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EXTEI{SIONS OF ISOMETRIC AI\D SYMMETRIC
LINEAR RELATIONS IN A KREIN SPACE

PEKKA SORJONEN

Introduction

This paper continues the study of linear relations in an indefinite inne-lr product
space begun in [6]. Here we consider isometric linear relations and their extensions
as well as symmetric linear relations and their extensions.

The first chapter summarizes briefly the terminology used in this paper: the
first section recalls the basic definitions from the theory of indefinite inner product
spaces; for more complete treatment, see [2]. The second section gives the notation
used for linear relations; see [6].

In Chapter 2 we analyse isometric linear relations. After presenting the basic
properties in Section I we investigate various ways of reducing an isometric linear
relation to an operator in Section 2. Section 3 introduces formally unitary linear
relations, which form a natural generalization of unitary operators. In Section 4
we study another kind of generalization, namely rectangular isometric linear rela-
tions. These relations have some useful topological properties which are needed

e.g. to introduce the defect numbers in Section 5.

In Chapter 3 we investigate extensions of a rectangular isometric linear relation
in a Krein space. Section 1 examines the existence of various kinds of extensions
and Section 2 characterizes these extensions. These characterizations may be new
also in the case of rectangular isometric operators in a Krein space.

In Chapter 4 we use the Cayley transformation to analyse rectangular symmetric
linear relations mostly in a Krein space. This method allows us to take advantage
of the results in Chapters 2 and 3. After studying rectangular symmetric linear
relations in Section I we prove the existence of various kinds of extensions and
describe them in Section 2. These characterizations seem to be new also in the
case of operators in a Krein space.
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1. Preliminaries

1.1. Indefinite inner product spaces. Throughout this paper $ denotes an (indefi-

nite) inner product space, that is, $ is a complex vector space equipped with a

non-degenerate hermitean sesquilinear form [. | . ].

A vector f in b is said to be positiuef non-negatiuef neutralfnon-positiuefnegatiue

if lJ'lf)>01=01:Ol<Ol=0. A similar terminology holds also for subspaces of §.
Specifically, a subspace which contains positive as well as negative vectors is lr-
defnite; otherwise it is semi-definite.

For a subspace .8 of 5 we define

gr;: {/€SllJlsl: o for all g€!}

and call itthe orthogonal companion of I in $. .8 is said tobe ortho-complemented

if (8,8'):5, i.e.o .8 and !'r- together span the whole space. The subspace

.80::8ngr is called t]ne isotropic part of .8. If .801{0}, the subspace I is de-

generate; otherwise il is non-degenerate. We call .8 closed in case 8-844.

The space $ is said 1o be decomposqble if it has a.fundamental decomposition

§):b+t+15-, where b*lb- is a positive/negative subspace; here the symbol

[*] denotes a direct and orthogonal sum. If this decomposition has the property

that §S*l$- is a Hilbert space with respect to the inner product [.1.]/-t.l.l,
§ is called a Krein space. ln this case $ is also a Hilbert space with respect to
the inner product (. 1 

.):

U*+7-1g* *s-):: U*ls*l-V-le-l ("ft, 8t(St)'

For a topology of a Krein space we always take the topology induced by this inner
product; this agreement is consistent with the earlier terminology.

A Krein space $ is called a Pontrjagin space (with x negatiue squares) or
a nx-space if dim b--x-.*.

Let $ and § be inner product spaces. Then the product space $eS is

also an inner product space with the form

lU, dl&, h)1:- lf lhl+fslkl ((f , s), (h, lr)€5 oft).

Furthermore, it is a Krein/Pontrjagin space if $ and .St are Krein/Pontrjagin
spaces.

1.2. Linear relations. A linear relation in the inner product space $ is a sub-

space of the product space $2::§O5. It is said to be closed if it is a closed sub-

space. Let T and § be linear relations in $. We use the following notation:
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D(7):: {f<blj, g)e I for some s€5},
fr(7):: {s(51(f, g)(7 for some /(5},
!t(7):: {fqlj,0)€r},
r(0):: {g(51(0, d(r},
7(.8):: {e(bl1, g)e 7 ror some /(.8} (8 c 5),

T -L :: {k, fi6)rl(f , d(T},
T+:: {(h,k)€b'llelhl: [/lk] for all (f, d€T],
zT:: {U, zd(b'l(f , d<T} (z€c:: complex numbers),

7*S:: {U, s+k)€b'\ff, g)(r, ff, k)€s}.

We identify (linear) operators with their graphs. Consequently, a linear rela-

tion I is an operator if and only if 7(0):{0}.

2. Isometric linear relations

2.1. Basic properties. A linear relation V in the inner product space $ is

isometric if
lslsl: Ulfl for all (f , d<V.

Note that isometric linear relations in $ are not necessarily operators as in the

Hilbert space case; see [6], 2.1. It is easy to prove the following characterizations

of isometric linear relations; see also [], Propositiot 4.4.

Proposition 2.1.1. Let V be a linear relation in $. Then the following
assertions are equiualent :

(1) V is isometric;
(i1) V-t is isometric;
(iii) [g | /.] : I f lh] for all (f, g), (h, k)€.V;
(iv) V-LcV+.

The following proposition summarizes some useful properties of isometric

linear relations; compare with [2], where isometric operators in an inner product

space are considered.

Propositio n 2.1.2. Let V be an isometric linear relation in $. Then

o v(nv)):v(o);
(ii) z(D (v)o):e(v)o;
(iii) vt (V) e V(o)c vo : V a(D(Do e n(r/)0);
(iv) Y is ortho-complemented if and only if b(y) and 8(V) are ortho'comple'

mented;
(v) for a closed V the subspaces 5L (V), Y(0) and I/0 are closed.
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Proof. (i) is obvious. In order to verify (ii) and (iii) use Proposition 2.1.1.
To prove (iv) suppose first that Z is ortho-complemented. Then for every

f in b we have
(/,0) : (h, s)*(f -f,, -Br),

where (fr,gr)(V and (f-fr, -S)(VL. From proposition 2.1.1 we get that
the vector f-2f, is in D(Z)], and so / has the decomposition f:2fr*(f-2f)e,
where 2/l€D(V) and' f -2fr(D(V)a; hence D(Iz) is ortho-complemented. The
proof for fr(rz) is similar.

To prove the converse let (f, d$), be arbitrary. Then f:fr-ffz with
fGD(V), fz(D(Y)t and g:g1*g, with EGgt(V),sz]$..(tt)t. Furthermore,

wecanchoosevectors heD(V) and k(fi(V) sothat th,f,il ar..d (f,fr,k)are
in Z. This implies the decomposition

U, * - (+ f,*h, k+* sr)+(f -+f,-h, s-* s,_k),
where the first component is in V and, by
Thus V is ortho-complemented.

(v) follows easily from the fact that
see t6l. I

Proposition 2.1.1, the second in V L 
.

V is closed if and only if V - V + + 
;

Note that the inclusion in (iii) can be proper: Let V be the diagonal of 8O8,
where .8 is a non-zero neutral subspace in $. Then v is an isometric linear
relation with [t(Z)O V(0):{0\+V0 (:V).

2.2. Reductions to an operator. A decomposition of a linear relation to the
operator part and multi-valued part was given in [6]. unfortunately, this reduc-
tion is not useful in this context because for an isometric linear relation V the
basic assumption under which this reduction holds impliesthat V is an operator;
see [6], Theorem 2.9. So we must find another reduction for isometric linear
relations.

Recall that a subspace .8 in $ can be represented in the form 8:,80*8",
where 8, is a complementary subspace for .80 in .8; see l2),Lemma I.5.1. In
the sequel we shall use the symbol + to denote the algebraic sum in gr. The
following result is easily proved by using Proposition 2.1.2.

Proposition 2.2.1. Let v be an isometric linear relation in $, and let v"
be a complementqry subspace for yo in v. Then v" is an injectiue isometric
operator and

(2.2.1) V : V"[+7Vo.

Furthermore, b(V) and fi(V") are non-degenerate and

D(v) - E(Y"\l+lD(v)0,

nv) - n (v,)t+ln(v),.
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This decomposition has the advantage that the domain and the range of Y"

are non-degenerate. on the other hand, v" may be very small, even zero, although

Z itself is an operator as in the example after the proof of Proposition 2'l'2' To

overcome this disadvantage we look for another way of decomposing an isometric

linear relation.
Let V be an isometric linear relation in .$. We call a linear relation Z" in

$ atoperator part of V if V:V"tYt(r')Of(0). As to the existence and basic

properties of Iz" we have

Theorem 2.2.2. Euery isometric linear relation V in $ has an operator part.

Let Y" be an operator part of V. Then V" is an injectiue isometric operator with

(2.2.2)

and

v - v,l+ lft(r/) o r/(0)

D(v) - D (v,)t+lvt(v),

nv) - fr (v,)t+lv(o).

Furthermore, there exist non-degenerate subspaces E and ,t such that

O(l/"): D[+]D('/,)0,

m(Iä: fr[+]fr(I/")o.

proof. The existence of an operator part is clear because one can choose as

z" acomplementarysubspacefor lt(z)@z(0) in v. Theexistenceof D follows

similarly; see [2], Lemma I.5.1. The subspace %(D) is then suitable for fr. The

other claims are easily verified by using Proposition 2.1.2. n

Note that we can always find a closed operator part for a closed isometric

linear relation in a Krein space. If in addition the space is a Pontrjagin space,

then all subspaces appearing in Theorem 2.2.2 are (or can be chosen to be) closed.

Let us find out when the decompositions (2.2.1) arld (2.2.2\ coincide'

Theorem 2.2.3. Let V be on isometric linear relation

operator part, and let V" be a complementart- subspace for
following conditions ore equi>alent:

(i) V, is a complementary subspace for Va in V;

(ii) V" is an oqerator Part of V;
(iii) vo -vt(v) e I/(o);
(iv) vt(v) -E(v)o;
(v) v(0)- m (v)o ;
(vi) V, is non-degenerate;

(vii) Y does not haue a proper isometric extension

Yt(V') @ V' (0), D(V') D (V) and n(V')- n (V).

tn §), let V, be its
Vo in V. Then the

V' such that V'o:
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ProoJ'. The conditions (i) and (ii) are obviously equivalent with (iii). The
equivalences (iii)<+(iv)<+(v) follow from Proposition 2.1.2. As Z0 is equal to
(4)'t+ltt(Z)e r1O;, (iii) and (vi) are equivalent.

Let us show that (v) implies (vii). Assume that there exists an isometric exten-
sion V' of Z with the properties mentioned in (vii). Then V'=V,D(V):A1y1
and, by applying the already proved equivalence (iii)<+(v) to V', we get V'(O):
m(I/)0:n(V)o:V(0). These imply V':V, and so the extension V' is not
proper.

To complete the proof, suppose that (v) does not hold. Let m+ {0} be a comple-
mentary subspace for z(0) in fr(z)o. Then it is easy to check that with the rela-
tion V'::Vt{O}CIm the converse of (vii) holds. n

2.3. Formally unitary linear relations. Recall first that an isometric linear
relation U in the inner product space § is called unitary if D(U):B(U):§S;
see [6]. If U is uniiary, then U-1:(/+, but the converse does not hold generally;
see the second example after Proposition 2.3.3. We call a linear relation U in
$ formally unitary in case U-L: [/+. These relations are of interest because they
are exactly the Cayley transforms of the self-adjoint linear relations; see [1] or [6].
Formally unitary linear relations can be characterized tn the following way.

Proposition 2.3.1. Let U be qn isometric linear relation in $. Then the

following assertions are equiualent:

O tZ r formally unitary;
(ii) m(u):o(u+) and 9t(u):51y;r.
(iii) D(u):a(u*) and u(o):n(u)r.

lf in addilion the range m(U) ,s closed, then the assertions aboue are equiualent to
(iv) t/ is closed, St(U;:51y1r- and U(0):g1y;r.
Proof. The implications (i)=+(ii)-(iv) are easy to prove by using the general

equalities U'+(0):D(U)a and ft(t/+):18(U)r; see [6]. Recall also that two
linear relations ,S and 7 are equal if and only if ScC ,5(0):7(0) and 5(S):
O(f). Similarly, (ii) or (iii) implies (i). To prove the implication (iv)==+(i), note
that D(U+)c t/(O)r. I

Corollary 2.3.2. If U is aformally unitary linear relation in §1, then
(i) uo:9t(u)e u(o);
(ii) U is maximal isometric.

Proof. (i) follows from Proposition 2.3.1 and Theorem 2.2.3. To prove (ii),
let V be ar isometric extension of U in $. Then, by Proposition 2.1.1, V-r
is also isometric and V:(I/-r1-r.(f-1+; hence (J:ry++:(Lr-r1+,
(V-t1+-n. tr

We can also characterize unitary linear relations, which in fact are all operators,
with the help of formally unitary linear relations.
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Proposition 2.3.3. Let U be a formally
ttte following conditions are equiualent:

(i) U /'.r unitarY;
(ii) E(u)-m«t):b;
(iii) U is ortho-cornPlentented'

unitar-yl' linear relation in 5. Then

Proof.Theimplication(ii)+(i)istrivial.ByU],Proposition4.4,(ii|)implies
(iD. ttre impllcation (i)+(iii) follows from Proposition 2'1'2' tr

Letusgivetwoexamples,whichshowthattheclassesofthelinearrelations
under current discussion aie all different. Let 9S be the 2n-dimensional complex

space C", 24=*, with the inner Product

tftst:: 2n'n- 3 n'a
k=r k=x*L

Then $ is a Pontrjagin space w\th x negative squares' and thus we can choose

the components §* of a fu.rdumental decomposition of $ so that dim b+:x'
Let {eo+}u:r,...,, be such a basis of 5r that lefileff: tö-ki' k' i:l' "" x'

ild;;-'il:(ef +e, ), i.e., the *.,btpu"" spanned by the vector e{ +e; ' Then

! is neutral, and so th" lio.u. relation V::g@8 in § is isometric; but as

9r-9t, Iz is not formallY unitarY.

For the second exarnple sei 
'lt::(el+er,"',e)+e;7' 

Then !)Jt:!ltr'

and thus the definition U=!Jtollt gives u-1:!ltellt:!lta ollta: [/+, that

is, U is a formally unitary linear relation in §. on the other hand, U is not

unitary because the domain is not the whole space'

2.4. Rectangular isometric linear relations. Recall that an isometric operator

in a Krein space is said to be rectangular if both the domain and the raroge ate

ortho-complemented. This definition is of course meaningful also in a general inner

product space. we extend this notion to linear relations by calling a closed iso-

metric linear relation V it the inner product space $ rectangular if it has a rec-

tangular operator Part.

Remarks. lo The definition of the rectangularity is given only for closed

linear relations. One could of course drop the requirement of closedness, but as

we are mostly interested in closed linear relations we preferred this definition'

2c The apparently more natural definition o'V is rectangular if D(Z) and

nv) are ortho-complemented" is not suitable for relations because it implies,

by Propositiot 2.1.2, that V is an operator'

3" The definition of rectangularity is slightly inconvenient: we have agreed

to call a linear relation v an operator if z(0):{0}. In this context one might

think that a rectangular isometric linear relation Z with I/(0):{0} is a rec-

tangular isometric operator (in the sense of [2], p 128). But this is not necessarily
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true. For example, let v, be a rectangular isometric operator in a Krein space
such that D(%)t is indefinite, let !t be a closed neutral subspace in o(4)r,
and defrne v::v"ltwt@ {0}. Then this v is a rectangular isometric rinear
relation, which is an operator but which is not a rectangular isometric operator.

Using the results of [2] one can verify the following assertion: a rectangular
isometric linear relation V in a Krein space is a rectangular isometric operator
if and only if ,t(I4: Z(0): {0}.

40 A rectangular isometric linear relation v has the convenient property
vo:Il(Y)@ z(o); see Theorcm 2.2.3.

In studying rectangular linear relations the following general result is useful
(cf [5], Lemma 5.1):

Lemma 2.4.1. Let g, be qn ortho-compremented subspace in $, ret g, be
a subspace orthogonal to !r, and define .g::.gr[_i]gr. Then

(D E:!'t*l-&;
(ii) -8 rs closedfortho-complemented if and only if g, is closedlortho-comple-

mented.

Proof (i) The assumptions impty rhat ga a : gr t+ I g-L r nS* and

Sran S* : (8rrn gJ- *8r)r- - {(gr, *gr) .,..., grt}r : g*r.
Thus 8a a :8r t + I 8rr, , which is (i).

(ii) If gz is closed, then, by (i), I is closed. If .g is
above, 8r - 8r" - 8n 8* :8nlrt , which is 92. The rest
Lemma I.9.2. tl

The next result gives necessary and sufficient conditions for the rectangularity
in two important special cases.

Proposition 2.4.2. Let v be an isometric linear relation in $.
lo In case $ is a Krein space, v is rectangular if and only if it has an ortho-

complemented operator part and vo is closed.

20 In case $ is a Pontrjagin space, v is rectangular if ancl only if it has a closed
operator part and Vo:ft(V)@V(0).

Proof. 10 follows if we combine proposition 2.1.2, Theorem 2.2.3 and. Lemma
2.4.1. For 2o recall that in a pontrjagin space every neutral subspace is closed
and that a closed, non-degenerate subspace is always ortho-complemented;
see [2]. tr

Formally unitary and unitary rectangular linear relations can be characterized
with the help of the "deflciency spaces" of a rectangular operator part. Recalt
first that a maximal neutral subspace ! in $ is said to be hypermaximal neutral

closed, then, as shown
of (iD is proved in {21,
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if it has neither non-positive nor non-negative proper extensions. This is equivalent
to the condition ll:8r; see [2], Theorem I.7.4. As the hypermaximality plays

a decisive role in the description mentioned above, we include here a result about
the existence of hypermaximal neutral subspaces.

Proposition 2.4.3. Let $ be a Krein space with the fundamental decomposi-

tion 5:5*[*]5-. Then there exist hypermaximal neutral subspaces in b if
and only iJ' dimS+:dim5-.

Proof. If dimS+:dim5-, there exists an isometry K: $*-5-. The
definition gp{f+KflJ(b} gives then a hypermaximal neutral subspace. Con-
versely, a hypermaximal neutral subspace .8 can be represented in the form
S:{f+KflJ(b+), where the isometry K is the angular operator of .8 with
respect to 5+; see [2]. Consequently, dim $*:dim 5-. tr

Theorem 2.4.4. Let V be a rectangular isometric linear relation in $ witlt
a rectangular operator part V* Then

(i) V is formally unitary if and only if {t(V) and V(0) are hypermaximal
neutral in D(V,)L and $,(V,)L, respectiuely;

(ii) V is unitary if and only if O(Zs):n(4):5.

Proof. (i) As Z is rectangular we have, by Theorems 2.2.2 and 2.2.3, the equal-
ity fr(Z):E(%)t+lZ(0), which implies, by Proposition 2.1.2 arrd Lemma 2.4.1,
that fi(V) is closed. Thus we can use the characterization given in Proposition
2.3.1 (iv). Owing to Theorem 2.2.2, O(Z)':D(4)an!t(Z)r and sn(V)L:
8(V)taV(O)'. On the other hand, as noted above, Yt(V) and V(0) are hyper-
maximal neutral in D(()a and 91(2")a, resp, if and only if {t(V):y11y1Ln
D(4)' and V(O)L:rz(0)anm(4)a, resp. Therefore Proposition 2.3.1 implies
the result. (ii) is obvious. tr

2.5. Defect numbers. Let V be ut isometric linear relation in the inner prod-
uct space 5. As in the operator case we call the subspaces D(Y)t and B(Z)r
the deficiency spaces of Z. The geometry of these spaces is reflected in the ex-

tensions of V in the following way.

Theorem 2.5.1. Let V be an isometric linear relation in $. Then the follow-
ing conditions are equiualent:

(i) fr(nt contains a non-zero neutral uector;
(ii) V has an isometric extension which is not an operator;

(11i) V has an isometric extension V' in a larger inner product space $' with
V'(0)a$'* {0}.

Theorem 2.5.2. Let V be an isometric linear relation in $. Then the following
conditions are equiualent:

(i) e(nr contains a positiuefnegatiue uector;
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(ii) V has an isometric extension V' in a larger inner product space 9S', which

includes $ as an ortho-complemented subspace with $L negatiuef positiue in 9S',

such that Iz'(O)n(g'\§) *9.

These results can be proved by using the Cayley transformation and [6], Theo-

rem 4.2. Note that one can get analogous theorems by considering D(Z)r and

!t(Z) instead of fr(Z)r and y(0), resp.

For the rest of this chapter we shall use the following conuentions: § is a Krein
space, V is a rectangular isometric linear relation in §, and V" is a rectangular

operator part of V. Furthermore, we set D::O(Z),8"::fi(V), O"::D(r/")
and fr"::fr(2").

As Dj is ortho-complemented and hence a Krein space itself, it has a funda-

mental decomposition
(2.5.1) E"t : e,+ [+]e,-
such that D"a and D"- are Hilbert spaces with respect to [ ' l '] and - [' l '],
resp. The neutral subspace It(Z) in D| can be represented in the for;n

(2.s.2) 'fi(v): {f +Kf lf(b(K)),
where K is the angular operator of ft(Iz) with respect to D,a ; see [2]. Recall

that K is a J-isometric operator, i e,

-wf tKfl : vtf) ("fe o1r91,

and that D(K) as well as S(K) are ortho-complemented in D"a and D"-, resp.

Set D*::D(K)I (in D",,) and D-::fr(K)r (in o,-). Then these sub-

spaces are ortho-complemented also in 5, and we have the decompositions

(2. s" 3)
E* _- E+ [+]E_ t+ le(lr)t+lm(K),
Er- - e+ [+le_ t+]fi(v).

Indeed, the first formula is quite obvious, and the second follows from the first

and frorn the representation

yt(v) : n(v)' n (o (rK) t * I n (,<»,

which in turn is a consequence of (2.5.2).

Likewise, a fundamental decomposition

(2.5.4) fr"r : fr.+ [+]fr"-
of frj and the representation

r/(o): {f +LflfQ(L)}
of ,z(0) with the angular operator Z with respect to S"4 induce the decom-

positions
fr". !B + [+ ]$t_ t+ I D (r) t+ I n(L),,

sri- - sr* [+ ]n_ t+ lv (o);
(2. s.5)
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here E* and fr- are the orthogonal companions of e(I) and fr(I), resp,

in 9i"* and Sl"-, resp.

Deflne a*(V)::dim D1, a6(Z)::dim St(Z), B*(Z)::dim E* and po(V)::
dim Z(0). These numbers are independent of the decompositions; see [2]. The

numbers d+(V) and B*(V) are called the defect numbers of the rectangular iso-

metric linear relation tr/. Several results below will justify this terminology. First,
a useful lemma.

Lemma 2.5.3. Let V' be a rectangular isometric linear relation in the Krein
space $. Then V' is an extension of the rectangular isometric linear relation V
if and only if V'o extends V0 and there exists a rectangular operator part V! of
V' tyhiclt extends V". In this case

v!:v"l!1w",
where W" is a rectangular isometric operator in $.

Proof. lf V'extends Z, then V'o is a closed subspace of the Krein space 2"1 ,

and hence it has a closed complement W' in I/!. Define W"::V'aW' and

V!::V"[1]W,. To prove the ortho-complementedness of V!, notice first that
it is closed by Lemma 2.4.1 , and it is obviously an operator part of V'. But as

.§ is a Krein space, all closed operator parts of V' are ortho-complemented because

they are isometrically isomorphic to an ortho-complemented complementary sub-

space of V'0 in V; see[2]. The otherassertionsare easilyestablished. tr
The next result characterizes the various types of extensions of the rectangular

isometric linear relation Z rvith the help of the defect numbers of Z.

Theorem2.5.4. (i) V has a rectculgular isoruetric extension Y' with V:*V",
\tt(V'):tJt(V) and V'(0):V(0) if and only if min {an(Z), Ba()}>O or
min {a-(V), B-()}:=o;

(1r) V has a rectangular isometric extension V' x'itlt ,l(V')l1t(V),V'(0):
V(0) and V'":V" if and only if min {e*(I/), a-(V)}:=O;

(iii) V ltas a rectangular isometric extension V' vitlt V'(0)+V(0),
and [t(V'):ft(v) if and only if min{B*(V),8-(V)}>0.

Proof. (i) If I/ has an extension V' with the mentioned properties, then we

can suppose, by Lemma 2.5.3,that V!:V"li)lI/", where W"+{0} is a rectangular

isometric operator. Hence b(W")*{O) is ortho-complemented, and so there

exists in D(W") a positive or negative vector. As W" is isometric, n(W") con-
tains also a vector of the same kind. On the other hand, b(W)cD(V")L and

E(W")c9-(V")L; consequently, we must have min {a*(Z), B*(V)\>O or
min {a*(V), fr-(V))=0.

Conversely, let e.g. min{a*(V),P*(V)) be greater than zero. Then we can

find vectors f€b(V)L and g€fr(Z)r such that lflfl:l1l1l:\. By setting

v' ::Vltl((f, d) we get a proper closed isometric extension with ft(Z'):!t17;

v!:v,
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and v'(o):y191. Furthermore, Y!::v"til«f,d) is an operator part of v'.
Lemma 2.4.1 guarattees that Zj is ortho-complemented, and thus Z' is rectangu-
lar by Proposition 2.4.2. The case min{a-(Z), P-(V)\=O can be handled
similarly.

(ii) Suppose first that V' has the given properties. With the agreed notation
we have tlt(V'):Yt(y)[+]8, where 8::!t(Z')n(O+ t+lD-.)l {0}. Choose

a non-zero vector.f from 8; then f:f**f- with /*6Dr. Furthermore, both

f+ and f- arc different from zero; hence min {o*(tt),u-(V)}=-0.
If min {o*(V),a-(V)}=0, then there exist vectors /* in O+ such that

t f ,l f-1: ll. The formula.ratra)

v, :: v"lt l(!t(r.)+(/. +./_))er(o)

defines then a linear relation satisfying the required conditions.
(iii) can be proved in the same way as (ii). tr

We call a rectangular isometric linear relation in § maximal rectangular lf
it has no rectangular isometric proper extensions in $. As a corollary of the pre-

vious theorem we get the following extension of l2], Theorem VL4.3.

Theorem 2.5.5. The rectangular isometric linear relation V in the Krein space

$ is maximal rectangular if and only if
min {a* (V), §*(V)}: min {a- (V), P-(.V)}

: mir {o * (v), a"- (V)l : min {§ * (V), fr - (Y)) : 0.

This result has a clear geometrical interpretation: Z is maximal rectangular
if and only if the deficiency spaces D(mL and 9t(tr/)a are semi-definite of op-
posite signs. The sign of a neutral subspace is here assumed to be different from
the sign of every semi-definite subspace.

As in the operator case, we can characterize formally unitary and unitary
linear relations by the defect numbers:

Theorem 2.5.6. The rectangular isoruetric linear relation V in the Krein space

$ is formally unitary iJ'and only if a-(V\:B*(V):0. In this case V is unitarl'
if and only if uo(V):Bo(V):a.

Proof. If V is formally unitary, then, by Theorem 2.4.4,Lhe subspace !t(Z)
is hypermaximal neutral in the Krein space D"r . Consequently, for the angular
operator K of {t(V) we have D(K):5"* and fr(K):!"-; but this means

that a*(V):a-(V):0. Similarly, § *(V): fr -(V):0.
Conversely, from the assumptions we get Dr:lt(Z) and Ba:V(0); see

(2.5.3) and (2.5.5). Proposition 2.3.1 (iv) implies now the desired result.

The second assertion is easily established on the first assertion and Proposi-
tion 2.3.3. n



Extensions of isometric and symmetric linear relations in a Krein space 367

3. Extensions of rectangular isometric linear relations

3.1. Existence. We continue the study of rectangular isometric linear rela-

tions in a Krein space by showing the existence of various kinds of extensions.

For the operator version of the following result, see [2], Theorem Y1.4.4.

Theorem 3.1.1. Euery rectangular isometric linear relation in a Krein space

admits maximal rectangular extensions.

Proof. Let V be a non-maximal rectangular isometric linear relation in a Krein
space $, and let V" be its rectangular operator part.

lo Suppose first that a*(V)=a-(V) and B*(V)=-P-(V). The subspaces

!t(Z) and V(0) are neutral in the Krein spaces D(2")a and A(4)r, resp.,

and thus they admit maximal neutral extensions ,t0 and ft-, resp. By the

assumption we then have

dim Sto : dim O"+ - ao(V)*a*(V), dim !t- : dim fr"- : §oV)+ § -(V);

see (2.5.1) and (2.5.4). The definition V'::YJ*WloOrt- gives a rectangular

isometric extension of Z. Furthermore, sitce a*(V'):P-(V'):0, Theorem 2.5.5

guarantees the maximality of Y'.

20 The case u*(Y)>a-(V) and B*(Y)=ll-Ua is analogous to 10.

3a rf a*(v)=a-(v) and P*(v)>P-(v), we can, as in lo, construct a rec-

tangular isometric extension V' ::V"ltpt,O!t- for which u-(V'): B -(Y'):0.
Hence, analogous to (2.5.3) and (2.5.5), we have

D 1V'1L : O'+ [+]!t(I/), fi(tt'1L : fr'*l*fV' (0),

where e'- and m'* are Hilbert spaces. Consequently, there exists a Hilbert
ff

spaceisometry V+ from D'* into E'* suchthat D(V+):D'+ or S(Z*):fr'*.
This Z* is obviously rectangular, and, as it is easy to see, the linear relation

v" :: (v 
"l t)v +)l+ lyt(v') @v' 101

is a rectangular isometric extension of V. The construction of V" irnplies further
lhat a-(y"):p-(vt'):0 and a+(y,):Q or fi*(v"):g. Thus z" is maximal
rectangular by Theorem 2.5.5.

40 lf u*(V)=a-(V) and B*(V)=B-(V), we can use the same method
as in 3o. tr

To examine the existence of formally unitary extensions we need the following
lemma, the proof of which is straightforward.
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Lemma 3.1.2. Let there be giuen four cardinal numbers qx, Fx. Then
d+* fl -: § +*a- if and only if there exist four cardinal numbers ^! +, a, fr such that

d.1 :la*ct, f *:!+*fi,
u- - y-*a, §- : y-*fi.

Theorem 3.1.3. Let V be a rectangular isometric linear relation in q Krein
space $. Then V has a rectangular formally unitary extension in $ if and only if
(3. 1. 1) u* (V) + § - (v) - p + (v) * u- (v).

Proof. 10 Suppose that U is a rectangular formally unitary extension of Z,
and let U" be its rectangular operator part. By Lemma 2.5.3 we can assume that
U")V", where V" is a rectangular operator part of V. Furthermore, we can
choose the components D"* of a fundamental decomposition of D(Z)r in such
a way that the following scheme is true:

(3.1.2)
LJU

E (tr') t+ lst (K'; - E (u,). ;LJ tJE(K) m(K)

here K atd K' (:K) are the angular operators of It(V) and !t(U), resp,

with respect to D"*. In addition, all the subspaces in this scheme are Hilbert spaces

withrespectto [.1.] or -[.1.].
From (3.1.2) we get

Da :: D(f;r : D(K')a[*JD(fqr oD(K'),

where the orthogonal companions are formed in the space D"*. Setting l+t:
dim D(K')r and a::dim D(rK)rnD(rK') we then have a*(V):y++d.

Likewise, from the analogous decomposition of D-:: ts(K)r we get a_(V):
l-*a', where y-::dimB(f} and a'::dimfr(l()rnfr(K'):a. The last
equality is implied by the fact that the spaces D(K)rnD(K') and fr(K)anfr(K')
are isometrically isomorphic.

Let L and L' betheangular operatorsof Z(0) and U(0), resp., withrespect
to E"*; here $1"* is a component of a fundamental decomposition of fr(2")r
so chosen that the scheme analogous to (3.1.2) holds true. Then, as above, one
canprove the equalities P+(V):ö+*f, where ä*::dim D(L')t, ä-::dim fr(t'1L
and B :: dim D(Z)a nD (Z'):dim B(I])nfr (Z').

Hence, in the light of Lemma 3.1.2, it is enough to prove the equalities ä t :7r .

For this, decompose the space e(()r in two ways:

E (r,,)r - E(U,)rt+ I E(U,) n D (V,)L

E (v,) r - {D (K',) t + I D (K',)' } t + I {B (,tr',) t + I m (K',), }
D (rär [ + ]{E (K')'t + 1 fr 1K'F1,

and
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where the orthogonal companions are formed in suitable subspaces; see (3.1.2).

Hence we get

and analogously

Furthermore, one can easily check that these decompositions are fundamental

decompositions. But the Krein spaces O(t/")nD(2")r and fr(U")nfr(rzJr are

isometrically isomorphic, and thus 7*:dim D(K')' :dim D(Z')'-ä*; see [2],
Theorem V.1.4. The equality y-:6- can be proved similarly. Hence (3.1.1)

is established.

20 Conversely, suppose that (3.1.1) is valid. Then, by using Lemma 3.1.2,

we can find the decompositions

D+ : Dr+ [+]O"o, frt : frrt t*lme=;

here the Greek index denotes the dimension of the corresponding space. Thus

there exist isometric (or J-isometric) operators V+, K' ar'd Z' mapping Dr* onto

frro, DJ onto Do- and lfi onto tnp , resp. Define

and
$ts :- {/+ K' f I ,f€ D,* }, It". ;- {g + L' glg€ mä }

(r :- %t + ]v *t + I v -l+ I (!t (v)t+ I lto) e (I/(0) [+ ]!t""),

where Z" is a rectangular operator part of V. Then a straightforward calculation

shows that this U is a rectangular formally unitary extension of Z. tr
Corollary 3.1.4. Let V be a rectangular isometric linear relationin a Pontrjagin

space $. Then V hqs a rectangular formally unitary extension in $ if and only if
(3. I .3) a*(V)*ao V) - § * (V)* frrv).

Proof. Let $ have x negative squares, and let V" be a rectangular operator
part of Z. Then both D(%) and fr(ZJ are Pontrjagin spaces with x' (=x)
negative squares. Consequently, D(2")r and fr(2")r are both Pontrjagin spaces

with x-t<' negative squares. This implies the equalities a-(V)*ao(V):§-(V)+
fir(V):x-x'. In this case the formulae (3.1.1) and (3.1.3) are equivalent, which
proves the result. n

As another corollary we have the following operator version; cf [2], Theo-
rem VI.4.4.

Corollary 3.I.5. Let V be arectangular isometric operator in a Krein space

5. Then V has a unitary extension in 9S if and only if
c*(Y): fi+(V) & d.-(V): p-(V).
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If in addition 9S is a Pontrjagin space, then tlte equality a*(V):B*(V) is

a necessary and sfficient condition for Y to haue unitary extensions in $.

Although we do not characterize generalized extensions, i.e., extensionsbeyond
the original space, we add the following result about the existence of such extensions.

Theorem 3.1.6. Euery rectangular isometric linear relation in a Krein space

has rectangular formally unitary extensions in a possibly larger Krein space.

Proof. We can suppose that a given rectangular isometric linear relation V
in a Krein space $ is not formally unitary and, by Theorem 3.1.1, maximal rec-

tangular. Then, by Theorem 2.5.6, we can further assume that e.g. a*(V)10,
and hence, by Theorem 2.5.5, a-(V):B*(V):0.

Choose two Hilbert spaces §1 with inner products (.1.)1 and with inflnite
dimensions ä+=a+ and ä->B-, resp. Then ft::S+O§- is a Krein space

with the inner product [. | .]':

[f *-ff .ls*l g-]':: (,f+18+)+ -U-ls-)- Cft, g*€§t).

Now we can regard V as a rectangular isometric linear relation in the Krein space

$'::5@.ft. Denote by V" a rectangular operator part of V. The fundamental
decompositions corresponding to (2.5.3) and (2.5.5) have the following form in §':

D (v 
")L 

: {(D " 
t + I §t *) t + I o (K)} t + I {ft _ [ + ] m (,<)],

B(,'")a : {ft* t+lD(z)}l+l«n_ t+l§_)t+ln(r)}.
Consequently, for the defect numbers a'* , §'y of I/ with respect to S)' we get

a'**§'-: («**ä1)*(B-+a-;: ä++ä- : B'**a'_.

Theorem 3.1.3 implies now the desired result. tr

3.2. Characterizations. In this section we describe the rectangular isometric
extensions of a given rectangular isometric linear relation in a Krein space. For
the corresponding operator versions in a Hilbert space, see [4], § 5.

Theorem 3.2.1. Let V be a rectangular isometric linear relation in a Krein
space $.

If I/' is a rectangular isometric extension oJ' V in $, then

(3.2.1) V', : YltlW,

where W is a rectangular isometric linear relation in 9S such that D(W)cD(V)t,
$(W)cfi(Y)',VaW:{O} and VolWo is closed.

Conuersely, let W be as aboue, then V' defined by (3.2.1) is a rectangular
isometric extension of V in $.
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Proof. 10 suppose first that v' is a rectangular isometric extension of Y.

Using Lemma 2.5.3 and its notation we get

Y', : V"l+lw"l+lv'o.
As Vo arLd V'o are closed and VocV'o, thete exists a closed subspace IIzs such

that v,o:vrtwo. Furthermore,this wo is neutral and orthogonalto vo, and

ithasarepresentationlTo:ltoO$t*,whereltoandflt-areclosedcomplemen-
tarysubspacesof !t(Z) and Z(0), resp., with respect to It(V') and Z'(0), resp'

This is easily established on the equalities V\:*(V)Ol'101 and V'o:tJl(V')A
V'(O). Consequently, a straightforward calculation shows that the linear relation

W::W"lt7Zo satisfles the required conditions'

20 Conversely, let the linear relation t4r be given, and defiie V' by (3'2'1)'

Then Z' is isometric and it has a representation

v, : (v 
"l 
t 1w ")l + l(v o 

| + lw o),

which implies, by Lemma 2.4.1arld Proposition 2.4.2,that V' isrectarlgtlar. n
By combining the previous result with Theorem 2.5.5 and Proposition 2.3.1

we get

Corollary 3.2.2. Let V,V' and W be as in Theorem 3.2.1. Then

(i) Y' is maximal rectangular if and only if the spaces b(V)Las^(W)L snd

A(V)Lafi(W)t are semi'definite and of opposite signs;

(ii) V' is formally unitary if and only if
Yo +wo : {D(z) o n(n + D(w) @ n(w)}t

or equiualently

Ya (V) + yt(W) : D (Z)r o D (W)L, V (0) +W (0) : I (V )t a 8 (W ) L'

4. Symmetric linear relations

4.1. Rectangular symmetric linear relations. We first recall some basic facts

about symmetric linear relations; see [6]. Let $ be an inner product space. A
linear relation S in $ is called symmetric if ,Sc,S+, i.e.,

lelhl: Ulkl for all U, d,(h,k)(S.
Let z be a non-real complex number, and let S be a symmetric linear relation

in $. Then the CayleY transform

C,(§) :: {G- rf , s-zf)l(f, d€Sll

of s is an isometric linear relation. Conversely, if V is an isometric linear relation,

then the inverse transform

F,(Y):- {(s -f , zs-zf)lj, il€V}
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of Z is a symmetric linear relation. Furthermore, a symmetric Iinear relation ,S

is self-adjoint, i.e., s:,s+, if and only if its cayley transform is formaily unitary.
As the cayley transformatiort c" preserves the orthogonality only in case z:*.i,
we suppose in the sequelthat z:i.

For the following auxiliary result, recall that the deficiency spaces M1;(^S)::
{(h,k)e S+lk:Xih} of a symmetric linear relation ^S are operators with the
domains D(/tlrt(^S» : !t(,s + + iI).

Lemma 4.1.1. Let S be a symmetric linear relation in $ and set Z::C,(s).
Then

(i) Vo : Ci(So);

(i,) tJt(V): O(lz-,1S;ns), V(o): O(M1(s)ns);
(iir) F{n(DaV(o» : M,(s) nst*lM-1(S) ns,'
(iv) D(1.l1+r(S))o : D(Mtr(,S)o).

The proof is a direct verification.
we call a symmetric linear relation s in $ rectangular if its cayley trans-

form C1(,S) is rectangular. A more direct definition is included in the follow-
ing result.

Theorem 4.1.2- A closed symmetric linear relation s in $ is rectangular
if and only if
(4.1.r) N(S+iI): E(S-i1)0,
qnd there exists a linear relation s,c s such that the subspaces fr(s"ti/) are
ortho-complemented and
(4.r.2) s: Å[*]so.

For the proof, use the Cayley transformation together with Lemma 4.1J,
Theorem 2.2.3 and 16l, Lemma 2.12.

Remarks. 10 rheorem 2.2.3 and, Lemma 4.1.1 imply that (4.r.1) is equivarent
e.g. to the equation

So : Mt(S) n,S[* ] M- ;(,S) n.S.

20 In spite of the notation, ,S" is not necessarily an operator. In fact, ,s" is
an operator if and only if the Cayley transform of s has a rectangular operator
part for which the number one is not an eigenvalue.

30 Let ^s be a closed symmetric linear relation in a pontrjagin space with
the following properties: D(^s) includes the negative component of a fundamental
decomposition of that space, and the constant c" introduced in [6] is smaller than
one. Then oue can prove that this .S is rectangular. Thus the study ofrectangular
symmetric linear relations extends at least partially the considerations of [6].

Let us list some useful properties of rectangular symmetric linear relations.
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Theorem 4.1.3. Let S be a rectangular symmetric linear relation in $, and

let (4.1.2) be its decomposition. Then

(D n(^§*i/) are closed and

m(s+iI) : fr (Å+i1) [* ]B(so *i1);
(ii) D(Mtt(s»0: o(Mtt(s)ns) : !t(s+iI) : E(s*i1)0: fr(s0*i1),'

(iii) Mr,(S)nS : Mti(^S)nSo,'

(iv) yt(,S+ +iI) : nt(,S"+ +iI) nE(S+ Til).
proof. The formula in (i) follows from Theorem 4.1.2. The closedness of

m(S+i/) follows if we use the Cayley transformation, Theorem 2.2.2, Lemma

2.4.1 and the formula already proved.

To prove (ii), note that, by (i), n(S*i/» are closed and

n(,S+i/)o : !t(S+ + iI) : D(![tit(S»o.

Furthermore, by Theorem 4.1.2, we have

fr ('Sti/)o : !t(STiI) : D(fi tr(S) 
"' 

S)'

Using the Cayley transform V of S and the equation Vo:{t(V)@ Z(0) we get

the missing link !t(S1 i1) : fr (S0ti/).
The verification of (iii) is a straightforward calculation, in which one can use

(iD. (iv) follows from (i) and (ii). tr

From Theorem 4.1.3 and from similar considerations as in the operator case

we get the following extension of the von Neumann formula; cf [4], Theorem 6.1

and [6], Theorem 4.10.

Theorem 4.1.4. Let S be a rectangular »|mmetric linear telation in $, and

let (4.1.2) be its decomposition. Then

S+ : Å[t ]Mt(s)t+ lM_r (s).

Corollary 4.1.5. Let S be a rectangular symmetric linear relation in $.
Then the following assertions are equiualent:

(D S is self-adjoint;

(iD,so : Mi(s)[*]ll1_,(s);
(iii) !t(s+ +iI) : !t(s*i1).

4.2. Extensions. Let ,S be a rectangular symmetric linear relation in a Krein
space $. Using the Cayley transformation and the results of Section 2.5 we can

find the fundamental decompositions

:B(^§-i4a : D* [*] 5_ [+]n(S+i1),
fr (s+i4r : fr* [*]fr_ t+ln(s-i/)
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such that the subspaces D* and s-a are ortho-complemented and the dimensions
of these spaces are independent of the particular decomposition of this type.
Deflne c*(,S)::dim !1, ao(,S)::dim St(,S*i/), B1(S)::dim fr1 and fo0S)::
dim!t(S-i/). Then a^(S):q^(g;(,S)) and §^(S):fr^(C,(,S)) for t€{+, -,0}.
Thus we call a1(,S) and /t(S) the defect numbers of S.

Using the Cayley transformation we can deduce the following result from
the corresponding results concerning rectangular isometric linear relations; see

Sections 2.5 and 3-1.

Theorem 4.2.1. Let S be a rectangular symmetric linear relation in a Krein
space $. Then

(0 S rs maximal rectangular if and only iJ'

min {a* (S), f * (S)} : min {a- (S), B- (S)}
: min {** (S), n- (s)} : min {f * (s), f _ (s)} : 0;

(ii) .S zs self-adjoint if and only if a1(S):B*(,S):0;
(iii) ^S has always maximal rectangular extensions i, 5;
(iv) .§ has rectangular self-adjoint extensions in g if and only if

s* (S)+f- (S) : f* (.S)+a- (.s);

(v) S has always rectangular self-adjoint extensions in a possibly larger
Krein space.

CharucteÅzations of rectangular extensions of a rectangular symmetric linear
relation follow also with the help of the Cayley transformation; for the Hilbert
space case, see [3], Il.2 and [4], § 6.

Theorem 4.2.2. Let S be a rectangular symmetric linear relation in a Krein
space $.

If S' is a rectangular symmetric extension of S in $, then

(4.2.1) ,S' :,S[t ] (1- v')D (V'),

where V' is a rectangular isometric linear relation such that b(V')cMr(S), fr(V')c
M_r(S) and So1((I-V',)D(V',))o is closed.

Corutersel1,, if V' is as aboue and if the sum S+(I-V')D(V') is direct, then
the formula (4.2.1) defines a rectangular symmetric extension ,S' of S in $.

Proof. Let S' be a rectangular symmetric extension of ,S. Then Vr::C1(S')
is a rectangular isometric extension of the rectangular isometric linear relation
v::ci(s). Define

v, :: {((k, ik), (h, -ih))l(h, k)ew},

wherc W is the rectangular isometric linear relation attached to V, by Theorem
3.2.1. Then a boring but straightforward calculation shows that this V' has the
desired properties.
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The converse follows similarly. We remark only that in this case one can

define the w to be used in applying Theorem 3.2.1 by the equation

w = {(s,f)€b\((f ,if), (s, -id)<v'}. tr
corollary 4.2.3. Let s, s' and. v' be as in Theorem 4.2.2. Then s' is

self-adjoint if and onlY if
(4.2.2) S0 t + I «1- r )b (v'))o : Mr(s) 

^D 
(v')L I t ]M-' (S) ^n(V)t.

This result can be deduced from Corollaty 3.2.2 in a similar way as Theorem

4.2.2 was deduced from Theorem 3.2.1. We only write down two formulae, which

can be used in the course of the proof:

so t + I «1- r )b (v'))o : F{v o[i7w o),

r, ((o (z) e n V) + D (W) e YW»t) : Mi (S) n D (v'1t -i. M- I (S) n fi (v'1t .

Note that although the relation (4.2.2) looks quite cumbersome, it gives us

the known criteria for self-adjointness in the Hilbert space case' In that case the

left side of @.2.2) is automatically zero, and then corollary 4.2.3 says that ,s' is

self-adjoint if and only if the corresponding isometry V' maps Mr(S) onto

M-r(,S); cf [4], CorollarY 6'4.
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