (resp. finite or infinite)
limit at every relative ideal boundary element is denoted by AC(Y) (resp. MC(V)).
The classes AC(V) and MC(V) are defined similarly. Whenever f is a function
of class AC or MC, we let f* denote the extension of f to the (relative) ideal
boundary.
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We say that W satisfies the absolute AB-maximum principle ([10]), and denote

w(-//(B if
sup Ufp>l lpe T\ : max {lf @l lpe ov}

for every subregion Y of W with compact 0Y and for every f<AB(V). Further,

W is said to belong to the class gu {91) if, for every subregion V with compact 0V,
the cluster set Cl(/; §r) of every f(AB(7) attached to the relative ideal boundary

B, is a totally disconnected subset of C, the complex plane. Clearly, AB(V )c
AC(T) whenever 77 belongs to 9o. As usual, 04 denotes the class of all Riemann

surfaces on which there exists no nonconstant bounded analytic function. The follow-
ing theorem reveals the intimate relations between these three classes. To prove it,
and in certain other connections as well, we need some characterizations of the

properness of an analytic mapping; proofs can be found in [5, pp. 7-8].

Lemma l. Let W be a disioint union oJ'at most a countable number of Riemann

surfoces, and let G be a domain in the Riemann sphere i:Cu{-}. Suppose that

f: IY*G is analytic. Then the following statcments are equiualent:

(l) "f ,s proper.
(2) The ualence function vr(r):Zr<r't:"n(pi f), where n(p; f) denotes the

multipltcity of f at p, is finite and constant on G.

(3) Giuen any sequence (p,) in W such that {n(Nlp"(K\ is finite for euery com-

pact set Kclt, the same is true of (f (p")) and eaery compact set K' in G.

Moreouer, if any of the aboue conditions is satisfied, then the number of the com-

ponents of ll is finite, and each of them is mapped properly on G.

Theorem l. For Riemann surfqces offinite genus the classes -ilu,9u and Oae

coincide. For surfaces of infinite genus we haue

'/'/6: Qui 0o''

Proof. Surfaces of finite genus in 9ou are complements on closed surfaces of
sets of the class NB (U2, p. 1371; for the definitions and basic properties of the

function-theoretic null-classes Nr,I{, and 1y'5, we refer to [1] or [12, Chapter 2]).

So it follows immediately that ..//s:0a3:9s for these surfaces. As concerns

surfaces of inflnite genus, the relation OucJlu was proved in [9, Theorem l].
Moreover, it is trivial that .//rc9a, generally, and the strictness of this inclusion

is shown by P. J. Myrberg's example (see e.g. U2, p.531). It remains to prove

,,&uc9o,
Let W€,fia, and let V be a subregion of IZ with compact å2. Passing to a suit-

able subset of V, we may assume that 0V consists of a flnite number of piecewise

analytic closed curves. Let f(AB(7) be nonconstant. Assuming that z(C\f (0Y),
the index of z is defined by

{ a ars(f Ol- z).
AV

i(z) - (2n)-L
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With suitable interpretation (see [10]), i(z), as well as the valence t(z) of f at z
with respect to V, can be defined also for z€f(|V) and expressly in such away
that ö(z):l(z)-v(z):0 everywhere in C whenever V is relatively compact.

The fundamental result of [10] now states that f has bounded valence and

actually ö(z)>O for all z(C; moreover, the closed set ,E: {z(Clö(z)=O} is of
class N6. We proceed to show that Cl(f; fr)cE.

Since ä (and E) is unaltered by the removal from V of a compact set with nice

boundary, we may assume that f (7V)IE:A. Let z€f (0y). We assert that there

exists a closed neighborhood -l/ of z such that f-t(f(maN)aT is compact.

Indeed, since / is analytic on 7, we may replace V by a larger region Z' with nice

boundary such that U'\f is compact and z§f (0V'). Moreover, if G, is the com-
ponent of \/(å Z') which contains z, then by virtue of Lemma I f 1 7 - t(G,\E)n Z'
is a proper mapping onto G,\ä. Thus /-t(lrl)aY'is compact whenever N is e.g.

a closed disc in G,\E with z in its interior. Since Jc-l(r^'r)n V:7'tff-1t4nN)n I
the assertion follows. One consequence of the assertion is the compactness of
f-'U@n)n7. Thus 7-t(fu(åV))nv consists of a flnite number of com-
ponents with compact relative boundaries (Lemma l).

Now let p(§v, and denote by U the component of /-1(C\(f (»V)vE))oV
such that p€fiv.It follows from Lemma 1 that flu is a proper mapping onto G,

a component of C\(/(åV)vE). By the same lemma, the cluster set Cl (f; p)
of f at p is contained in åG. But the assertion proved above implies that
Cl(f; p)nf (0V1:9, so that only the case Cl (f; p)cE is feasible. The proof
is complete. tr

Let W be a Riemann surface, and let V be a subregion of W. Denote by BV(V)
or BY(V) the class of constants and of meromorphic functions of bounded valence

on V or 7, respectively. For a nonconstant function f€BV(W) the deficiency set

of/ is defined by
or: {zcelvy(z) = T?ä"rtO}. 

}

Furtlrer denote by MD*(V)(I tO*(7)) the class of meromorphic functions or V(V)
with finite spherical Dirichlet integrals, and let 0yp* denote the class of Riemann
surfaces which tolerate no nonconstant MD*-function. Recall that the spherical
Dirichlet integral of a meromorphic function J' on l4t is defined by

?P 1

$oTli@dr^xdf'
We are now ready to state the following corollary; cf. 17, Satz 3.1, Satz 3.2 arrd
Satz 3.31, [9, Theorem 3] and [12, Theorem VI. 3 C and Theorem VI. 3 D] (note that
9o.rcuil, by 112, Theorem VI. 3 A and Theorem VI. I [).

Theorem 2, Let W€frs, and let V be a subregion of W with compact bound-

ary. Then
AB(V) : AC(V) and MC(V) : BI/ (V) : MD* (7).



304 PrNrrr JÄnvr

In particular,

and Df lt{u for euery

f assumes euery uqlue
parts in N6.

MC(w)- BV(w)- MD*{w),

nonconstant f< nV(W). Moreouer , if .fe M (7)\lV.1 C tT), then

in e infinitely often except for a set of ualues with compact

Proof. The first equality is an immediate consequence of Theorem l. Suppose
that feBV(V) is nonconstant. As in the proof of [5, Lemma 6], we can find a linear
fractional mapping ry' such that rlt o/ is bounded off a compact set KcV. By
Theorem l, t of has a limit at every element of frn,and so has I Thns BV(V)c
MC(n.A similar reasoning justifies the assertion concerning D, for \€BV(W).
Indeed, the number of the noncompact components of lZ\K is finite, and the proof
of Theorem I combined with [12, Theorem VI. 1 L] implies that Qlt o/)*(B) is of
class Nr. Hence f*(§)(N, as well. The assertion now follows from Lemma l.

Next assume that f(MC(7) is nonconstant. Let p(Br. For a suitable linear
fractional mapping E, E of* is bounded in an open neighborhood (1, of p. By the
proof of Theorem l, (q "f\l UÅf, has bounded valence. Hence the same holds
for f* lUr\fr as well. Thus we can find for every p€Vvp, an open neighborhood
U, such that f* I UÅf, has bounded valence. By compactness / has bounded
valence, too. We infer that MC(V)cMD*(V).

To prove the remaining inclusion MD*(VScAf(V), suppose that f(MD*(V)
is nonconstant but fails to have bounded valence. Given a relative regular exhaus-
tion (4,) of T, let n,:e\f(V\R,), n: 1,2, .... Then E, is aclosed set of class
N, for each n, for otherwise we could find a nonconstant bounded analytic function
g on i\e,, in which case (g",OlZ'\& would also be bounded. But this state of
affairs contradicts the relation fqBvg) by the proof of Theorem i. Clearly

lz<ölvr(z)-.-)cUl, E,, and En€Nn implies area(E):Q for each z. Accord-
ingly, f{MD*(7). The desired contradiction has been reached. The same reason-
ing proves the last statement of the theorem in view of ll2, Theorem VI. I Ll. tr

Let P be a class of closed sets in i. We denote by 9(P) the class of all Riemann
surfaces which tolerate a nonconstant BY-function with the deficiency set in P.
The following theorem provides a description of Riemann surfaces with the absolute
l-B-maximum principle up to the quite strange class 01ap*.

Theorem 3. .//;\0MD*: I (N ).
Proof. Suppose that W(.,4i::0*o*. By Theorem 2 there exists a nonconstant

function fe UC1W1, and by the same theorem D,(NB, i.e. IACg(Nn\.
Now let W€O(N), and let fo be a nonconstant element in BV(W) with Dro

in Nr. We may assume that Droc.C. Let Y be a subregion of I4 whose relative
boundary åZ consists of a finite number of piecewise analytic closed curves. By
modifying slightly 0V, we obtain fo(DV)nDro:9. Let G be a component of
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A.,tfal.l such that GnDrol\. Denoting by B the ideal boundary of W, we have

Cl(fo; §)cDr" (Lemma 1). Again by Lemma l,vrolv is finite and constant (>0)
on G1Dro.

Let U be a relatively noncompact component of l;l(G). Then t/\fft(Dr.)
is mapped by /, properly on G\Dro (Lemma 1). So there exists a positive integer

n such that v1o1u11; rtor; (z):n for ävery z€ G\Dro. Now suppose that fcAB(V).
By an argument borrowed from the theory of compact Riemann surfaces, it can

be shown that f satisfies on U\f-l(Dyo) an identity

f.+ (a,ofo)fn-'- o,

where ar, ...)an are bounded analytic functions on \Dro. But Dro is of class

N6, so that we may regard the functions 4, as deflned all over G. Moreover, it is

a standard consequence of the connectedness of U\ff'(Dro) that

P(r, w): w"+ ai!)wn-t : Q(2, w)*',

where Q(2, w) is an irreducible polynomial over the ring M(G) of degree m:nlm'-
Denote by G the (connected) Riemann surface of the relation Q(2, w):0,

z(G, i.e. the totality of pairs (r,w), where z€G arld w, is a function element with
center z and associated with the equation QQ'w):g' The center function c:

(z,w)*z and the value function u: (z,w)*w,(z) are analytic on d.
Denote by E the analytic mapping (J*G,

p * (fo@), (f ofo \n<ot),

where the branch of fo'is chosen in such a way that f;'(fo@)):p (the points

p€U at which /. fails to be a local homeomorphism are removable singularities by

continuity and by Riemann's theorem on isolated singularities). We have immediately

.fo:co(p, f:uoE.
We will show that E admits a continuous extension q* to Uvfr, with

E*(fra)cc-'(GnDy"). So let *se.Cl(E; Bo)cGvB', where B' denotes the ideal

boundary of G, and-let (pJ be a sequence of points in t/ such that pn*ps for some

po€|u and E(p)*qo. Assume that qo€G\c-t(GaDlo). Then (c"E)(p")*
c(40)€O\D/0, which is impossible since fo(p,)*Dto. Similarly, the assumption

qn(B' leadstb the contradictory result /r(p,)*åG. Hence we have qo(c-t(GaD1o).

Since c-l(GnDy) is totally disconnected, Cl(E; p) reduces to a singleton for

every p€.fra, i.". E admits a continuous extension E* to UvBu. Moreover,

q*(p)<c-t(GnDyo) for every p(fru.
Again let (p,j b" a sequence of points in U such that p,tpo for some PoQfra.

Ther E (p,) t E* (p ) ( c- t (D 
1 ^n 

G), so that (u 
" 

q) (p,) *a (9- @))€ u (c -1 (Dro n G)),

i.e. lim,*- .f(p,)Q("-'(Dr.^G)) Since u(c-l(D/.nO) is totally disconnected

(note that c-L(DlaG) is compact by Lemma 1) and Bris a finite union of sets of

n

z
i:L

n

z
i:L
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type fra, Cl(f; B7) is totally disconnected as well. Thus WQgu, and by Theorem I
lV€.//r, too. tr

1.2. We turn to the analogues of Heins' composition theorems. As concerns
globally defined functions, we have

Theorem 4. Let W be a Riemann surface of class .//u. Then either
(a) MCQA):C, in which case V[/(Oyp*,

or
(b) W€O(NB), and MC(W) is a field algebraically isomorphic to the field of

rational functions on a compact Riemann surface W', which is uniquely determined
up to a conformal equiualence. Moreouer, the isomorphism is induced by an analytic
mapping of W into W'.

Proof.If W(,,t/rn0*»*, then by Theorem 2 every function in, MC(W) is con-
stant. If, on the other hand, W(9(N), we may apply the result of Heins ([4]; cf.
also [5, Theorem 7]), for by Theorem 2 MC(W):BV(W). tr

Again let Vl/€fra, and let poe.P, the ideal boundary of 14. Suppose that there
exists a subregion Y of W which belongs to a determining sequence of po and carries
on its closure V a nonconstant bounded analytic function I By Theorem 2, f
admits a continuous extension /* to Vufrr.Assume, as we may, that Zo:
f.@)§f(|V). Denote, as in the proof of Theorem 1, by E((N6) the set

{z€Clö(z):i(z)-v(z)>0} and by G the component of C\/(år) which contains
zo (note that zo€E as appears from the proofofTheorem 1). Let (D) be a decreas-
ing sequence of Jordan domains in G such that 0D,aE:0, j:1,2,..., and

Oi=rDi:kr|. Denote by Ui the component of /-l(D^E) such that po€fru,
and by n, the constant valence of flUi on Dr\E, j:1,2,... (cf. Lemma 1). Note,
for future use, that (Int -U;) is a determining sequence of po, i.e. Olr 4:9, ana
also that (f*)-'ko) contains at most i (zo) points (in VvPr), for the number of
the components of f-'(D) is at most i(z) for each j. The integer

n(po; fl-n(f):]1ggn,
is called the multiplicity or the locol degree of f at po (cf. [3, p. 301]

It is clearly independent of the choice of (D;). Furthermore, let

By the dennitJ ;:,'i3Y.':,,:: 1T::::"-;:':"J' * *un
such that pa€§ro and arl analytic function fo: Vo*D-{z€Cl lrl=
vrok)-n for all z(.D except for a compact set Eo of class If, and
With the notation before, we have (cf. [3, p. 304] , L9, p. 751])

and L7, p. 8l)"

compact »vo
1) such that

fi (§"0). Eo.

Theorem 5. Giuenf(MC(VJ, there exists a unique C(M(D) such that f:gofo.
A fortiori, M(D) is algebraically isomorphic to MC(V); in particular, E*gofo
is an isomorphism of AB(D) onto AB(V).
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Proof.

f satisfies

(1) f"+

where ar, ..., at are meromorphic functions on D\Eo. We will show that a, admits

a meromorphic extension to Eo for each i. Fix zo(Eo, and denote by pt,...,pr,
(k=n) the points of (f{)-t(zo). Since /* is continuous, there exists a neighborhood

U of {p1,...,po)in Vovfiyosuch that il"f-(U) contains an open set. Hence there

exists a linear fractional mapping g such that fr:(E "f*)lu is bounded. Now
choose a neighborhood GcD of zoirt such away tbat 0GoE:0 afi (ff)- l(G)c t/.
Then /, satisfies on l;1(G\80) an identity

fI+ -0

with b,€AB(G\Eo) for each f. Thus we may regard the functions år,...,b, as

deflned all over G. But it is now a simple verification to show that on f;'(Q

f'+ (t,ofr)fn-'- o

with cr(M(G) for each i. We conclude that c, is an extension of a,l GlEo over

GnEo,i:|,...,n. Thus, preserving the notation, we have the relation (1) valid
on fo-|(D) with arqM(D) for each i.

As in the proof of Theorem 3, it can be shown that

P(2, w): w"+ aiQ)tpn-t - (Q72, w))"',

where Q(z,w) is an irreducible polynomial over M(D) of degree nfn'. We claim
that this degree equals l, i.e. n':n In order to prove this, define, as in the proof
of Theorem 3, the mapping q: VotD, where D denotes the Riemann surface of
the relation Q(z,w):9, z€D. Further denote by E* the continuous extension of
E to Vov§vo, and put qo:E*(p). Since qo€c-l(Eo) (cf. again the proof of
Theorem 3) and c-'(Ei is totally disconnected, we can find a Jordan region .I
in D containing qo with å,Inc-'(Er):0 and a conformal homeomorphism ry':

J*D. Denote by Uthe component of E-'Q)with po(Bu. Then vrlu is bounded
by n' as appears from the definition of g in view of the representation (2). Thus
(* odlU belongs to AB(U), aad v(,t,or)tu is bounded by n'. By the minimality of
n:n(f) we Lrave n''>n, ar.d }irence n':n.

We conclude that, for acertain S(M(D), the pair (fo, fl annihilatesthepoly-
nomial Q(z,w):ys-r1r1, i.e. f(p):g(Å(p)) for all p(Vo.

Let fe ltC(V). As in the proof of Theorem 3, it can be shown that
on f;'(D\E) a relation

(2)

n

Z (b,ofr)f"-i
i:L

n

z
i: I-

n

z
i:1

(a,ofo)f""'- o,
n

z
i:L
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The uniqueness of g is a consequence of the openness of /r. The latter assertion
of the theorem follows immediately from the former by Theorem 2. tr

The following corollary

Corollary. Let 14/ be a
of W with compact relatiue

is immediate although nontrivial in itself.

Riemann surface of class -,//8, and let V be a subregion

boundary. Then MC(V) /r a field.

Remark. As shown by Heins ([3, p. 298]), there exist parabolic Riemann sur-
faces (which automatically satisfy the absolute AB-maximum principle) such that
no relatively noncompact subregion with compact boundary tolerates a mero-
morphic function of bounded valence. Thus for these surfaces the class MC(W)
reduces to that of constants, while the problem considered in Theorem 5 has

no sense.

2. Riemann surfaces with MC: BV

2.1. Let E be a proper closed subset of i. Then .E is said to be of class N"
if, for every domain Gce with EcG, every function G*C continuous on G
and analytic on G\E is actually analytic all over G. The subclass of N. constituted
by the totally disconnected elements of N" is denoted by Nå. It is known that every

closed set Eci of o-finite linear measure is of class N6 and, on the other hand,
no set whose Hausdorff dimension exceeds I is of class Ns (see e.g. [2, Chapter 3]).
Clearly, NTENL, and it can be shown that N'" and N2, as well as N! and
N5r, overlap.

Given any Riemann surface W, a closed totally disconnected subset E of W
is said to be of class Ni in l4t if for every parametric disc(2, E) of W the compact
parts of E(EoV)cö are of class N!. If, in particular, W is a compact surface,
one can find a planar subregion V of I4 such that EcV, and it is readily seen that
E is of class N! in W if and only it t(Dce is of class N! for any conformal
mapping rlr: V *ö. In fact, it can be shown by a standard use of Cauchy's integral
formula (cf. e.g. [, p. 108]) that Ece is of class N! if and only if every point
z(E has arbitrarily small neighborhoods t/, such that EaU- are of class N!.

We shall make use of the following lemma; the proof proceeds as in [5, Lemma 5]

and will be omitted.

Lemma 2. Let W be a Riemann surface, and let f: W*ö be a nonconstant
analytic mapping.

@) ff Ece is of class N'", thenf-,(E) is of class N'" in W.

(b) If EcW is a compact set of class N'" in W, thenf (E) is of class N'".

We shall need the following extension of Theorem 4.
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Theorem 6. Let W be a Riemann surface of class g(NA. Then MC(W) is
afi,eld, and there exists an analytic mapping E of W into a compact Riemann surface

W', uniquely determined up to a conformal equiualence, such that grgoE is an

isomorphism of M(W') onto MC(\A). Moreouer, we haue MC(W)cBV(W\ and

D.(NL for each nonconstant f<MC(W).

Proof. Let fsbe a nonconstant BV-fanction on W with Dfo(NL, and denote

by n the constant valence of /rl(ff'(Dro). Assume that J(MC(I|) is noncon-
stant. We have on IZ\ffl(D/,)

f"+ (o,ofo)f"-; - o,

where ar, ...,a,(M(C\Dr.).We claim th1fi a, admits a meromorphic extension

to D1o, i.e. a, is a rational function on C for each i.
So fi.x z6€Dro. Since Dro is totally disconnected, fo admits a continuous ex-

tension ff over the ideal boundary B with fd(ilcDr, (Lemma 1). As in the case

of Theorem 5,(fi)-'@i consistsof atmostn points pt,...,pk, andwemayattach
to each pin(pitfi), the multiplicity of /. (see the definitions preceding Theorem 5).

Further, we can fi.nd a linear fractional mapping ry' such that g:Q1t "f\lu is bound-
ed for some neighborhood U of {pr,...,P*). Let G be a neighborhood of zo such

that \GnDro:O and (ff)-l(G)cu. We have on l;l(G\Dro)

g"+
n

z
i:L

(biofo)g"-' - o

with br(AB(G\D/,) for each i. Moreover, as z+zo in G\Dyo, clearly br(z)*
Z!=rn(pr; f)s@). Because Dto(NL, we conclude that b, admits an analytic
extension over G. Since the same is readily seen to be true of br, ..., å, as well,
we may regard them as defined and analytic all over G. It follows that

f'+ (c,of)fn-' : o

with cr(M(G) for each i; this is valid, by continuity, on lf 1(G). Thus c,lG\Dl,:
a,f \Dro for each i. Altogether, the functiorls 411 ... ) an are restrictions of rational

functions on i, and f is algebraic over Mo(W):{g(M(W)lg:aofo for some

aca(e)|, a subfield of M(W).
Now suppose conversely that f(M(W) is nonconstant and algebraic over

Mn(W). Then we have on W

f*+
m

z
l:I

(biofo)f*-' - 0

for some integer m and with år, .,.,b^in MG).Suppose that wo(Cl(/; B). Then

there exists a sequence of points (p,) in W such that pn*ps for some po(P and

n

z
i:L

n

z
i:L
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f (p)-wo. Set zo--f*(po), rn:7r70,, and w,:f (p,), n:1,2, .... We have

*f - åbi(zn)wy-i: 
g

for each n. I{ence by continuity,

q+ åb;Q)wff-i:Q
i:1

as well. We infer that

ct(f; §) c

But since Dro is closed and totally disconnected, the same is true of Cl (/; f). Hence
f<MC(W). Thls MC(W) coincides with the subfield of M(W) constiruted by
the algebraic elements over Mo(w). More precisely, by resorting to the theorem
of the primitive element, it is readily seen (cf. the proof of [5, Theorem 7]) that
MC(W) is a simple algebraic extension of Mo(W).

Let .f, be a primitive element of MC(W), and let

x*+

be the minimal polynomial

In

z
i:1

(a, o f o) X*-t, aL, . .. , arn€ M (e ),

af fr" Since
tn

P(r, w) : w*+ Z or(z)w*-t

is irreducible, the Riemann surface W' ofth.'r.tutioo p(z,w):g, z€ö, iscompact
and connected. Define the mapping E: W*W' as in the proof of Theorem 3;
we have fo:coe, fr:uoE, c ot u being the center mapping or the value mapping,
respectively. It is readily seen that g*goE is an isomorphism of M(w') onto
MC(w); for the details as well as for the proof of the uniqueness of IU'we refer
to [5, pp. 2l---22].

To prove the last assertion of the theorem, take a nonconstant f(MC(W)
and choose C€M(W') such that f:go<p. Since EIIl\E-t(c-t(Dr,)):
glry\,f'(Dro) has constant valence nfm on IIz'\c-1(Dr,), we have immediäiely

fi€BV(W). Thus MC(W)cBV(W). Moreover, if ruoeiyg(c-r(Dr,)), then
vy(w6):max {vr(w)l *(e}. But g(c-1(D1,)) is of class Ni by Lemma 2. the proof
is complete. tr

Remark. The above result is sharp, i.e. the class Ni cannot be replaced by
alarger one, provided we insist on total disconnectedness (cf. Lemma 3 and Lemma 4
below). The inclusion MC(w)cBV(w) is strict, in general. To provide an example,
let E be a closed totally disconnected subset of the unit circle c:kecllzl:l\
such that the inner capacity of C\E is =1 15ss [1, p. 124]). then ilf carries

{"a 
AW** årb,(z)wm-': o for some z€Dr,l-
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nonrational univalent (meromorphic) functions ([1, Theorem 6 and Theorem l4])

while M C (i\,r') : az(i).
Let us state the following local counterparts of the preceding theorem. The

proofs will be omitted, for all ingredients needed can be found in the previous con-

siderations (cf. in particular Theorem 3 and Theorem 5)'

Theorem 7. Let W be a Riemann surface of class 9(NA, qnd let V be a sub'

region of W with compact boundary. Then euery nonconstant function f<MC(V)
has bounded ualence, and Cl(f; frr):f*(B)<NL.

Theorem 8. Let ll'be a Riemann surface of class g(NA' and suppose that p

belongs to the ideal boundary of W. Then there exist a subregion V of Il with compact

0V and with p(frv and an analytic function fo: V-D: {zce lz1-l} such that, giuen

any f(MC(V), one canfind a unique C(M(D) satisfying f:gofo.
2.2. We are now in a position to establish our main result.

Theorem 9. Let W be a Riemann surface of class 9(NgoNs1|,. Then MC(W):
BV(W). The class NgnNss cannot, without further restrictions, be replaced by a

larger one; in fact, for a Riemarut surface W of finite genus h'e haue MC(W):
BV(W) only iJ' WQO (NraNtr).

Proof. Let fo be a meromorphic function of bounded valence on llz such that

D7o(NcnÄ[sr. Since sets of class N5s are totally disconnected' we have even

Dro€NL. Thus Theorem 6 applies, and we infer that MC(W)cBV(W).

On the other hand, it follows from the assumption that Dro is even of class

.l[r, for in actual fact NsnNss:N6.nNp. Indeed, let E be any univalent mero-

morphic function on itrDro. Since Dyo(Nsr, it E(i:aro) also must be of
class i["r; in particular, C1E1C1D7.) is totally disconnected. Thus E admits

a topological extension E* to the whole sphere. But the relation Dyo€Nc implies

that E* is conformal o, i. The assertion now follows from [1, Theorem 6]. Accord-

ingly, we may apply [5, Theorem 7]. It follows, in particular, that Dy is totally

disconnected for every nonconstant f(BY(W). We conclude from Lemma I that

BV(W)cMC(W).
In order to prove the necessity of the condition W(9(NsnNsr) for surfaces

of finite genus, we need some auxiliary results.

Lemma 3. Let W be an open Riemann surface, let B be the ideal boundary of
W, and let f(AC(W). Then f*(il:f*(WvB). Moreouer, if f(AC(W) is txoncon-

stant, then the set {z(e lvr(z):*} is residuat in f*(fr).

Proof. Suppose that. f(AC(I/) is nonconstant, and assume that there exists

a point po(W such that f (il|f.(fr). Let d denote the mutual distance of tl'(pJ)
and f*(ll). Choose then, for every p(§, an open neighborhood (/, such thatflU,
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the relative boundary of Uo, is compact and f*(Uo)cD(f*(p), dl2):
{z«llz-f*(p)l<dl2}. From the open coverine {urlp<P\ of B pick out a finite
subcovering {Urr, ..., Uru}.Let (V,) be a standard exhaustion of W (in particular,
the components of W\V, are noncompact). Since F:L)!=r 0(Ir. is a compact
subset of W, therc exists a positive integer no such that .F'u{po}cV,, for fl>-no.
A moment's thought then reveals that for every component C of }Iz\2,, there is
i€{1,...,k} such that CcUr,. Let 8r,...,8* be the components of \Vno. We
infer that each f (B) is contained in some O(f*(p),d12), i:1,...,k. Thus the
winding number of f (B) with respect to f (p) is 0 for eachi. We conclude from
the argument principle that po|f (V"r). This is a contradiction. Hence

f (w)cf.(§).
To prove the latter statement, let again (V") be an exhaustiot of W, and denote

by F, the closed set f.(P)\f(W\%), n:1,2,.... By continuity, f*(§):
|WV, so that,( is a nowhere dense subset of f*(P) for each n. Btt clearly

"f-(B)\U;=, f,c.{z€ölr'r(z):*\. The assertion follows. n
Lemma 4. Let W be a compact Riemann surfoce, and let E be a closed totally

disconnected subset of W failing to be of class N'" in W. Then the clqss AC(W\E)
contains q nonconstant function.

Proof. We may assume that E contains no inessential points, i.e. for every
parametric disc (2, E) of W with VnE*O and \VaE:A the set q(VoE) fails
to be of class N6. Let g denote the genus of lZ. Since E is totally disconnected, we
can find (cf. [13, p.262)) planar regions Ur,...,Urn*tCW sttchthat UrnUr:fi
if i*j, E.:UiaE*O and 0U,aE:0 for each i. We may further assume that
U, is simply connected and that there exists a nonanalytic continuous function
f,: Ur*g which is analytic on I\ä,, i:1,...,2g*1.

Consider the harmonic function Ref on U,\8. Clearly,

-0

for every cyle y in U,\Er.Thus, by [1], Theorem 3], there exists a real harmonic
function u, on Itr yE, such that Refr-u, has a harmonic extension to t/,. It is
readily seen that xdu,has a vanishing period along every dividing cycle in ,Y\8.
Let yp,k:1,...,2g, be 29 nondividing canonical cycles of IZ\E, and consider
the system of equations

(k : l, ...,29).

Pick out a nontrivial solution (cr, ... , crn*r)l(O,...,0). Since the differential
*d(Z?tJ'c,u) has a vanishing period along every cycle in ly\E, there exists
an analytic function / on Z\E with Re f: )!s_\1 c,ur.

{.d(Re/,)
^)

'ä,' ,,(,! xdut)- o
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we proceed to show thal f admits a continuous extension over E. Fix

l€{1,...,2g*l\, and denote by u,: Ui*C the harmonic extension of Ref,-o'
o*i f, . Let u! denote a conjugate harmonic function of a, on IJ , , arrd let u] denote

a conjugate härmonic function of url(Ji, i*j. Fu;rtheu denote by ht the analytic

function -cr(ur*iui\1'Zi*icr(ur*iu'{) on Ur. Then Re /-Re hr:cr(u,*ui):
Recjfj o, if;Er. Hence there exists a constant a; such that f':lxt4cifi+ai
on tf\E;. We may now define

f* (p) - h j(p) + ci f i@)* ai for P€Ei.
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This representation permits us also to conclude that f
j be chosen such that c j*0. Then cif i is nonanalytic
(l i. Hence / cannot be constant. n

The following lemma can be regarded as a

[1, Theorem 6].

is nonconstant. Indeed, let
while hi*a, is analytic on

natural gen eralization of

Lemma 5, Let W be a compact Riemann surface, and let E be a proper closed

subset of W such that W\E is connected. Then E is of class No in W if and only if
euery meromorphic function of bounded ualence on l{/\E is the restriction to W\E
of a rational function on Il'.

Proof. Suppose first that Ec.W is of class N, in 14. Let fe AV(W\E)' n
follows from [5, Lemma 6] that / admits a meromorphic extension to W', i.e. f
is the restriction of a rational function otr W.

suppose conversely that E fails to be of class Nrin ll.If the interior of E is
nonempty, we can find a nonconstant function fe u1w\ such that /llr\E is

bounded. If g is a nonalgebraic univalent function on /(IZ\E), then (s"fl\l'l\E
is clearly nonrational and belongs to BY(14/\.'.E). Assume now that -E is nowhere

dense in w and fails to be of class Nsr. By [6, Theorem 12] and [13, Theorem x. 3 c]
,I/\E is essentially extendable, i.e. there exist a compact Riemann *yface W*

and a closed subset F of lA* with nonempty interior such that ,Z\E is conformally

equivalent to lIz+\F. Hence we can again find a nonconstant bounded function

in BV(W\E). However, for any f(M(W),,flry\E is unbounded, because /(E)
is nowhere dense in i.

There remains the case E€Nsa\N, in 17. It follows from [8, Theorem 1]

and 112, Theorem I. 8 El that IZ\E then admits conformally nonequivalent closed

extensions. Hence we can find a compact Riemann surface W*, a closed subset

F of W* and a conformal homeomorphism E: W\E*W*\F which, by [6,

Theorem l2], extends to a nonconformal homeomorphism 9*: W*'[l'*' Let g

be a nonconstant function in M(lt*). We claim that f:goE does not admit

a meromorphic extension to W. Assume this is not the case, and denote by -f*
the extended function. Then we have, by continuity, f*:goE*. Let Bn denote
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the finite set of zeros of the derivative of g, and let p(W\(f*)-r(S(Br)). Choose
a neighborhood U, of p such that g-r is defined on f*(Ur) (the branch of g-r It
chosen in such a way that C-,(f*(p)):E.@)). Thus we have E*(q):G-rof*)(q)
for q([/r. Consequently, rp* is analytic on IZ\(/-)-r(S(4)) and, by the discret-
eness of (l'*)-,(S@n)), all over W. This contradiction completes the proof. tr

We return to the proof of Theorem 9. So let W be a Riemann surface of finite
genus. we may assume that w is a subregion of a compact Riemann s;rtrface w*.
Let E denote the set w*\w.Suppose first that some component of E is nondegener-
ate. As in the proof of Lemma 5, we can find a bounded nonconstant function in
BV(w). But Lemma 3 implies that such a function cannot belong to the crass
MC(W). Thus MC(W)+BV1W1 in this case.

Now suppose that E is totally disconnected but fails to be of class N! in w*.
By Lemma 4 there exists a nonconstant function f in AC(W), and by Lemma 3

f§BV(W). We have asatu MC(W)*BV(W).
Then suppose that ,E€NåVfD in W*. By Lemma 5, BV(W)\M(W*)*9.

But clearly MC(W):M(W'"). Hence MC(W)*BV(W).
There remains the case E(N'"aNo (then, of course, MC(W):gl/(W):

M(w.)). Let fobe a nonconstant functionin M(w*). It follows from [5, Lemma 5]
and Lemma 2 that fr(E)€NcaNo:Ngn.lfsr. Thus DyoVa,€Ng..N5,,, i.e.
WQO(NcaNsl} The proof is complete. tr

Remark. In view of rheorem 2, one may ask how the class MD*(ll) is related
to MC(II) in the case W(9(NsnNs). Of course MC(W)cMD*(W), but
we do not know whether the opposite inclusion also holds. However, under the
additional hypothesis ot f(.MD*(w) that {zcClvr(z)=-} be of second category,
it can be shown that faMC(W).
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