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MEROMORPHIC FUNCTIONS ON CERTAIN
RIEMANN SURFACES WITH SMALL BOUNDARY

PENTTI JARVI

Introduction

In this paper we study meromorphic functions on certain Riemann surfaces
with ,,removable” ideal boundary, in particular functions which admit continuous
extensions to the ideal boundary (MC-functions). Our purpose is to generalize
or extend certain results of Heins ([3], [4]), L. Myrberg ([7]), Ozawa ([9]) and Royden
([10]). In particular, two composition theorems, originally due to Heins ([3, p. 304],
[4]), will be unified to statements on MC-functions on Riemann surfaces satisfying
the absolute 4B-maximum principle in the sense of Royden. An essential feature
in the considerations involved is the coincidence of the class MC with the class of
constants and of meromorphic functions of bounded valence. Motivated by this fact,
we will, in Chapter 2, make an attempt to characterize those Riemann surfaces
for which these two classes coincide. This effort leads also to further extensions of
some results obtained in Chapter 1.

The author wishes to thank Professor K. I. Virtanen for valuable comments.

1. Riemann surfaces with the absolute 4B-maximum principle

1.1. Let W be an open Riemann surface and iet ¥ be a subregion of W with
compact (possibly empty) relative boundary 9¥. Let B denote the Kerékjarté—
Stoilow ideal boundary of W and f the relative Kerékjarto—Stoilow ideal bound-
ary of ¥ (see [12, p. 366]). Denote by A (V) or A(V)the class of analytic functions
on ¥V or V=VudV and by M(V) or M(V) the class of meromorphic functions
on V or V, respectively. The class constituted by the bounded functions in A (V)
or A(V) is denoted by AB(V) or AB(V), respectively. The subclass of A(V)
(resp. M(V)) consisting of functions which have a finite (resp. finite or infinite)
limit at every relative ideal boundary element is denoted by AC(V) (resp. MC(V)).
The classes AC(V) and MC(V) are defined similarly. Whenever f is a function
of class AC or MC, we let f* denote the extension of f to the (relative) ideal
boundary.
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We say that W satisfies the absolute AB-maximum principle ([10]), and denote

We iy if
sup{|f(p)l|peV} = max {If(p)I|pcoV'}

for every subregion ¥ of W with compact 9V and for every f€AB(V). Further,
W is said to belong to the class Z; ([9]) if, for every subregion ¥ with compact 9V,
the cluster set C1(f; By) of every f€ AB(V) attached to the relative ideal boundary
By is a totally disconnected subset of C, the complex plane. Clearly, AB(V)C
AC(V) whenever W belongs to Z5. As usual, 0,5 denotes the class of all Riemann
surfaces on which there exists no nonconstant bounded analytic function. The follow-
ing theorem reveals the intimate relations between these three classes. To prove it,
and in certain other connections as well, we need some characterizations of the
properness of an analytic mapping; proofs can be found in [5, pp. 7—38].

Lemma 1. Let W be a disjoint union of at most a countable number of Riemann

surfaces, and let G be a domain in the Riemann sphere C=Cu{=}. Suppose that
fi W—G is analytic. Then the following statements are equivalent:

(1) f is proper.
(2) The valence function v;(2)= 2. n(p; f), where n(p; f) denotes the
multiplicity of f at p, is finite and constant on G.
(3) Given any sequence (p,) in W such that {n€ N|p,£ K} is finite for every com-
pact set KCW, the same is true of (f(py)) and every compact set K’ in G.
Moreover, if any of the above conditions is satisfied, then the number of the com-
ponents of W is finite, and each of them is mapped properly on G.

Theorem 1. For Riemann surfaces of finite genus the classes My, Dy and O4p
coincide. For surfaces of infinite genus we have

My = D5 & Oygp.

Proof. Surfaces of finite genus in ¢ are complements on closed surfaces of
sets of the class Ny ([12, p. 137]; for the definitions and basic properties of the
function-theoretic null-classes Ny, N and Ngg we refer to [1] or [12, Chapter 2]).
So it follows immediately that #z=0,;=%5 for these surfaces. As concerns
surfaces of infinite genus, the relation ZzC.#z; was proved in [9, Theorem 1].
Moreover, it is trivial that .#zC 0,5 generally, and the strictness of this inclusion
is shown by P. J. Myrberg’s example (see e.g. [12, p. 53]). It remains to prove
My Dy.

Let W€y, and let V be a subregion of W with compact dV. Passing to a suit-
able subset of ¥, we may assume that @7 consists of a finite number of piecewise
analytic closed curves. Let f€ AB(V) be nonconstant. Assuming that z€C\ f(9V),
the index of z is defined by

i(2)= @07 [darg(f(p)—2).
v
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With suitable interpretation (see [10]), i(z), as well as the valence v(z) of f at z
with respect to V, can be defined also for z€f(9V) and expressly in such a way
that §(z)=i(z)—v(z)=0 everywhere in C whenever V is relatively compact.

The fundamental result of [10] now states that f has bounded valence and
actually 8(z)=0 for all z€C; moreover, the closed set E={z€C|d(z)=0} is of
class Ny. We proceed to show that Cl1(f; f,)CE.

Since 6 (and E) is unaltered by the removal from V of a compact set with nice
boundary, we may assume that f(0V)nE=0. Let zcf(0V). We assert that there
exists a closed neighborhood N of z such that f~1(f(#)AN)nV is compact.
Indeed, since f is analytic on V, we may replace ¥ by a larger region ¥’ with nice
boundary such that V’\ V' is compact and z¢ f(dV"). Moreover, if G, is the com-
ponent of C\_f (0V’) which contains z, then by virtue of Lemma 1 f| f=*(G,\E)nV’
is a proper mapping onto G\ E. Thus f~'(N)nV"’ is compact whenever N is e.g.
a closed disc in G,\ E with z in its interior. Since f~1(N)NV=f “1(f(V)nN NV,
the assertion follows. One consequence of the assertion is the compactness of
SN f@V)NV. Thus f~YC\f(V))nV consists of a finite number of com-
ponents with compact relative boundaries (Lemma 1).

Now let p€fy, and denote by U the component of f~(C\(f@V)VE))nV
such that p€pfy. It follows from Lemma 1 that f|U is a proper mapping onto G,
a component of C\(f(dV)UE). By the same lemma, the cluster set CL(f; p)
of f at p is contained in ¢G. But the assertion proved above implies that
CL(f; p)nf(@V)=0, so that only the case CI(f; p)cE is feasible. The proof
is complete. []

Let W be a Riemann surface, and let V' be a subregion of W. Denote by BV (V)
or BV(V) the class of constants and of meromorphic functions of bounded valence
on V or V, respectively. For a nonconstant function f¢ BV(W) the deficiency set
of f is defined by

D, = {zeé]v,(z) < meacz( ve(2)) T
Further denote by MD*(V)(MD*(V)) the class of meromorphic functions on V' (V)
with finite spherical Dirichlet integrals, and let @, denote the class of Riemann
surfaces which tolerate no nonconstant MD*-function. Recall that the spherical
Dirichlet integral of a meromorphic function f on W is defined by

1
I s A <4

We are now ready to state the following corollary; cf. [7, Satz 3.1, Satz 3.2 and
Satz 3.3], [9, Theorem 3] and [12, Theorem VI. 3 C and Theorem VI. 3 D] (note that
Op5C My by [12, Theorem VI. 3 A and Theorem VI. 1IJ).

Theorem 2. Let We My, and let V be a subregion of W with compact bound-

ary. Then
AB(V)=AC(V) and MC¥V)= BV (V)= MD*(¥).
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In particular,
MCW) =BV(W)= MD*(W),

and D€ Ny for every nonconstant f€BV(W). Moreover, if fc M(V)N\MC(V), then

f assumes every value in C infinitely often except for a set of values with compact
parts in Ng.

Proof. The first equality is an immediate consequence of Theorem 1. Suppose
that f€ BV(V) is nonconstant. As in the proof of [5, Lemma 6], we can find a linear
fractional mapping ¥ such that Yy of is bounded off a compact set Kc V. By
Theorem 1, Y of has a limit at every element of 8, and so has f. Thus BV(V)c
MC(V). A similar reasoning justifies the assertion concerning D, for feBV(W).
Indeed, the number of the noncompact components of W\ K is finite, and the proof
of Theorem 1 combined with [12, Theorem VI. 1 L]implies that ( of)*(f) is of
class Ny. Hence f*(B)€Njy as well. The assertion now follows from Lemma 1.

Next assume that f€ MC(V) is nonconstant. Let p€f,. For a suitable linear
fractional mapping ¢, ¢ of* is bounded in an open neighborhood U, of p. By the
proof of Theorem 1, (¢ of*)| U,\ By has bounded valence. Hence the same holds
for f*|U,\pBy as well. Thus we can find for every p€ Vup, an open neighborhood
U, such that f*|U,\f, has bounded valence. By compactness f has bounded
valence, too. We infer that MC(V)c MD*(V).

To prove the remaining inclusion MD*(V)cBV(V), suppose that f¢ MD*(V)
is nonconstant but fails to have bounded valence. Given a relative regular exhaus-
tion (R,) of V, let E,=C\f(V\R,), n=1,2, .... Then E, is a closed set of class
Ny for each n, for otherwise we could find a nonconstant bounded analytic function
g on é\E,,, in which case (gof)| ¥\ R, would also be bounded. But this state of
affairs contradicts the relation f¢BV(V) by the proof of Theorem 1. Clearly
{zE(f‘lvf(z)<oo}cU§°=1 E,, and E,€Ng implies area (E,)=0 for each n. Accord-
ingly, f¢ MD*(V). The desired contradiction has been reached. The same reason-
ing proves the last statement of the theorem in view of [12, Theorem VI. 1 L]. [J

Let P be a class of closed sets in C. We denote by 2(P) the class of all Riemann
surfaces which tolerate a nonconstant BV-function with the deficiency set in P.
The following theorem provides a description of Riemann surfaces with the absolute
AB-maximum principle up to the quite strange class Gyps.

Theorem 3. A\ Oyp=2P(Np).

Proof. Suppose that W€ Mg\ Oyps. By Theorem 2 there exists a nonconstant
function f€ MC(W), and by the same theorem D €Ny, i.e. WeZ(Np).

Now let WeZ(Np), and let f; be a nonconstant element in BV (W) with D I
in Ny. We may assume that D, cC. Let ¥ be a subregion of W whose relative
boundary 0V consists of a finite number of piecewise analytic closed curves. By

modifying slightly 0¥, we obtain fo@V)nD; =0. Let G be a component of
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C\f,(9V) such that GnD; #0. Denoting by B the ideal boundary of W, we have
Cl(fo; <Dy, (Lemma 1). Again by Lemma 1, v,y is finite and constant (=0)
on G\Dy .

Let U be a relatively noncompact component of fy7'(G). Then U\ fo‘l(Dfo,
is mapped by f, properly on G\D/, (Lemma 1). So there exists a positive integer
n such that VIUNS5iD, ) (z2)=n for every z€ G\Dy . Now suppose that f€ AB(V).
By an argument borrowed from the theory of compact Riemann surfaces, it can
be shown that f satisfies on UNf,7* (D, ) an identity

i+ g (@;offr==0

where aj, ..., a, are bounded analytic functions on G\JD; . But D, is of class
Ny, so that we may regard the functions g; as defined all over G. Moreover, it is
a standard consequence of the connectedness of UN fo‘l(Dfo) that

P(z, W)= Wi+ 3 a,(2)wi = 0 (z w)",
i=1

where Q(z, w) is an irreducible polynomial over the ring M(G) of degree m=n/m’.
Denote by G the (connected) Riemann surface of the relation Q(z, w)=0,
z€G, i.e. the totality of pairs (z, w,), where z€G and w, is a function element with
center z and associated with the equation Q(z, w)=0. The center function c:
(z, w)—z and the value function v: (z, w,)—>w.(z) are analytic on G.
Denote by ¢ the analytic mapping U—G,

p— (fo(P)a (fofo_l)fo(p))?

where the branch of f;™! is chosen in such a way that f;~(fy(p))=p (the points
p€U at which f; fails to be a local homeomorphism are removable singularities by
continuity and by Riemann’s theorem on isolated singularities). We have immediately
fo=cop, f=voo.

We will show that ¢ admits a continuous extension ¢* to Uufy with
o*(By)cc™ 1(Gan ). So let g,£Cl(g; By)cGup’, where p’ denotes the ideal
boundary of G, and let (p,) be a sequence of points in U such that p,—p, for some
Po€By and @(pn)—q,. Assume that g€ G\c”l(Gr\Dfo) Then (co@)(p,)—~
c(q0)€G\Dy, which is impossible since fo(p,)—>Dy, - Similarly, the assumption

g€ B’ leads to the contradictory result f,(p,)~0G. Hence we have go€c™(GNDy ).
Since ¢~1(GNDy, ) is totally disconnected, Cl(¢; p) reduces to a singleton for
every p€fy, i.e. ¢ admits a continuous extension ¢* to Uufy. Moreover,
@*(p)ec™(GnDy) for every pefy.

Again let (p,) be a sequence of points in U such that p,—p, for some pe€fy.
Then ¢ (p.)—@*(po)€c™(D;,NG), so that (v09)(p)—~v(¢*(pe)Er(c™(Ds,NG));
ie. lim, . f(p)€v(c™(Dy, mG)) Since v(c7(D;,NG)) is totally disconnected
(note that c‘l(Df NG) is compact by Lemma 1) and By is a finite union of sets of
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type By, C1(f; By) is totally disconnected as well. Thus W€ g, and by Theorem 1
WeMy, too. [

1.2. We turn to the analogues of Heins’ composition theorems. As concerns
globally defined functions, we have

Theorem 4. Let W be a Riemann surface of class My. Then either

(@) MC(W)=C, in which case W€ Oypx,
or

(b) WeD(Ng), and MC(W) is a field algebraically isomorphic to the field of
rational functions on a compact Riemann surface W', which is uniquely determined
up to a conformal equivalence. Moreover, the isomorphism is induced by an analytic
mapping of W into W’.

Proof. If W€z Oy p, then by Theorem 2 every function in MC(W) is con-
stant. If, on the other hand, W€ Z(Ny), we may apply the result of Heins ([4]; cf.
also [5, Theorem 7]), for by Theorem 2 MC(W)=BV(W). O

Again let Wedy, and let pyef, the ideal boundary of W. Suppose that there
exists a subregion ¥ of W which belongs to a determining sequence of p, and carries
on its closure V a nonconstant bounded analytic function f. By Theorem 2, f
admits a continuous extension f* to Vup,. Assume, as we may, that z,=
f*(py)¢f(@V). Denote, as in the proof of Theorem 1, by E(¢Njp) the set
{z€C|d(2)=i(z) —v(2)=0} and by G the component of C\ f(9V) which contains
zo (note that z,€ E' as appears from the proof of Theorem 1). Let (D) be a decreas-
ing sequence of Jordan domains in G such that dD,nE=0, j=1,2,..., and

Ny D;={z,}. Denote by U; the component of f~1(D,\E) such that py¢ ,BUj
and by n; the constant valence of f|U; on D;\E, j=1,2, ... (cf. Lemma 1). Note,
for future use, that (Int U,) is a determining sequence o£ Pos ie. N2, U;=0, and
also that (f™*)~1(z,) contains at most i(z,) points (in VuUpy), for the number of

the components of f~1(D;) is at most i(z,) for each j. The integer
n(po; f)=n(f) = lim n,
is called the multiplicity or the local degree of f at p, (cf. [3, p. 301] and [7, p. 8)).
It is clearly independent of the choice of (D)). Furthermore, let
n =min {n(f)|f is an admitted function}.
By the definition above, there exist a subregion ¥, of W with compact 9V
such that p,€fy ~and an analytic function fq: Vo»Dz{zECl|zl<1} such that

vs,(2)=n for all z€D except for a compact set E, of class Ny and f;(ﬁVO)CEO.
With the notation before, we have (cf. [3, p. 304], [9, p. 751))

Theorem 5. Given fe MC(V,), there exists a unique g€ M (D) such that f=gof,.
A fortiori, M(D) is algebraically isomorphic to MC(V,); in particular, g—gof,
is an isomorphism of AB(D) onto AB(V,).
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Proof. Let fe MC(V,). As in the proof of Theorem 3, it can be shown that
[ satisfies on f;7'(D\E,) a relation

() 7+ S @ofori=o,

where a4, ..., a, are meromorphic functions on D\ E,. We will show that g, admits
a meromorphic extension to E, for each i. Fix z,€E,, and denote by py, ..., p
(k=n) the points of (f;¥)~'(z,). Since f* is continuous, there exists a neighborhood
U of {py, ..., p} in VyUPy, such that C\_f*(U) contains an open set. Hence there
exists a linear fractional mapping ¢ such that fi=(¢of*)|U is bounded. Now
choose a neighborhood G D of z, in such a way that dGNE=0 and (f;)"1(G)cU.
Then f; satisfies on f,"'(G\E,) an identity

fi+ 2 (boff"=i =0

with b,€ AB(G\ E,) for each i. Thus we may regard the functions b, ..., 5, as
defined all over G. But it is now a simple verification to show that on f,7'(G)

i+ 2 (ciof)f*=i=0

with ¢,€ M(G) for each i. We conclude that ¢; is an extension of |G\ E, over
GNnE,,i=1,...,n. Thus, preserving the notation, we have the relation (1) valid
on f,"*(D) with a,¢ M(D) for each i.

As in the proof of Theorem 3, it can be shown that

@ P(zw) = Wit a2~ = (@G ',

where Q(z, w) is an irreducible polynomial over M (D) of degree n/n’. We claim
that this degree equals 1, i.e. #’=n. In order to prove this, define, as in the proof
of Theorem 3, the mapping ¢: V,—~D, where D denotes the Riemann surface of
the relation Q(z, w)=0, z€ D. Further denote by ¢* the continuous extension of
@ to VouPy , and put go=¢*(p,). Since go€c™'(E,) (cf. again the proof of
Theorem 3) and ¢~ 1(E,) is totally disconnected, we can find a Jordan region J
in D containing g, with dJnc™}(E;)=0 and a conformal homeomorphism :
J—D. Denote by U the component of ¢ (/) with py€fy. Then v,y is bounded
by n’ as appears from the definition of ¢ in view of the representation (2). Thus
(Y 09)| U belongs to AB(U), and v,y is bounded by n’. By the minimality of
n=n(f,) we have n’=n, and hence »n'=n.

We conclude that, for acertain g€ M (D), the pair (fy, f) annihilates the poly-

nomial Q(z, w)=w—g(2), ie. f(p)=g(fo(p)) for all peV,.
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The uniqueness of g is a consequence of the openness of f,. The latter assertion
of the theorem follows immediately from the former by Theorem 2. [

The following corollary is immediate although nontrivial in itself.

Corollary. Let W be a Riemann surface of class My, and let V be a subregion
of W with compact relative boundary. Then MC(V) is a field.

Remark. As shown by Heins ([3, p. 298]), there exist parabolic Riemann sur-
faces (which automatically satisfy the absolute AB-maximum principle) such that
no relatively noncompact subregion with compact boundary tolerates a mero-
morphic function of bounded valence. Thus for these surfaces the class MC(W)
reduces to that of constants, while the problem considered in Theorem 5 has
no sense.

2. Riemann surfaces with MC= BV

2.1. Let E be a proper closed subset of C. Then E is said to be of class N¢
if, for every domain Gc€ with ECG, every function G—C continuous on G
and analytic on G\ E is actually analytic all over G. The subclass of N constituted
by the totally disconnected elements of N is denoted by N_. It is known that every
closed set EcC of g-finite linear measure is of class N¢ and, on the other hand,
no set whose Hausdorff dimension exceeds 1 is of class N (see e.g. [2, Chapter 3]).
Clearly, Ny&Ng, and it can be shown that N; and N,, as well as N, and
Ngg, overlap.

Given any Riemann surface W, a closed totally disconnected subset E of W
is said to be of class N in W if for every parametric disc (¥, ¢) of W the compact
parts of @(En V)cC are of class N¢. If, in particular, W is a compact surface,
one can find a planar subregion ¥ of W such that ECV, and it is readily seen that
E is of class N/ in W if and only if y(E)cC is of class N{ for any conformal
mapping ¥: V--C. In fact, it can be shown by a standard use of Cauchy’s integral
formula (cf. e.g. [1, p. 108]) that EcC is of class N¢ if and only if every point
z€ E has arbitrarily small neighborhoods U, such that EnU, are of class N(.

We shall make use of the following lemma; the proof proceeds as in [5, Lemma 5]
and will be omitted.

Lemma 2. Let W be a Riemann surface, and let f: W—~C be a nonconstant
analytic mapping.

(@ If EcC is of class N, then f~Y(E) is of class N in W.

(b) If ECW isa compact set of class Ni in W, then f (E) is of class N¢.

We shall need the following extension of Theorem 4.
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Theorem 6. Let W be a Riemann surface of class D(N(;). Then MC(W) is
a field, and there exists an analytic mapping ¢ of W into a compact Riemann surface
W’, uniquely determined up to a conformal equivalence, such that g—goq@ is an
isomorphism of M(W’) onto MC(W). Moreover, we have MC(W)CBV(W) and
D €N for each nonconstant fe MC(W).

Proof. Let f, be a nonconstant BV-function on W with D, ¢ N{, and denote
by n the constant valence of f,| W\ f; (D ) Assume that f€ MC(W) is noncon-
stant. We have on W\ f;"(D;,)

f7+ 3 @of " =0,

where aq, ..., a,6 M ((f\Dfo). We claim tl'iat a; admits a meromorphic extension
to D, , i.e. a; is a rational function on C for each i.

So fix zy€Dy, . Since Dy is totally disconnected, f, admits a continuous ex-
tension f;f over the ideal boundary § with f* (B)=D;, (Lemma 1). As in the case
of Theorem 5, (f;7)~"(z,) consists of at most n points py, ..., px, and we may attach
to each p, n(p;; fy), the multiplicity of f; (see the definitions preceding Theorem 5).
Further, we can find a linear fractional mapping y such that g=() of*)| U is bound-
ed for some neighborhood U of {py, ..., px}. Let G be a neighborhood of z, such
that dGnD; =0 and (fHMG)cU. We have on fi"'(G\Dy)

g"+ %(biOfo)g”"i =0

with b,€ AB(G\D, ) for each i. Moreover, as z—z, in G\Dy,, clearly b,(z)~
>t n(ps fg(p). Because D, €N¢, we conclude that b, admits an analytic

extension over G. Since the same is readily seen to be true of by, ..., b, as well,
we may regard them as defined and analytic all over G. It follows that

I+ Z@ofa =0

with ¢,€ M(G) for each i; this is valid, by continuity, on f;"*(G). Thus ¢|G\D, =
a|G\Dy, for each i. Altogether, the functions ay, ..., a, are restrictions of rational
functions on C, and f is algebraic over MO(W)={gEM(W)|g=a of, for some
ac M(C)}, a subfield of M(W).

Now suppose conversely that f¢ M (W) is nonconstant and algebraic over
My(W). Then we have on W

frr 2 (bioffm=i=0

for some integer m and with by, ..., b, in M (C). Suppose that woe C1(f; B). Then
there exists a sequence of points (p,) in W such that p,—p, for some p,£f and
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S () —=w,. Set zy=f"(po), z,=f,(p,) and w,=f(p,), n=1,2,.... We have
m .
Wit 3 by(z) Wi =0
i=1
for each n. Hence by continuity,
m
Wi+ 3 bi(z)wpi =0
i=1
as well. We infer that

CI(f; p) {wEéIw’"-l— Zm' b,(z)w™~*=0 for some zEDfo}.
i=1

But since D, is closed and totally disconnected, the same is true of C1(f; ). Hence
JEMC(W). Thus MC(W) coincides with the subfield of M (W) constituted by
the algebraic elements over M (W). More precisely, by resorting to the theorem
of the primitive element, it is readily seen (cf. the proof of [5, Theorem 7]) that
MC(W) is a simple algebraic extension of M,(W).

Let f; be a primitive element of MC(W), and let

m

Xm+ Z (aiofO)Xm_i’ Ais v a;nEM(é)9
i=1

be the minimal polynomial of f;. Since

m
P(z,w) =w"+ > a,(z)wm~}
=1

is irreducible, the Riemann surface W’ of the relation P(z, w)=0, z¢€ é, is compact
and connected. Define the mapping ¢: W—W’ as in the proof of Theorem 3;
we have fy=co@, fi=vo@, c or v being the center mapping or the value mapping,
respectively. It is readily seen that gr>go¢ is an isomorphism of M(W’) onto
MC(W); for the details as well as for the proof of the uniqueness of W’ we refer
to [5, pp. 21—22].

To prove the last assertion of the theorem, take a nonconstant f&MC(W)
and choose geM(W’) such that f=gcop. Since o] WN\o (e (D, ))—
[3R4aN fo‘l(D ) has constant valence n/m on W’ Ne~HD;, ), we have Immedlately
fEBV(W). Thus MC(W)cBV(W). Moreover, if MOEC\g(c‘l(D )) then
v, (W) =max {v,(w)leC} But g(c"l(Df )) is of class N by Lemma 2. The proof
is complete. []

Remark. The above result is sharp, i.e. the class Ni cannot be replaced by
a larger one, provided we insist on total disconnectedness (cf. Lemma 3 and Lemma 4
below). The inclusion MC(W)C BV (W) is strict, in general. To provide an example,
let E be a closed totally disconnected subset of the unit circle C= {Z€C|lzl—l}
such that the inner capacity of C\E is <1 (see [1, p. 124]). Then C\E carries
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nonrational univalent (meromorphic) functions ([I, Theorem 6 and Theorem 14])
while MC(C\E)=M(C).

Let us state the following local counterparts of the preceding theorem. The
proofs will be omitted, for all ingredients needed can be found in the previous con-
siderations (cf. in particular Theorem 3 and Theorem 3).

Theorem 7. Let W be a Riemann surface of class D(N(), and let V be a sub-
region of W with compact boundary. Then every nonconstant function fEMC(V)
has bounded valence, and C1(f; By)=f*(By)EN¢.

Theorem 8. Let W be a Riemann surface of class 2(N¢), and suppose that p
belongs to the ideal boundary of W. Then there exist a subregion V of W with compact
OV and with p€ By, and an analytic function fy: VD= {zeél |z]<1} such that, given
any fEMC(V), one can find a unique g€ M(D) satisfying f=gof,.

2.2. We are now in a position to establish our main result.

Theorem 9. Let W be a Riemann surface of class 2(NcNNsg). Then MC(W)=
BV(W). The class NcnNgg cannot, without further restrictions, be replaced by a

larger one; in fact, for a Riemann surface W of finite genus we have MC(W)=
BV(W) only if WeD(NenNgp).

Proof. Let f, be a meromorphic function of bounded valence on W such that
Dy €NcONsp. Since sets of class Ngz are totally disconnected, we have even
DfOGN’C. Thus Theorem 6 applies, and we infer that MC(W)c BV (W).

On the other hand, it follows from the assumption that D is even of class
Np, for in actual fact NonNsz=NcnNp. Indeed, let ¢ be any univalent mero-
morphic function on é\Dfo. Since DfOENSB, é\w(é\Dfo) also must be of
class Ngp; in particular, ¢ \(p(é\Dfo) is totally disconnected. Thus ¢ admits
a topological extension (f)* to the whole sphere. But the relation D, € N¢ implies
that ¢* is conformal on C. The assertion now follows from [1, Theorem 6]. Accord-
ingly, we may apply [5, Theorem 7]. It follows, in particular, that D, is totally
disconnected for every nonconstant f€ BV (W). We conclude from Lemma 1 that
BV(W)YcMC(W).

In order to prove the necessity of the condition WeZ(NcnNsp) for surfaces
of finite genus, we need some auxiliary results.

Lemma 3. Let W be an open Riemann surface, let f§ be the ideal boundary of
W, and let fEAC(W). Then [*(B)=f*(Wup). Moreover, if fc AC(W) is noncon-
stant, then the set {zeélvf(z)=oo} is residual in f*().

Proof. Suppose that f€ AC(W) is nonconstant, and assume that there exists
a point p,€ W such that f(p,)§f*(B). Let d denote the mutual distance of { f(py)}
and f*(f). Choose then, for every p€f, an open neighborhood U, such that oU,,
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the relative boundary of U,, is compact and f*(U,)cD(f*(p),d/2)=
{zéC]|z—f*(p)]<d/2}. From the open covering {U,|p€f} of B pick out a finite
subcovering {le’ s Upk}. Let (V) be a standard exhaustion of W (in particular,
the components of W\ ¥, are noncompact). Since F= U'i‘=1 oU, is a compact
subset of W, there exists a positive integer n, such that Fu {po}cf V, for n=n,.
A moment’s thought then reveals that for every component C of WXV, there is
i€{l, ..., k} such that CcU,. Let Bi,..., B, be the components of oV, We
infer that each f(B,) is contained in some D(f*(p)),d/2), j=1,...,k. Thus the
winding number of f(B;) with respect to f(p,) is O for each i. We conclude from
the argument principle that p,4f(V,). This is a contradiction. Hence

FWcr*.
To prove the latter statement, let again (¥,) be an exhaustion of W, and denote
by F, the closed set f*(BAN\JS(W\V,), n=1,2,.... By continuity, f*(f)=

JSWN\Y,), so that F, is a nowhere dense subset of f*(f) for each n. But clearly
F*BNUr, F.c{zeClv (z2)=2). The assertion follows. []

Lemma 4. Let W be a compact Riemann surface, and let E be a closed totally
disconnected subset of W failing to be of class N_ in W. Then the class AC(W\E)
contains a nonconstant function.

Proof. We may assume that E contains no inessential points, i.e. for every
parametric disc (V, ¢) of W with VAE=#f and 0VnE=@ the set @ (VnE) fails
to be of class N¢. Let g denote the genus of W. Since E is totally disconnected, we
can find (cf. [13, p. 262]) planar regions Ui, ..., Uy ©W such that UnU,=0
if i#j, EE=UnNE#0 and oU,NE=0 for each i. We may further assume that
U, is simply connected and that there exists a nonanalytic continuous function
fit U;~C which is analytic on UNE,, i=1,...,2¢g+1.

Consider the harmonic function Ref; on U\E, Clearly,

f*d(Refi) =0

for every cyle y in UNGE;. Thus, by [11, Theorem 3], there exists a real harmonic
function »; on W\ E; such that Ref,—v, has a harmonic extension to U,. It is
readily seen that *dv; has a vanishing period along every dividing cycle in W\ E.
Let yi, k=1, ...,2g, be 2g nondividing canonical cycles of W\ZE, and consider
the system of equations

29+1

21 c,-(f*dv,.} =0 (k=1,...,29).
Tk

i=

Pick out a nontrivial solution (cy, ..., ¢2y11)#(0, ..., 0). Since the differential
xd (%! c;v;) has a vanishing period along every cycle in W\, there exists

an analytic function f on WN\E with Re f= 7" c.v,.

Ll =1
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We proceed to show that f admits a continuous extension over E. Fix
jedl, . 2g+1} and denote by u;: U;—~C the harmonic extension of Ref;—v;
over E Let u} denote a conjugate harmomc function of u; on U;, and let v} denote
a con_]ugate harmonlc function of v,|U;, i#j. Further denote by h; the analytic
function —c;(u;+iu))+ >, ; (v +w*) on U;. Then Re f—Reh;=c;(u; +v))=
Rec;f; on U '\ E;. Hence there exists a constant a; such that f=h;+c;f;+a;
on U\E;. We may now define

f*(p):hj(p)+cjfj(p)+aj for pcE;.

This representation permits us also to conclude that f is nonconstant. Indeed, let
j be chosen such that ¢;s0. Then c;f; is nonanalytic while /;+a; is analytic on
. Hence f cannot be constant. []
The following lemma can be regarded as a natural generalization of
[1, Theorem 6].

Lemma 5. Let W be a compact Riemann surface, and let E be a proper closed
subset of W such that W\E is connected. Then E is of class Np in W if and only if
every meromorphic function of bounded valence on W\E is the restriction to W\ E
of a rational function on W.

Proof. Suppose first that ECW is of class Np in W. Let fEBV(WN\E). It
follows from [5, Lemma 6] that f admits a meromorphic extension to W, ie. f
is the restriction of a rational function on W.

Suppose conversely that E fails to be of class Ny, in W. If the interior of E is
nonempty, we can find a nonconstant function fcM(W) such that FIWNE is
bounded. If g is a nonalgebraic univalent function on f(W\(E), then (gof)| W\E
is clearly nonrational and belongs to BV(W\E). Assume now that E is nowhere
dense in W and fails to be of class Ngz. By [6, Theorem 12] and [13, Theorem X. 3 C]
WNE is essentially extendable, i.e. there exist a compact Riemann surface w*
and a closed subset F of W* with nonempty interior such that W\(E is conformally
equivalent to W*\ F. Hence we can again find a nonconstant bounded function
in BV(W\E). However, for any fe M(W), fIW\E is unbounded, because f(E)
is nowhere dense in C.

There remains the case E€Ngy\Np in W. It follows from [8, Theorem 1]
and [12, Theorem 1. 8 E] that W\ E then admits conformally nonequivalent closed
extensions. Hence we can find a compact Riemann surface W*, a closed subset
F of W* and a conformal homeomorphism ¢: WN\E-~W*\F which, by [6,
Theorem 12], extends to a nonconformal homeomorphism ¢*: W-W?*. Let g
be a nonconstant function in M(W?*). We claim that f=go¢ does not admit
a meromorphic extension to W. Assume this is not the case, and denote by f*
the extended function. Then we have, by continuity, f*=goe*. Let B, denote
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the finite set of zeros of the derivative of g, and let p€ W\ ( f*)~! (g(Bg)). Choose
a neighborhood U, of p such that g~ is defined on f *(U,) (the branch of g1 is
chosen in such a way that g=*(f*(p))=¢*(p)). Thus we have ¢*(9)=(g of*)(q)
for ge U,. Consequently, ¢* is analytic on W\(f*)7(g(B,)) and, by the discret-
eness of (f*)71(g(B,)), all over W. This contradiction completes the proof. []

We return to the proof of Theorem 9. So let W be a Riemann surface of finite
genus. We may assume that W is a subregion of a compact Riemann surface W*.
Let E denote the set W*\ W. Suppose first that some component of E is nondegener-
ate. As in the proof of Lemma 5, we can find a bounded nonconstant function in
BV(W). But Lemma 3 implies that such a function cannot belong to the class
MC(W). Thus MC(W)=BV(W) in this case.

Now suppose that E is totally disconnected but fails to be of class Nz in W™,
By Lemma 4 there exists a nonconstant function f in AC(W), and by Lemma 3
SEBV(W). We have again MC(W)=BV(W).

Then suppose that EENCN\N,, in W* By Lemma 5, BV(W)N\M(W*)=0.
But clearly MC(W)=M(W™*). Hence MC(W)#BV(W).

There remains the case E€N_ NN, (then, of course, MC(W)=BV(W)=
M(W™)). Let f, be a nonconstant function in M(W*). It follows from [S, Lemma 5]
and Lemma 2 that f(E)EN.ANp=NcnNgg. Thus Dy \wE€NcNNsp, e
WeZD(NcnNgg). The proof is complete. []

Remark. In view of Theorem 2, one may ask how the class MD* (W) is related
to MC(W) in the case WED(N:nNsp). Of course MC(W)c MD*(W), but
we do not know whether the opposite inclusion also holds. However, under the
additional hypothesis on f¢ MD*(W) that {zEé [v(z)<e=} be of second category,
it can be shown that fe MC(W).

References

[1] AnrrFors, L., and A. BEURLING : Conformal invariants and function-theoretic null-sets. - Acta
Math. 83, 1950, 101—129.

[2] GARNETT, J.: Analytic capacity and measure. - Lecture Notes in Mathematics 297, Springer-
Verlag, Berlin—Heidelberg—New York, 1972.

[3] HEIns, M.: Riemann surfaces of infinite genus. - Ann. of Math. 55, 1952, 296—317.

[4] HEeins, M.: On certain meromorphic functions of bounded valence. - Rev. Roumaine Math.
Pures Appl. 2, 1957, 263—267.

[5] JArvi, P.: Removability theorems for meromorphic functions. - Ann. Acad. Sci. Fenn. Ser.
A I Math. Dissertationes 12, 1977, 1—33.

[6] JurcHEscU, M.: Modulus of a boundary component. - Pacific J. Math. 8, 1958, 791—809.

[71 MyrBerG, L.: Uber quasirationale Funktionen auf parabolischen Riemannschen Flichen. -
Ann. Acad. Sci. Fenn. Ser. A 1404, 1967, 1—33.

[8] O1kawa, K.: On the uniqueness of the prolongation of an open Riemann surface of finite
genus. - Proc. Amer. Math. Soc. 11, 1960, 785—787.



Meromorphic functions on certain Riemann surfaces with small boundary 315

[9] Ozawa, M.: Meromorphic functions on certain Riemann surfaces. - Ibid. 16, 1965, 747—751.

[10] RoypeN, H. L.: Riemann surfaces with the absolute AB-maximum principle. - Proceedings
of the Conference on Complex Analysis, Minneapolis, 1964, edited by A. Aeppli,
E. Calabi and H. Roéhrl, Springer-Verlag, Berlin—Heidelberg—New York, 1965,
172—175.

[11] RoypeN, H. L.: Function theory on compact Riemann surfaces. - J. Analyse Math. 18. 1967,
295—327.

[12] Sario, L., and M. Nakai1: Classification theory of Riemann surfaces. - Die Grundlehren der
mathematischen Wissenschaften 164, Springer-Verlag, Berlin—Heidelberg—New
York, 1970.

[13] Sario, L., and K. O1kAwaA: Capacity functions. - Die Grundlehren der mathematischen Wissen-
schaften 149, Springer-Verlag, Berlin—Heidelberg—New York, 1969.

University of Helsinki
Department of Mathematics
SF—00100 Helsinki 10
Finland

Received 20 September 1979
Revision received 23 January 1980



