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1. Introduction

Let W be an open Riemann surface, and let § denote the Kerékjarté—Stoilow
ideal boundary of W. Denote by AC(W) the class of analytic functions on W which
have a finite limit at each element of f#, and denote by MC(W) the class of mero-
morphic functions on W which have a finite or infinite limit at each element of .
Whenever f is a function of class AC(W) or MC(W), we let f* denote the ex-
tension of f to the ideal boundary.

It is clear that AC(W) can be regarded as a uniformly closed subalgebra of
C(Wup), the Banach algebra of continuous complex-valued functions on Wup.
Of course, it may happen that AC(W) reduces to the class of constants; this is
the case e.g. if some element of f admits realization as an isolated nondegenerate
continuum or if the number of boundary elements is countable. It is also possible
that AC(W) fails to separate the points of W (or Wup); see the example in Sec-
tion 5. However, assuming that W is a Riemann surface of finite genus and satisfies
the reasonable condition

(%) MCW) contains a function of bounded valence,

AC(W) turns out to be a uniform algebra (for the definition see e.g. [3, p. 25]),
provided f contains essential elements in the sense to be defined in Section 4. This
is the case to which we pay our attention in the present paper. In particular, we
wish to discuss the relation between homomorphisms of the algebras AC(W) and
analytic mappings of the Riemann surfaces W. The considerations rely on an ap-
propriate representation of the Riemann surfaces in question (Section 3), on a classi-
fication of boundary elements (Section 4) and, above all, on Arens’ description of
the maximal ideal spaces of certain function algebras ([2]).
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2. Preliminaries

Let E be a proper closed subset of the Riemann sphere C=Cu {ec}. Then E
is said to be of class N if, for every domain GcC with ECG, every function
G~C, continuous on G and analytic on G\ E, is actually analytic on G. The sub-
class of N constituted by the totally disconnected members of N, is denoted by
N{. Tt is known that closed sets in € of o-finite linear measure are of class N and,
on the other hand, no set whose Hausdorff dimension exceeds 1 is of class N
([4, Chapter 3]).

Given any Riemann surface W, a closed totally disconnected subset E of W
is said to be of class Nz in W if for every parametric disc (¥, ¢) of W the compact
parts of @(EnV)cC are of class N{. We shall need the following result from [5]
([5, Lemma 2J).

Lemma 1. Let W be a Riemann surface, and let f: W-C be a nonconstant
analytic mapping.

(1) If EcC is of class N¢, then f~Y(E) is of class N in W.

(2) If E is a compact set of class N in W, then f(E) is of class N¢.

We shall also make essential use of the following three lemmas; the proofs
of Lemma 2 and Lemma 3 can be found in [5] and that of Lemma 4 in [12, p. 336]
or in [13, p. 50].

Lemma 2. Let W be an open Riemann surface, let 8 be the ideal boundary of
W and let fc AC(W). Then f*(B)=f*(Wup). Moreover, if f¢ AC(W) is nonconstant,
then the set
{z€Clvs(2) =f(2 n(p; f) ==},

p)=z

where n(p; f) denotes the multiplicity of f at p, is residual in f*(P).

Lemma 3. Let W be a compact Riemann surface, and let E be a closed totally
disconnected subset of W failing to be of class N; in W. Then the class AC(W\E)
contains a nonconstant function.

Lemma 4. Let E be a closed nowhere dense subset of a Riemann surface W. Let
J: W—C be a continuous light mapping such that f is interior and locally sense-pre-
serving on W\ E. Suppose that f(E) contains no open set. Then f is interior on W.
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3. A representation theorem

Let W be an open Riemann surface of finite genus. It is well known that W
can be taken as a subregion of a compact Riemann surface W*. If W*\ W is totally
disconnected, we can identify W*\ W with §, the ideal boundary of W (cf. Lemma 3).
So in this case Wup can be realized as a Riemann surface. We will show that the
condition () of Section | guarantees this state of affairs.

Theorem 1. Let W be an open Riemann surface of finite genus which satisfies
the condition (). Then there exist a compact Riemann surface W* and a closed totally
disconnected set EC W* such that W is conformally equivalent to W*\ E.

Proof. Let f be a function of class MC (W) and of bounded valence, and let
f* denote the extension of f to Wuf. Suppose that (V,) is a standard exhaustion
of W, and denote by F, the closed set f* (BN /(W V,), n=1,2,.... By contin-
uity, F, is a nowhere dense subset of C for each n. Since / has bounded valence,
f*(B) is contained in | J_, F,. We conclude by Baire’s theorem that f*(f) is now-
here dense in C.

By [8, Theorem 3], there exist a compact Riemann surface S, a closed totally
disconnected set Fc S and a sense-preserving homeomorphism ¢: W—~S\F.
It is readily seen that ¢ admits a homeomorphic extension ¢*: Wup—S. Con-
sider the continuous mapping

g=f*op*1: S—~C.

It follows from the total disconnectedness of F that g is light. Moreover, g|S\F
is interior and sense-preserving, and g(F)=f*(f) is nowhere dense, so that Lemma 4
applies. We infer that g is interior on S.

By Stoilow’s theorem ([11, p. 121]), there exist a compact Riemann surface
W*, a sense-preserving homeomorphism y: S—W"*, and an analytic mapping
h: W*~C such that g=hoy. Let E denote the totally disconnected set  (F).
We claim that Wy o¢ is a conformal homeomorphism W—~W*\E. Denote by
B, the discrete set of zeros of the derivative of f. Let pe W\ B, and select a neigh-
borhood U, of p such that f|U, is injective. Then we have

olU, = (g7 (U)o (fIU)),
where the branch of g~ is chosen in such a way that g71(f(p))=¢(p). Similarly,
YleWU,) = (hf(U,) o(gle U,)),
where the branch of 471 is chosen to satisfy h~'(g(¢(p))=V(¢(p)). Thus
WoplU, = (h'fU,)) o (fIU,).

We infer that y o ¢ is analytic on W\ B,. Moreover, continuity and the discreteness
of B, imply that y o is analytic all over W. [
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We will emphasize a certain special case in the following

Corollary. Let W be an open Riemann surface of finite genus, and let E be
a totally disconnected subset of C. Suppose that I W—»CA\E is a proper analytic
mapping. Then there exist a compact Riemann surface W* and a closed totally dis-
connected set FCW™* such that W is conformally equivalent to W*\ F.

Proof. Since f is proper, CI(f; B), the cluster set of f attached to the ideal
boundary B, is contained in E. By the total disconnectedness of E, f admits a con-
tinuous extension f* to WuUp such that f*(B)CE. It is readily seen that vy is
finite and constant on (:’\E. The assertion follows. [J

Remark. Suppose that W is a Riemann surface which satisfies the hypotheses
of Corollary, and let W* be a compact Riemann surface such that ¥ can be identi-
fied with a subregion of W™*. Then, in general, the set F= W*\ W need not be
totally disconnected. In fact, it follows from [6, Theorem 1] and [10, Theorem X. 3 C]
that all realizations of W*\ W are totally disconnected if and only if E€Ng, (for
the definition and basic properties of the class Ngg, see [1]).

4. Essential boundary elements

Again let W be a Riemann surface of finite genus satisfying the condition
(%), and let W* and E be as in Theorem 1. It is clear that the algebra AC(W) can
be identified with AC(W*\ E, W*), the Banach algebra of complex-valued func-
tions, defined and continuous on W* and analytic on W*\ E. Suppose that AC(W)
is nontrivial, i.e. AC(W) contains a nonconstant function. Then it follows from
[2, Theorem 5.4] that AC(W) separates the points of W (even those of Wup).
Actually, by the main result of [7], one can find, whatever the genus of W may be.
four functions in AC(W) which separate the points of W. Consequently, AC(W)
is a uniform algebra.

Assume now that 4C (W) is nontrivial. Denote by 94 C (W) the Shilov boundary
of AC(W) (for the definition see [3, p. 10 and 25]). It is clear that JAC(W)cp.
We say that a boundary element p€f is removable if pc fNJAC(W), and pep
is said to be essential if pcdAC(W). The following theorem provides several useful
characterizations of the removability of boundary elements.

Theorem 2. Let W be a Riemann surface of finite genus which satisfies the
condition (), and suppose that AC(W) is nontrivial. Let pep. Then the following
conditions are equivalent:

(1) p is removable.

(2) There is a neighborhood U, WUB of p with 0U, in W such that f*(f U,
is of class N¢ for some nonconstant fe MC(W).
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(3) Let W* and E be as in Theorem 1, and let (p denote a conformal mapping
of W onto W*\E with a homeomorphic extension o*: WuB—~W*. Then there is
aneighborhood U,C WU of p withoU, in W such that ¢ *(BnU,) is of class N¢ in W*.

(4) There is a neighborhood U,C Wuﬁ of p with OU,, in W such that f*(BnU,)
is nowhere dense in C for every fEAC(W)

Proof. (1)=(3): Suppose that p,€ f\IAC(W). Since 0AC(W) is closed, there
exists a neighborhood U, cWUp of p, such that U, ndAC(W)=0 and ou,,cw.
Assume that ¢*(fnU,) falls to be of class N in W* Then, by Lemma 3, there is
a nonconstant functlon f in AC(W*™\o*(fnU,)). By the maximum principle,

If (D) = max {|f*(q)l|geW*} for every peW™\o"(BnU,).
Hence

£(o ()] = max{|f*(¢*(@))]|acW v B}

for every pE(WUﬁ)\(ﬁmUPO). This contradicts the relation UponBAC(W)zﬂ.
Thus ¢*(BnU, ) is of class Nz in W,

(3)=(1): Let feAC(W). Since ¢p*(BnU,) is of class N¢ in W*, fop*lis
analytic on ¢*(U,). Therefore

‘ max {|(f* o ¢* )(g)l] geW *} = max {|(f* 0 0" (@)l | 4 EN0"(U))};
ie.,

max {|f*(q)|| geW v B} = max {|f*(9)|| ¢ B\U,}

Consequently, p€fN\IAC(W).

(3)=(2): Suppose that fEMC(W) is nonconstant. Because [FBnU,)=
(f*oe* M (e*(fn U,)), the assertion follows immediately from Lemma 1. So we
have even f*(BnU,)EN(.

(2)=(3): Let feMC(W), and assume that f*(BnU,)=(f" op* ) (p*(BnU,))
is of class N, for some neighborhood U,cWuf of p with dU, in W. Then, by
Lemma 4, (f* 0 @* 1) |¢*(U,) is interior. By Stoilow’s theorem, (ffo@* Hle*(U,)
is a local homeomorphism off a discrete set in ¢*(U,). We infer that Bl
is actually of class Ni.. We can now readily see, appealing to the local invertibility
of f*o@*~1, that f*o@* 1 is analytic on ¢*(U,). Hence, by Lemma I, " (prU,)
is of class Ng in W*.

(3)<(4): Suppose that ¢*(fnU,) is of class N in W7, and let f€AC(W).
Since f*o¢@* ! is analytic on ¢*(U,), f*(BnU,)=(f" 0@ N (*(BnU,)) is totally
disconnected. Suppose conversely that ¢*(BnU,) fails to be of class N¢ in W™
By Lemma 3 there exists a nonconstant function g in AC(W™\o"(BnU, )) By
Lemma 2 g*(¢* (BN U,)) contains interior points. Since f= =g* o belongs to AC(W),
the proof is herewith complete. [

Remark. It follows from Lemma 3 that AC(W) is nontrivial if and only if
E fails to be of class N in W*.
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5. Main results

Let W and W’ be open Riemann surfaces with ideal boundaries f and f’,
respectively. Suppose that ¢ is an analytic mapping W— W’ which admits a con-
tinuous extension ¢*: Wuf—~W’Up’. Then, clearly, f>foe is an algebra homo-
morphism of AC(W’) into AC(W), and the homomorphism is injective whenever
¢ is nonconstant. Conversely we have

Theorem 3. Let W and W’ be open Riemann surfaces with ideal boundaries
B and [’, respectively. Suppose that W' is of finite genus and satisfies the condition
(%) suppose further that B’ contains no removable element. Let T be an algebra
homomorphism of AC(W') into AC(W) such that the dimension of its range exceeds 1.
Then there exists a unique nonconstant analytic mapping \ of W into W', admitting
a continuous extension \y*: WOB—~W'Uf’, such that Tf=foy for every fe AC(W’).
In particular, in case that W, too, fulfils the conditions imposed before on W', W
and W’ are conformally equivalent if and only if AC(W) and AC(W’) are algebraically
isomorphic.

Proof. Denote by W’* or E’ the compact Riemann surface or the closed totally
disconnected subset of W'*, respectively, described in Theorem 1. Similarly, let ¢’
denote a conformal mapping of W’ onto W’*\ E’ with a homeomorphic extension
o WUB W™ As in Section 4, we may identify AC(W’) with
AC(W™N\E’, W'*).

Let pc Wuf. Consider the mapping

p:g—g"(p), gcACW):

it is an algebra homomorphism of AC(W) onto C. Hence pc T is an algebra homo-
morphism of AC(W’*\E’, W'*) onto C. By [2, Theorem 5.3] there is a point
g*(p)€ W' such that

poT=f—f(c"(p), fCACHH \E,W").

Thus we have established a mapping ¢ of WU into W’* such that Tf=foo"
for each f€AC(W’'*\E', W™). Since C T(AC(W’)), ¢* must be nonconstant.

To prove the continuity of ¢*, assume that p,—~p on WuUB but ¢*(p,)—qg#=
a”(p) (note that both WU and W' are second-countable). Since AC(W "\ E’, W'*)
separates the points of W’ ([2, Theorem 5.4]), we can find a function f in
AC(W'*\E’, W) such that f(¢*(p))=0 and f(g)=1. Then Tf(p,)—Tf(p)=0
while f(¢*(p,))—~f(¢)=1. This contradicts the relation Tf=fco".

Next we show that g=¢*| W is analytic. So let p be a point of W. Since f’
does not contain removable elements, UnE’'=0 or UnE’ fails to be of class
N¢ in W’* for each open set U W’* with QUNE’=0 (Theorem 2). Now pick
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out a point p’€E’, p’#0o(p), and choose a neighborhood U, of p” such that
o(p)¢U, and OU,nE’=0. By Lemma 3, AC(W"\(E'nU,), W'*) contains
a nonconstant function. Accordingly, we have a nonconstant function f in
AC(W'™E’, W'*) which is analytic in a neighborhood of g(p). It is elementary
that we can find a neighborhood U, ,, of o(p) such that f maps U, \{a(p)}
smoothly and properly on f(U,,)\{f (a(p))}. By continuity, there is a neigh-
borhood U, W of p such that ¢(U,)C U, . Since Tf| U, is analytic, the asser-
tion now follows readily from the relation Tf|U,=fo(c|U)).

In order to prove the inclusion o(W)c W'\ E’, we assume this is not the
case, i.e. that o(p)€ E’ for some p€W. Since ¢ is analytic, we can find a neighbos-
hood U,cW of p such that ¢ maps U, properly on o(U,) and do(U,)NE"=0.
By Theorem 2, o(U,)NE’ fails to be of class N¢. So there is a nonconstant function
fin AC(W*\(¢(U,)NE’), W’*) (Lemma 3), and, by Lemma 2, f(a(U,)NE")
has interior points. But ¢ *(E’)nU, is compact and totally disconnected, and
the same is true of Tf (a'l(E’)nUp). Thus we are led to a centradiction.

Altogether, y=¢ oo isa nonconstant analytic mapping W—W’, admitting
a continuous extension Y =¢*log*: WUB—-W’'uf’. such that Tf=foy for
every f€AC(W’). The uniqueness of y follows immediately from the fact that
AC(W’) separates the points of W".

Finally, suppose that also W satisfies the conditions imposed in the theorem
on W’. Let T be an algebra isomorphism of 4C(W’) onto AC(W). Let  and y’
be the analytic mappings associated with T and T !, respectively. Then " oy
and Y oy’ are analytic mappings of W and W, respectively, onto themselves which
induce the identity homomorphisms of AC(W) and AC(W’), respectively. By
uniqueness, ¥ oy and oy’ must be the identity mappings on W and W’. Thus
Y =y~1 and ¢ is a conformal homeomorphism of W onto W’. The proof is
complete. []

Corollary. The homomorphism T of the preceding theorem is injective.

-Remarks. (1) The above proof follows closely that of [9, Theorem 1].

(2) As is also obvious from the proof, it follows from Theorem 1 and [2, The-
orem 5.3] that the maximal ideal space of AC(W") is identical with W'Up’ in case
AC(W’) is nontrivial.

(3) In case the range of 7 is one-dimensional, i.e. T is a homomorphism of
AC(W’) onto C, T is again, true, induced by a (point-)mapping : Wupf-—-W’'uf’
([2, Theorem 5.3]), but it may of course happen that  (W)<p’.

(4) It is clear that in the above characterization of conformal equivalence
we cannot dispense with the irremovability of boundary elements. Indeed, let W
be a Riemann surface satisfying the hypotheses of Theorem 3, and let p€ W. Then
AC(WNA{p} is identical with AC(W), while W\ {p} fails, in general, to be con-
formally equivalent to W.
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Example. We will construct a Myrberg-type surface in order to illustrate
the situation in the case of infinite genus. Let E be a compact totally disconnected
set in the unit disc {zECI |z]<1} failing to be of class N/, and let W denote a two-
sheeted covering of C\ E branched over the points n, n=1,2,.... Denote by ¢
the projection of W onto C\ E. It can be shown, by a well-known argument, that
each function f in AC(W) admits a representation f=g o, where g is an analytic
function on C\ E. Moreover, g is readily seen to be of class AC(C\ E). Conversely,
every function on W of the form gog, g€ AC(C\E), belongs to AC(W), because
¢ admits a continuous extension ¢@*: Wuﬁ—»CA‘. Accordingly, AC(W) fails to
separate the points of W, and AC(W) is isomorphic to AC(C\ E). Note that
AC(C\E) is nontrivial by Lemma 3.

6. On the field property of MC(W)

In this section we give some characterizations of the case that the class MC(W)
constitutes a field.

Theorem 4. Let W be an open Riemann surface of finite genus which satisfies
the condition (*). Then the following statements are equivalent:

(1) MC(W) is a field.

(2) AC(W)=C.

(3) MC(W) is contained in BV (W), the class of constants and of meromorphic

functions of bounded valence on W.

4) f*(B)EN for some nonconstant function fe MC(W).

(5) Suppose W* and E are as in Theorem 1. Then E is of class Ng in W*.
Moreover, whenever MC(W) is a field, it can be identified with M(W™), the field
of rational functions on W*.

Proof. (1)=(5): By Lemma 3, it suffices to prove that AC(W ™\ E, W*) reduces
to the class of constants. So let f€ AC(W*\E, W*) be arbitrary, and pick out
a nonconstant function g in M(W?*). Then g|W*\E€MC(W*\E), because E
is totally disconnected. Let FC W™ denote the discrete set B,ug~'() (B, again
denotes the set of branch points of g). Fix p,¢ ENF and select a neighborhood U
of p, such that UnF=0,0UnE=0 and g|U is injective. Thus we may regard
h=g|U as a parametric mapping at p,. Let p, p’c¢ U, and denote z=h(p), z'=h(p").
Since

S (2)=f(h~1(2) _ [ —f ()
z—z' g(p)—g(p)

and, by assumption,
lim f(p)—f(p")

~— exists (finite or infinite),
r~r g(p)—g(p’) ( )
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foh~! has a complex derivative (finite or infinite) at every point of A(U). We con-
clude by the generalized Cauchy—Goursat theorem (see [13, p. 67]) that f is analytic
on U. By the discreteness of F, f is analytic all over W* and hence constant. The
implication follows.

(5)<(4): By Lemma 1, f(E) is of class N whenever E is of class N; in W*
and fEM(W*). Hence we have (5)=>(4). The converse implication is proved in
the same way as the implication (2)=(3) in Theorem 2.

(5)=(3): This follows immediately from the fact that MC(W) can be identi-
fied, via the mapping ¢* (see Theorem 2), with M(W™).

(3)=(2): Suppose that AC(W) contains a nonconstant function f. By Lemma 2,
f cannot be in BV(W).

(2)=(1): By the remark following Theorem 2, AC(W)=C only if ECW*
is of class N/.. Thus MC(W) can be identified with M(W*), the field of rational
functions on W*. [

Remark. The implications (4)=>(1), (4)=(2) and (4)=(3) hold for arbitrary
Riemann surfaces as was shown in [5, Theorem 6].

Corollary. Let W be an open Riemann surface of finite genus. Suppose that
MC(W) constitutes a field containing a nonconstant function. Then either

(a) every nonconstant function in MC(W) has bounded valence, or

(b) no function in MC(W) has bounded valence.

Remark. We do not know whether the latter alternative can really occur.
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