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ON CERTAIN ATGEBRAS OF ANALYTIC
FUNCTIOI{S OI{ RIEMANN SURFACES

PENTTI .TÄNVT

L. Introduction

Let W be an open Riemann surface, and let B denote the Ker6(ärt6-Stoilow
ideal boundary of W. Denote by ACQfi the class of analytic functions on I/ which
have a finite limit at each element of B, and denote by MC(W) the class of mero-

morphic functions on }/ which have a flnite or infinite limit at each element of B.
Whenever f is a function of class AC(W) or MC(W), we let f'* denote the ex-

tension of / to the ideal boundary.
It is clear that AC(W) can be regarded as a uniformly closed subalgebra of

C(Wvfr), the Banach algebra of continuous complex-valued functions on. llvB.
Of course, it may happen that ACQA) reduces to the class of constants; this is

the case e.g. if some element of B admits realization as an isolated nondegenerate

continuum or if the number of boundary elements is countable. It is also possible

that AC(W) fails to separate the points of W (or Wv§); see the example in Sec-

tion 5. However, assuming that W is a Riemann surface of finite genus and satisfies

the reasonable condition

(x) MC(W) contains a function of bounded valence,

AC(W) turns out to be a uniform algebra (for the definition see e.g. 13, p.251),

provided B contains essential elements in the sense to be defined in Section 4. This
is the case to which we pay our attention in the present paper. In particular, we

wish to discuss the relation between homomorphisms of the algebras AC(W) and
analytic mappings of the Riemann surfaces W. The considerations rely on an ap-

propriate representation of the Riemann surfaces in question (Section 3), on a classi-

fication of boundary elements (Section 4) and, above all, on Arens' description of
the maximal ideal spaces of certain function algebras ([2]).
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2. Preliminaries

Let Ebe a proper closed subset of the Riemann sphere i:Cr1-1. Then E
is said to be of class N6 if, for every domain Gci with EcG, every function
G*C, continuous on G and analytic on G\,E, is actually analytic on G. The sub-
class of .l[" constituted by the totally disconnected members of N" is denoted by
NL.lt is known that closed sets in i of o-finite linear measure are of class N" and,
on the other hand, no set whose Hausdorfl dimension exceeds I is of class N6
([4, Chapter 3]).

Given any Riemann surface W, a closed totally disconnected subset E of Il
is said to be of class N! in Wif for every parametric disc(2, q) of W the compact
parts of E(EnI)ce are of class ff!. We shall need the following result from [5]
([5, Lemma 2]).

Riernann surface, and let f: W *e be a nonconstantLemma 1. Let W be a
analytic mopping.

(1) If Ec.e ,s of class
(2) If E is a compact set

Lemma 2. Let
W and let f€AC(W).
then the set

We shall also make essential use of the following three lemmas; the proofs
of Lemma 2 and Lemma 3 can be found in [5] and that of Lemma 4 inll2, p. 3361

or in [3, p. 50].

Ir{L, then f -L(E) is of class NL in W.

of class I'{; in W, then f (E) ,s of class NL.

W be an open Riemann surfoce, let P be the ideal boundary of
Then f. (P) -.f* (Wv §). Moreouer , if fe AC (W) is nonconstant,

{r€Clurk) - r<?r:,n(p; 
f): -},

where n(p; f) denotes the multiplicity of f at p, is residual in f* (p).

Lemma 3. Let W be a compact Riemann surface, and let E be a closed totally
disconnected subset of W failing to be of class N'" in W. Thm the class,4C(I4I\E)
contains a nonconstant function.

Lemma 4. Let E be a closed nowhere dense subset of a Riemann surface 14. Let
f: W*ö be a continuous light mappingsuchthat f is interior and locally sense-pte-
seruing on W\8. Suppose that f (E) contains no open set. Then f is interior on W.
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3. A representation theorem

Let W be an open Riemann surface of finite genus. It is well known Lhat W

can be taken as a subregion of a compact Riemann surface W".If W*\W is totally
disconnected, we can identify IZ*\TIzwith p, the ideal boundary of Il (cf . Lemma 3).

So in this case WvB can be realized as a Riemann surface. We will show that the

condition (x) of Section I guarantees this state of affairs.

Theorem 1. Let W be an open Riemann surface of finite genus which satisfies

the condition ('r). Then there exist o compact Riemann surface W+ and a closed totally
disconnected set EcW* such that W is conformally equiualent ro IZ+\.E.

Proof. Let f be a function of class MC(W) and of bounded valence, and let

/* denote the extension of f to Wvfi. Suppose that (V,)is a standard exhaustion

of W, and denote by .(, the closed set /*(B)\/(W\7,). n:1,2, '.'. By contin-

uity, Fn is a nowhere dense subset of i for each n. Since l' has bounded valence,

f.(fr) is contained in UL, .F,. We conclude by Baire's theorem that J'*(§) is now-

here dense in i.
By [8, Theorem 3], there exist a compact Riemann surface S, a closed totally

disconnected set FcS and a sense-preserving homeomorphism g: lI/-S\f,.
It is readily seen that E admits a homeomorphic extension E*: Wv§-§. Con-

sider the continuous mapping

C:f*oE*-riS*i.

It follows from the total disconnectedness of f'that g is light. Moreover, clS\r'
is interior and sense-preserving, and g(F):f*ff) is nowhere dense, so that Lemma 4

applies. We infer that g is interior on S.

By Stoilow's theorem ([], p. 121]), there exist a compact Riemann surfäce

W*, & sense-preserving homeomorphism r!: S*W*, and an analytic mapping

h: W**C such that S:h"l/. Let E denote the totally disconnected set r/(,F).

We claim that r! oq is a conformal homeomorphism W*W"\E. Denote by

B, the discrete set of zeros of the derivative of f. Let p( l/\Br and select a neigh-

borhood Ll, of p such that flUo is injective. Then we have

<plu p : (e-,V (u,)) o (f lu p),

where the branch of g-r is chosen in such a way that S-'(f (d):g(p). Similarly,

,l,lq(U) : (h-tlf (Ue)).(glE(%)),

where the branch of h-L is chosen to satisfy h-'(S@@)):r/(9(p)). Thus

\lt " rillU o : (h-|lf (U p)) o (f lU ).
We infer thal rir o E is analytic on l/\Br. Moreover, continuity and the discreteness

of ,8, imply that { oE is analytic all over W. n
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We will emphasize a certain special case in the following

Corollary. Let W be an open Riemann surfoce of finite genus, and let E be

a totally disconnected subset of ö. Suppot, that f: l.tz*i\f is a proper analytic
mapping. Then there exist a compqct Riemann surfoce w* qnd a closed totally dis-
connected set FcW* such that .W 

is conformallv equiualent to W*\F.

Proof. Since / is proper, Cl(f; B), the cluster set of / attached to the ideal
boundary B, is contained in -8. By the total disconnectedness of E, f admits a con-
tinuous extension /* to wvB such that f*(B)cr. It is readily seen that v, is
finite and constant on i\f. The assertion follows. tr

Remark. Suppose that W is a Riemann surface which satisfies the hypotheses
of corollary, and let w* be a compact Riemann surface such that w can be identi-
fied with a subregion of W*. Then, in general, the set F:W*\W need not be
totallydisconnected. Infact, it follows from [6, Theorem l] and [10, Theorem x. 3 c]
that all realizations of w*\w are totally disconnected if and only if E(Ns, (for
the definition and basic properties of the class N5s, see [l]).

4. Essential boundary elements

Again let W be a Riemann surface of finite genus satisfying the condition
(rx), and let ll'* and E be as in Theorem l. rt is clear that the algebra AC(w) can
be identified with AC(W*\Z, lr*), the Banach algebra of complex-valued func-
tions, defined and continuous on W+ and analytic on IZ*\,E. Suppose that AC(W)
is nontrivial ,i.e. AC(w) contains a nonconstant function. Then it follows from
[2, Theorem 5.4] that AC(W) separates the points of W (even those of Wufr).
Actually, by the main result of [7], one can find, whatever the genus of W may be,
four functiorc in AC(w) which separate the points of I/. consequently, AC(w)
is a uniform algebra.

Assume now that AC(w) is nontrivial. Denote by \AC(w) the shilov boundary
of AC(W) (for the definition see [3, p. 10 and 25]). k is clear that LAC(W)cB.
We say that a boundary element p(§ is remauable if p€f\ålc(.W\ and p€§
is said to be essential if p(\AC(W). The following theorem provides several useful
characterizations of the removability of boundary elements.

Theorem 2. Let w be a Riemann surl'ace of finite genus which satisfies the
condition (x'), and suppose that AC(w) is nontritial. Let p(§. Then the following
conditions are equiualent:

(l) p is remouable.
(2) There is a neighborhood UrcWv B of p wfth AUe in W such that f* (BaUo)

is of class Ns for some nonconstant feMC(W).
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(3) Let W* and E be as in Theorem l, and let E denote a coffirmal mapping

of W onto ly*\E with a homeomorphic extension E*: WvB-\ry*. Then thete is

a nei ghbor hood u rc wv fi of p with 0(1, in w such that E* (p o u r) is of class N'" in w* .

(4) There is a neighborhood (lrcwvB of p with 0u, in w such that f*(Baur)
is nowhere dense in C for euery fe ,lC1W1.

prooJ'. Q)+(3): Suppose that p6€B\åAC(W). Since »AC(W) is closed, there

exists a neighborhood (IrocWvB of posuch that Uo,a0AC(14):0 and \UoocW'

Assume that E*(Bnur.) fails to be of class I/i in w*. Then, by Lemma 3, there is

a nonconstant functiöä J' in AC(W*\E*(fnUrJ). nV the maximum principle,

lf @)l'max {lf*(q)lfuew-y for everv P€l{*".r*18 Ö%,)'
Hence

for every p€(Izuf)\(§nur). This contradicts the relation ur"n0AC(LV):0.
Thus E*(BnUro) is of class N'" in W*-

(3)+(1): l*t 7<,lC1W). Since E"(§^U) is of class N! in W*, f o<p*-t i"

analytic on q*(Ur). Therefore

m ax t r ff . " 
*: o','.' J',,t' J[): ; ; H 

",J 

r.,,,,',',',) 5 
\ q * ( %) ]'

Consequently, p e f",0 AC (W).
(3)+(2): Suppose that f(MC(W) is nonconstant. Because f*(froUr):

(f* "q*-')(f*1Baur)), the assertion follows immediately from Lemma 1' So we

have even f*(BoU)€N's.
(2)+(3): Let feMC(W), ard assume that f*(BnUr):(f* oq*-t)(E*(BnUr))

is of class Nc, for some neighborhood UrcIlvB of p with 0U, in W. Then, by

Lemma 4, (J'* o1p'o-r)lE*(Ur) is interior. By Stoilow's theorem, (f* "E*-')lE*(Uo)
is a local homeomorphism off a discrete set in E*(Un). We inf'er that f*(BnUo)
is actually of class nfi. We can now readilysee,appealing to the local invertibility

of f*oq*-t,that f*aE*-L is analytic onE*((Ir). Hence, by Lemma l, rp*(BoUr)

is of class N'" irt W*.
(3)e(a): Suppose that E*(paUr) is of class Ni in W*, and let f<AC(W)'

Since /* oE*-r is analytic on q*(Urj, f*(§aUr):(f* "rp*-')(rp*1BnUo)) 
is totally

disconnected. Suppose conversely that E*()aUo) fails to be of class Ni in W*.

By Lemma 3 there exists a nonconstant function g in AC(W*\E*(0nUr))' nV

Lemma 2 g*(q*(BoUr)) contains interior points. Since /:g* o g belongs to AC(W),

the proof is herewith comPlete. n

Remark. It follows from Lemma 3 that AC(W) is nontrivial if and only if
,E fails to be of class Ni in W*.

It(,p.(p))l - ma" tl/. (q*(q))l lr. w, §\

i.e.,
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5. Main results

Let W and l4'be open Riemann surfaces with ideal boundaries B and p',
respectively. suppose that E is an analytic mapping w-w' which admits a con-
tinuous extension E*: WwB-W'vfr'. Then, clearly, f*foE is an algebra homo-
morphism of AC(w') into AC(w), and the homomorphism is injective whenever
g is nonconstant. Conversely we have

Theorem 3. Let W and W'be open Rientann surfaces with ideal boundaries

B and P', respectit:ely. suppose that w'is offinite genus and satisfies the conditiott
(x); suppose further that B' contains no remot:able element. Let T be an algebra
homomorphism of AC(w') into AC(w) such that the dimension of its range exceeds l.
Then there exists a unique nonconstant anall'tic mapping rl, of w into w', admitting
q continuous extension rlr*: Wvp*W'v§', such that TJ':f o{t for euery.f(AC(W').
In particular, in case that W, too, fuffils the conditions imposed before on W,,W
and w' are conformally eqriuo\rnt if and only i.f AC (w) and AC(w') are algebraicalll.
isomorphic.

Proof. Denote by w'* or .E' the compact Riemann surface or the closed totally
disconnected subset of w'*, respectively, described in Theorem 1. similarly, let E'
denote a conformal mapping of w' onto w'*\E'with a homeomorphic extension
E'*: W'vB'*l/[/'*. As in Section 4, we may identify AC(W') with
AC(W',*\E" W',*).

Let p€WvB. Consider the mapping

g * g* (p:), g€,4C (W):

it is an algebra homomorphism of AC(w) onto c. Hence p o T is an algebra homo-
morphism of AC(W'*\E',W'*) onto C. By [2, Theorem 5.3] there is a point
o*(p)(W'* such that

p o T : f - f(o. (p)), f( AC(LV,-\E,,W,*).

Thus we have established a mapping o* of I4twB irrto W'* such that Tf:foo"
for each f(AC(W'*\E',W'*).Since C+T(AC(W')), o* must be nonconstant.

To prove the continuity of o*, assume that p,,*p on Wvfi b:ul o*(p,)-qS
ot(p) (note that both Wvfi and W'* are second-countable). Since AC(W'*\E', W'*)
separates the points of W'* ([2, Theorem 5.4]), we can find a function / in
AC(W'*\E',W'*) such that f (o.(D):A and f (q):1. Then Tf (p)-Tf (p):0
while /(o+(l))-f 1q1:1. This contradicts the relation Tf:foo*.

Next we show that o:o*lW is analytic. So let pbe a point of W. Since p'
does not contain removable elements, UoE':0 or tlaE' fails to be of class
N', in W'* for each open set (JcW'* with 0UaE':0 (Theorem 2). Now pick

p:
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out a point p'eE',p'lo(p), and choose a neighborhood Ur, of p' such that
o(p)4U0, and a(Ir,aE':o. By Lemma 3, AC(W'*\(E'nU\,),W'*) corfiains
a nonconstant function. Accordingly, we have a nonconstant function / in
AC(W""\E',W'*) which is analytic in a neighborhood of o(p). It is elementary

that we can find a neighborhood (,6y of o(p) such that / maps U"rrl\{o(p)}
smoothly and properly on f((I.1rr)\{,f("(p))}.gv continuity, there is a neigh-

borhood UoclV of p such that o(Ur)cU,1p;. Since AlUo is analytic, the asser-

tion now follows readily from the relation TflUo:f o(olU).
In order to prove the inclusion o(W)cW'*\E', we assume this is not the

case, i.e. that o(p)(E'for some p(tV. Since o is analytic, we can find a neighbor-
hood UocW of p such that o maps t/, properly on o(Ur) and \o(Ur)aE':0.
By Theorem 2, o(U)aE' fails to be of class Ni. So there is a nonconstant function

.f in Ac(w'*\(o(ur)nE'),w'*) (Lemma 3), and, by Lemma 2, f (o(U)aE')
has interior points. But o-|(E')aUo is compact and totally disconnected, and

the same is true of Tf (o-r(E')nU). Thus we are led to a contradiction.
Altogether, rlr : E'-'o o is a nonconstant analytic mapping W * W' , admitting

a continuous extension {*-Et'(-too*: WvB-W'v§', such that Tf:f orlt for
every fCAC(W'). The uniqueness of ry' follows immediately from the fact that
AC(W') separates the points of W'.

Finally, suppose that also I4z satisfies the conditions imposed in the theorem
on W'. Let Ibe an algebra isomorphism of AC(W') onto AC(W). Let r/ andrlt'
be the analytic mappings associated with f and ?"-i, respectively. Then ,lr'orlt

and rlr orlt'are analytic mappings of W and W', respectively, onto themselves which
induce the identity homomorphisms of AC(W) and AC(W'), respectively. By

uniqueness, r!'otlt ar,d ry'ory''must be the ider,tity mappings ot W and W'.Thus
rL':*-', and $ is a conformal homeomorphism of W onto W'. The proof is

complete. n

Corollary. The homomorphism T of the preceding theorem is iniectiue.

.Remarks. (1) The above proof follows closely that of [9, Theorem l].
(2) As is also obvious from the proof, it follows from Theorem I and [2, The-

orem 5.31 that the maximal ideal space of AC(W') is identical with W'vB' in case

AC(W') is nontrivial.
(3) In case the range of 7' is one-dimensional, i.e. I is a homomorphism of

AC(W') onto C, 7 is again, true, induced by a (point-)mapping r!: Wv[]*,W'v§'
([2, Theorem 5.3]), but it may of course happen Lhat r!(W)(§'

(4) It is clear that in the above characterization of conformal equivalence

we cannot dispense with the irremovability of'boundary elements. Indeed, let W
be a Riemann surface satisfying the hypotheses of Theorem 3, and lel p(14. Then
AC(W\{p}) is identical with AC(W), while ,4/\{p} fails, in general, to be con-

formally equivalent to 72.
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Example. We will construct a Myrberg-type surface in order to illustrate
the situation in the case of inflnite genus. Let E be a compact totally disconnected

set in the unit disc {z{llzl= l} failing to be of class trfli , and let W denote a two-

sheeted covering of C\E branched over the points tt, n:1,2,.... Denote by E
the projection of W onto C\,E. It can be shown, by a well-known argument, that
each function f in AC(W) admits a representation f:g oE, where g is an analytic
function on C\8. Moreover, g is readily seen to be of class ,4C(C\E). Conversely,

every function ot W of the form goq, g€AC(C\E), belongs to AC(l4t), because

E admits a continuous extension E*: WvB-f . Accordingly, AC(W) fails to
separate the points of Il', and AC(W) is isomorphic to AC(C\,E). Note that
,4C(C\E) is nontrivial by Lemma 3.

6. On the field property of MC(W)

In this section we give some characterizations of the case that the class MC(W)
constitutes a field.

Theorem 4. Let W be an open Riemann surfoce of finite genus which satisfies

the condition (x). Then the following stqtements are equiualent:
(t) MC(W) is a fi.eld.
(2) AC(W):C.
(3) MC(W) is contqined in BY(W), the class of constants and of meromorphic

functions of bounded ualence on W.

(4) f.(P)eNL for some nonconstqnt function feuc1w1.
(5) Suppose W* and E are as in Theorem l. Then E is of class N'" in W*.

Moreouer, wheneuer MC(14/) is afield, it can be identified -*ith M(W*), the field
of rational functions on W*.

Proof. (1)+(5):By Lemma 3, it suffices to prove that AC(W*\E, I,y*) reduces

to the class of constants. So let fe,lC1W*t.8,W*) be arbitrary, and pick out
a nonconstant function g in M(W*). Then g\W*\E(MC(14/*\E), because .E

is totally disconnected.Let FcW* denole the discrete set ,Brug-l(-) (.B, again

denotes the set of branch points of g). Fix po(ä\P and select a neighborhood U
of po such that UaF:O,\UaE:O and glU is injective. Thus we may regard

h:glU as a parametric mapping at po. Lel p, p'(U, and denote z:h(p), z' :h(p').
Since

f (h-, (r)) -f (h-'tr'))

lim. !ll),-f-?). exists (finite or infinite),
p-*p' s(il - g@')

and, by assumption,
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foh-r has a complex derivative (finite or infinite) at every point of å(U). We con-

clude by the generalized Cauchy-Goursat theorem (see [3, p. 67]) that f is analytic
on U. By the discreteness of 4 / is analytic all over W+ and hence constant. The

implication follows.
(5)<+(a): By Lemma l, f (E) is of class Ni whenever.Eis of class Ni in V[/*

afi f(M(W*). Hence we have ()+(a). The converse implication is proved in
the same way as the implication (2)+(3) in Theorem 2.

(5)=(3): This follows immediately from the fact that MC(W) can be identi-
fied, via the mapping g* (see Theorem 2), with M(W*).

(3)+(2): Suppose that AC(W) contains a nonconstant function f.By Lemma2,

f cannot be in BV(W).
(2)=+(l): By the remark following Theorem 2, AC(W)-C only if EcW*

is of class N!. Thus MCU\ can be identifled with M(W*), the field of rational
functions or W*. tr

Remark. The implications (4)=+(l), (4)+(2) and (4)-(3) hold for arbitrary
Riemann surfaces as was shown in [5, Theorem 6].

Corollary. Let W be an open Riemann surface of finite genus. Suppose thqt
MC(W) constitutes a Jield containing a nonconstant ftutction. Then either

(a) euery nonconstant function in MC(l|t) ltas bounded ualent:e, or
(b) no function in MC(W) has bounded ualence.

Remark. We do not know whether the latter alternative can really occur.
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