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EXTENSIONS OF ISOMETRIC AND SYMMETRIC
LINEAR RELATIONS IN A KREIN SPACE

PEKKA SORJONEN

Introduction

This paper continues the study of linear relations in an indefinite inner product
space begun in [6]. Here we consider isometric linear relations and their extensions
as well as symmetric linear relations and their extensions.

The first chapter summarizes briefly the terminology used in this paper: the
first section recalls the basic definitions from the theory of indefinite inner product
spaces; for more complete treatment, see [2]. The second section gives the notation
used for linear relations; see [6].

In Chapter 2 we analyse isometric linear relations. After presenting the basic
properties in Section 1 we investigate various ways of reducing an isometric linear
relation to an operator in Section 2. Section 3 introduces formally unitary linear
relations, which form a natural generalization of unitary operators. In Section 4
we study another kind of generalization, namely rectangular isometric linear rela-
tions. These relations have some useful topological properties which are needed
e.g. to introduce the defect numbers in Section 5.

In Chapter 3 we investigate extensions of a rectangular isometric linear relation
in a Krein space. Section 1 examines the existence of various kinds of extensions
and Section 2 characterizes these extensions. These characterizations may be new
also in the case of rectangular isometric operators in a Krein space.

In Chapter 4 we use the Cayley transformation to analyse rectangular symmetric
linear relations mostly in a Krein space. This method allows us to take advantage
of the results in Chapters 2 and 3. After studying rectangular symmetric linear
relations in Section 1 we prove the existence of various kinds of extensions and
describe them in Section 2. These characterizations seem to be new also in the
case of operators in a Krein space.
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1. Preliminaries

1.1. Indefinite inner product spaces. Throughout this paper $ denotes an (indefi-
nite) inner product space, that is, $ is a complex vector space equipped with a
non-degenerate hermitean sesquilinear form [.]-].

A vector f in $ is said to be positive/non-negative/neutral/non-positive/negative
if [f]f]1=0/=0/=0/=0/<0. A similar terminology holds also for subspaces of $.
Specifically, a subspace which contains positive as well as negative vectors is in-
defnite; otherwise it is semi-definite.

For a subspace £ of 9 we define

oL = {fe$If]gl =0 for all gee}

and call it the orthogonal companion of & in . L is said to be ortho-complemented
if (2,24=9, ie, € and 2% together span the whole space. The subspace
Q=8N+ is called the isotropic part of L. If 20:2{0}, the subspace £ is de-
generate; otherwise it is non-degenerate. We call € closed in case Q=2*+.

The space § is said to be decomposable if it has a fundamental decomposition
H=9,[+19_, where $H./9H_ is a positive/negative subspace; here the symbol
[4+] denotes a direct and orthogonal sum. If this decomposition has the property
that $./9_ is a Hilbert space with respect to the inner product [|:1/—[:]-],
$ is called a Krein space. In this case $ is also a Hilbert space with respect to
the inner product (+]-):

(f++f-lge+g)=[f+lg]-f-1g-] (f:,g+€9D4).

For a topology of a Krein space we always take the topology induced by this inner
product; this agreement is consistent with the earlier terminology.

A Krein space 9 is called a Pontrjagin space (with x negative squares) or
a m,space if dim H_=x<eco.

Let § and K be inner product spaces. Then the product space HPK is
also an inner product space with the form

[(f, DIk, k)= [f 1Bl +[glk] (£, 9), (h, EHDR).

Furthermore, it is a Krein/Pontrjagin space if § and & are Krein/Pontrjagin
spaces.

1.2. Linear relations. A linear relation in the inner product space & is a sub-
space of the product space H*:=9d$H. It is said to be closed if it is a closed sub-
space. Let T and S be linear relations in $. We use the following notation:
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D(T) = {feDI(f, g)eT for some geH},
R(T) := {g€DI(f, €T for some feH},
N(T):= {feDIf, 00€T},

T(0):= {g€9I0, €T},
T(2):= {gcH|(f, €T for some feL} (2 9H),

T71:= {(g, HEDI(S, 9T},

T+ := {(h, k)€H?* [glh] = [fIK] for all (f, €T},

2T = {(f, zg) € H?I(f, g)€T} (z€C:= complex numbers),
T+S:= {(f, g+ eSS, QET, (f, bES}.

We identify (linear) operators with their graphs. Consequently, a linear rela-
tion T is an operator if and only if 7(0)={0}.

2. Isometric linear relations

2.1. Basic properties. A linear relation V in the inner product space 9 is
isometric if

[glg]l = [fIf] for all (f,g)eV.

Note that isometric linear relations in § are not necessarily operators as in the
Hilbert space case; see [6], 2.1. It is easy to prove the following characterizations
of isometric linear relations; see also [l], Proposition 4.4.

Proposition 2.1.1. Let V be a linear relation in 9. Then the following
assertions are equivalent:

() V is isometric;

(ii) V' is isometric;

(i) [glk1=Lf1A] for all (f,8),(h,k)cV;

(iv)y V7 icr .

The following proposition summarizes some useful properties of isometric
linear relations; compare with [2], where isometric operators in an inner product
space are considered.

Proposition 2.1.2. Let V be an isometric linear relation in . Then
(i) V(R())=V(0);
(i) V(D)O)=RF),
(i) N VOV =V (D) BRI));
(iv) V is ortho-complemented if and only if D(V) and R(V) are ortho-comple-
mented;
(v) for a closed V the subspaces %t (V), V(0) and V° are closed.
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Proof. (i) is obvious. In order to verify (ii) and (iii) use Proposition 2.1.1.
To prove (iv) suppose first that ¥ is ortho-complemented. Then for every
f in $ we have
(f;0) = (f1, g)+(f—f1, — 81

where (fi,g)€V and (f—fi, —g,)€VL. From Proposition 2.1.1 we get that
the vector f—2f isin D(¥)*, and so f has the decomposition f=2f,+(f—2f,)e,
where 2£,€D(V) and f—2f€D(V)L; hence D(V) is ortho-complemented. The
proof for R(V) is similar.

To prove the converse let (f,g)€$H* be arbitrary. Then f=f,+f, with
[HEDT), LED(V): and g=g,+g, with g€ R(V), g€ R(V)+. Furthermore,
we can choose vectors A€ D (V) and k€R(V) so that (4, % g1 and (% f1, k) are
in V. This implies the decomposition

(f, & = (7 ith k+3g)+(f—= fi—h, g—= g —k),

where the first component is in ¥ and, by Proposition 2.1.1, the second in V'+.
Thus ¥V is ortho-complemented.

(v) follows easily from the fact that ¥ is closed if and only if V=F++;
see [6]. O

Note that the inclusion in (iii) can be proper: Let V' be the diagonal of 2@ @,
where £ is a non-zero neutral subspace in $. Then ¥V is an isometric linear
relation with NPV (0)={0}=V° (=V).

2.2. Reductions to an operator. A decomposition of a linear relation to the
operator part and multi-valued part was given in [6]. Unfortunately, this reduc-
tion is not useful in this context because for an isometric linear relation ¥ the
basic assumption under which this reduction holds implies that ¥ is an operator;
see [6], Theorem 2.9. So we must find another reduction for isometric linear
relations.

Recall that a subspace £ in § can be represented in the form =0+ g,
where £, is a complementary subspace for 20 in €; see [2], Lemma L.5.1. In
the sequel we shall use the symbol + to denote the algebraic sum in 2. The
following result is easily proved by using Proposition 2.1.2.

Proposition 2.2.1. Let V be an isometric linear relation in 9, and let V,
be a complementary subspace for V° in V. Then V. is an injective isometric
operator and

2.2.1) V="V

Furthermore, ®D(V,) and R(V.) are non-degenerate and
DE) =DEIAFIDE),
RE) =REI[FIREP)".
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This decomposition has the advantage that the domain and the range of V.
are non-degenerate. On the other hand, ¥, may be very small, even zero, although
V' itself is an operator as in the example after the proof of Proposition 2.1.2. To
overcome this disadvantage we look for another way of decomposing an isometric
linear relation.

Let V' be an isometric linear relation in §. We call a linear relation V in
$ an operator part of V if V=V L+R(V)D V(0). As to the existence and basic
properties of V; we have

Theorem 2.2.2. Every isometric linear relation V in $ has an operator part.
Let V, be an operator part of V. Then V is an injective isometric operator with

(2.2.2) V=V[+]NRE)DV(0)
and
DY) =DFY[+INF),

RE) = REYIFIV0).

Furthermore, there exist non-degenerate subspaces ® and R such that
DY = D[+1DFY’,
R = RIFIREY".

Proof. The existence of an operator part is clear because one can choose as
V., a complementary subspace for M (V)@ ¥ (0) in V. The existence of ® follows
similarly; see [2], Lemma 1.5.1. The subspace V(D) is then suitable for R. The
other claims are easily verified by using Proposition 2.1.2. [

Note that we can always find a closed operator part for a closed isometric
linear relation in a Krein space. If in addition the space is a Pontrjagin space,
then all subspaces appearing in Theorem 2.2.2 are (or can be chosen to be) closed.

Let us find out when the decompositions (2.2.1) and (2.2.2) coincide.

Theorem 2.2.3. Let V be an isometric linear relation in 9, let V be its
operator part, and let V, be a complementary subspace for VO in V. Then the
following conditions are equivalent:

(i) V, is a complementary subspace for V° in V;

(i) V. is an operator part of V;

(iii) V=R V(0),

@iv) RP)=DV),

W) V(O)=R);

(vi) V, is non-degenerate;

(vii) V' does not have a proper isometric extension V' such that V'°=
RPNV (0), D(V)=D(V) and RV )=R(V).
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Proof. The conditions (i) and (ii) are obviously equivalent with (iii). The
equivalences (iii)=(iv)<>(v) follow from Proposition 2.1.2. As V° is equal to
V[FIR(V)® V(0), (iii) and (vi) are equivalent.

Let us show that (v) implies (vii). Assume that there exists an isometric exten-
sion ¥’ of V' with the properties mentioned in (vii). Then V' oV, D(V)=D(V)
and, by applying the already proved equivalence (iii)<(v) to V’, we get V' (0)=
RV =R(V)Y=V(0). These imply V’'=V, and so the extension V’ is not
proper.

To complete the proof, suppose that (v) does not hold. Let R {0} be a comple-
mentary subspace for V(0) in R(¥)°. Then it is easy to check that with the rela-
tion V':=V+4+{0}®R the converse of (vii) holds. []

2.3. Formally unitary linear relations. Recall first that an isometric linear
relation U in the inner product space & is called unitary if D(U)=R(U)=9;
see [6]. If U is unitary, then U~'=U", but the converse does not hold generally;
see the second example after Proposition 2.3.3. We call a linear relation U in
9 formally unitary in case U~'=U"*. These relations are of interest because they
are exactly the Cayley transforms of the self-adjoint linear relations; see [1] or [6].
Formally unitary linear relations can be characterized in the following way.

Proposition 2.3.1. Let U be an isometric linear relation in . Then the
Jollowing assertions are equivalent:
(1) U is formally unitary;
@) RWU)=DWU™T) and RU)=DU)*;
(i) DU)=RWU™) and U0)=R(U)* .
If in addition the range R(U) is closed, then the assertions above are equivalent to
(iv) U is closed, M(U)=D(U)* and UO)=R(U)*.

Proof. The implications (i)=(ii)—(iv) are easy to prove by using the general
equalities UT(0)=D(U)* and N(UH)=R(U)*; see [6]. Recall also that two
linear relations S and T are equal if and only if SCT, S(0)=7(0) and D(S)=
D(T). Similarly, (ii) or (iii) implies (i). To prove the implication (iv)=(i), note
that DU H)CUO)*. O

Corollary 2.3.2. If U is a formally unitary linear relation in %, then
O U=R(U)a U(0);
(1) U is maximal isometric.

Proof. (i) follows from Proposition 2.3.1 and Theorem 2.2.3. To prove (ii),
let V' be an isometric extension of U in $. Then, by Proposition 2.1.1, ¥ !
is also isometric and V=Y lc(VH*; hence U=U*rt=(U"YH)*>
V=hHtrov., O

We can also characterize unitary linear relations, which in fact are all operators,
with the help of formally unitary linear relations.
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Proposition 2.3.3. Let U be a formally unitary linear relation in 9. Then
the following conditions are equivalent:

(i) U is unitary;

(i) DU)=RW)=9;

(i) U is ortho-complemented.

Proof. The implication (i)=(i) is trivial. By [l], Proposition 4.4, (iii) implies
(ii). The implication (i)=(iii) follows from Proposition 2.1.2. [

Let us give two examples, which show that the classes of the linear relations
under current discussion are all different. Let $ be the 2x-dimensional complex
space C¥, x<-oo, with the inner product

ig= Shea- 3 fia

Then $ is a Pontrjagin space with 3 negative squares, and thus we can choose
the components 9, of a fundamental decomposition of $ so that dim $, =x.
Let {¢£),_, ., besucha basisof $, that leif lef]= %0y, k. j=1, ..., %.

Define Q:={(ef +e7), ie., the subspace spanned by the vector e +ey . Then
¢ is neutral, and so the linear relation V:=0aQ in 9 is isometric; but as
Q@=L ¥V is not formally unitary.

For the second example set M:={e; +ej....,e¢; +e, ). Then M =M+,
and thus the definition U:=MpIM gives U l=MaeM=M-aM+=U", that
is, U is a formally unitary linear relation in $. On the other hand, U 1is not
unitary because the domain is not the whole space.

2.4. Rectangular isometric linear relations. Recall that an isometric operator
in a Krein space is said to be rectangular if both the domain and the range are
ortho-complemented. This definition is of course meaningful also in a general inner
product space. We extend this notion to linear relations by cailing a closed iso-
metric linear relation ¥ in the inner product space $ rectangular if it has a rec-
tangular operator part.

Remarks. 1° The definition of the rectangularity is given only for closed
linear relations. One could of course drop the requirement of closedness, but as
we are mostly interested in closed linear relations we preferred this definition.

2° The apparently more natural definition “V is rectangular if D(V) and
R(V) are ortho-complemented” is not suitable for relations because it implies,
by Proposition 2.1.2, that V' is an operator.

3¢ The definition of rectangularity is slightly inconvenient: we have agreed
to call a linear relation ¥ an operator if ¥(0)={0}. In this context one might
think that a rectangular isometric linear relation V with V(0)={0} is a rec-
tangular isometric operator (in the sense of [2), p 128). But this is not necessarily
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true. For example, let ¥, be a rectangular isometric operator in a Krein space
such that D (V)L is indefinite, let N be a closed neutral subspace in D (V)L
and define V:=V[+]Na {0} Then this V¥ is a rectangular isometric linear
relation, which is an operator but which is not a rectangular isometric operator.

Using the results of [2] one can verify the following assertion: a rectangular
isometric linear relation ¥V in a Krein space is a rectangular isometric operator
if and only if N(V)=V(0)={0}.

4° A rectangular isometric linear relation ¥ has the convenient property
VO=M(V)® V(0); see Theorem 2.2.3.

In studying rectangular linear relations the following general result is useful
(cf [5], Lemma 5.1):

Lemma 2.4.1. Let 2, be an ortho-complemented subspace in 9, let L, be
a subspace orthogonal to L., and define L:=2,[+]18,. Then

(i) T=&,[+]T,;

(ii) £ is closed/ortho-complemented if and only if 8, is closed/ortho-comple-
mented.

Proof (i) The assumptions imply that Q=g [+]12++ A2 and
LN = (LN 8 +2)L = {(F+2)ngf )t = gr L,
Thus ++=¢,[+]2;++, which is (i).
(i) If 2, is closed, then, by (i), £ is closed. If 2 is closed, then, as shown

above, £, =21 =8nQL=2neL, which is L,. The rest of (ii) is proved in [2],
Lemma 1.9.2. [

The next result gives necessary and sufficient conditions for the rectangularity
in two important special cases.

Proposition 2.4.2. Let V be an isometric linear relation in 9.

1° In case © is a Krein space, V is rectangular if and only if it has an ortho-
complemented operator part and VO is closed.

2° In case  is a Pontrjagin space, V is rectangular if and only if it has a closed
operator part and V°o=R(V)d V(0).

Proof. 1° follows if we combine Proposition 2.1.2, Theorem 2.2.3 and Lemma
2.4.1. For 2° recall that in a Pontrjagin space every neutral subspace is closed
and that a closed, non-degenerate subspace is always ortho-complemented ;
see [2]. O

Formally unitary and unitary rectangular linear relations can be characterized
with the help of the “deficiency spaces” of a rectangular operator part. Recall
first that a maximal neutral subspace € in $ is said to be hypermaximal neutral
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if it has neither non-positive nor non-negative proper extensions. This is equivalent
to the condition £=21; see [2], Theorem 1.7.4. As the hypermaximality plays
a decisive role in the description mentioned above, we include here a result about
the existence of hypermaximal neutral subspaces.

Proposition 2.4.3. Let  be a Krein space with the fundamental decomposi-
tion H=9H,[+1D_. Then there exist hypermaximal neutral subspaces in 9 if
and only if dim H,=dim H_.

Proof. 1If dim 9, =dim $_, there exists an isometry K: H, —~9H_. The
definition L:={f+Kf|fc9H,} gives then a hypermaximal neutral subspace. Con-
versely, a hypermaximal neutral subspace & can be represented in the form
L={f+Kf|f€9H,}, where the isometry K is the angular operator of £ with
respect to $,; see [2]. Consequently, dim$H, =dimH_. [

Theorem 2.4.4. Let V be a rectangular isometric linear relation in © with
a rectangular operator part V. Then

() V is formally unitary if and only if W(V) and V(0) are hypermaximal
neutral in D(V)*t and R(V)L, respectively;

(i) V is unitary if and only if D(Vy)=RVy)=9.

Proof. (i) As V is rectangular we have, by Theorems 2.2.2 and 2.2.3, the equal-
ity R(V)=RTVY[+]V(0), which implies, by Proposition 2.1.2 and Lemma 2.4.1,
that R(V) is closed. Thus we can use the characterization given in Proposition
2.3.1 (iv). Owing to Theorem 2.2.2, D) =DV ) nR(V)*+ and R(M)i=
R(V)LAV(0):. On the other hand, as noted above, N(V) and V(0) are hyper-
maximal neutral in D(V)*+ and R(V)*, resp, if and only if RP)=RN(P)*n
DVt and V(O)r=V(0)*nR(V)">, resp. Therefore Proposition 2.3.1 implies
the result. (ii) is obvious. []

2.5. Defect numbers. Let V7 be an isometric linear relation in the inner prod-
uct space $. As in the operator case we call the subspaces D(V)*+ and R(V)*
the deficiency spaces of V. The geometry of these spaces is reflected in the ex-
tensions of ¥ in the following way.

Theorem 2.5.1. Let V be an isometric linear relation in . Then the follow-
ing conditions are equivalent:
() R(V)* contains a non-zero neutral vector,
(ii) V' has an isometric extension which is not an operator;
(iii) V' has an isometric extension V' in a larger inner product space 9 with
V' (0)n$’ = {0}.

Theorem 2.5.2. Let V be an isometric linear relation in 9. Then the following
conditions are equivalent:
(i) R(V)*  contains a positive/negative vector;
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(i) V has an isometric extension V' in a larger inner product space $’, which
includes © as an ortho-complemented subspace with $* negative/positive in $’,
such that V' (0)n(H\9H)=0.

These results can be proved by using the Cayley transformation and [6], Theo-
rem 4.2. Note that one can get analogous theorems by considering D(¥)* and
N(V) instead of M(V)+ and V(0), resp.

For the rest of this chapter we shall use the following conventions: $ is a Krein
space, V is a rectangular isometric linear relation in $, and V is a rectangular
operator part of V. Furthermore, we set D:=D(V), R:i=R(V), Di:=D(V))
and R,:=R(V).

As D} is ortho-complemented and hence a Krein space itself, it has a funda-
mental decomposition
(2.5.1) D =D, [F]1D,-
such that D,. and D,_ are Hilbert spaces with respect to [-|-] and —[-]-],
resp. The neutral subspace (V) in DL can be represented in the form

(2.5.2) NP) = {f+KfIfeDK)},

where K is the angular operator of M (¥) with respect to D,.; see [2]. Recall
that K is a J-isometric operator, ie,

—[KfIKf1=1[f1f1  (feD(K)),
and that D(K) as well as R(K) are ortho-complemented in D, and D;_, resp.
Set D, :=D(K)* (in Dyy) and D _:=R(K)" (in D;_). Then these sub-
spaces are ortho-complemented also in $, and we have the decompositions
D = D [H]ID_[FIDE)[F]R(K),
DL =D [F]D_[+]NWF).
Indeed, the first formula is quite obvious, and the second follows from the first

and from the representation

NY) = RNE )T A (DE)[F]IR(K)),

(2.5.3)

which in turn is a consequence of (2.5.2).
Likewise, a fundamental decomposition
(2.5.4) R =R, [+]R,-
of L and the representation
V(0) = {f+LfIfe D)}

of V(0) with the angular operator L with respect to R, induce the decom-
positions
R =R [FIR_[FIDDO[FHIRD).

(2.5.5) R =N_[FIR_[+1V(0);
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here M. and R_ are the orthogonal companions of D(L) and R(L), resp,
in R, and R,_, resp.

Define o, (V):=dim D, o¢y(¥):=dim RN(V), B (V):=dim R, and B,(V):=
dim 7(0). These numbers are independent of the decompositions; see [2]. The
numbers o (V) and B, (V) are called the defect numbers of the rectangular iso-
metric linear relation V. Several results below will justify this terminology. First,
a useful lemma.

Lemma 2.5.3. Let V' be a rectangular isometric linear relation in the Krein
space ©. Then V' is an extension of the rectangular isometric linear relation V
if and only if V'° extends V° and there exists a rectangular operator part V. of
V' which extends V. In this case

Vi=V+1W,,
where W is a rectangular isometric operator in $.

Proof. If V' extends V, then V' is a closed subspace of the Krein space V1,
and hence it has a closed complement W’ in Vi. Define Wi=V'nW’ and
V{:=VJ[+1W,. To prove the ortho-complementedness of ¥, notice first that
it is closed by Lemma 2.4.1, and it is obviously an operator part of V’. But as
% is a Krein space, all closed operator parts of V'’ are ortho-complemented because
they are isometrically isomorphic to an ortho-complemented complementary sub-

space of ¥’® in V' see [2]. The other assertions are easily established. [

The next result characterizes the various types of extensions of the rectangular
isometric linear relation F° with the help of the defect numbers of V.

Theorem?2.5.4. (i) V has a rectangular isometric extension V' with V)=V,
RPVY=RWV) and V' (0)=V(©) if and only if min{u, (V),B,.(V)}=0 or
min {ox_(V), _(V)}=0;

(ii) V' has a rectangular isometric extension V' with Jt(V)=R(V), V' (0)=
V() and V=V, if and only if min {x, (V),a_(V)}=0;

(i) V' has a rectangular isometric extension V' with V' (0)=V(0), V.=V,
and NV NY=RV) if and only if min {f,(V), f_(V)}=0.

Proof. () If V has an extension ¥V’ with the mentioned properties, then we
can suppose, by Lemma 2.5.3, that V=V [+]1W,, where W {0} isa rectangular
isometric operator. Hence D(W,)={0} is ortho-complemented, and so there
exists in D(W,) a positive or negative vector. As W, is isometric, R(W,) con-
tains also a vector of the same kind. On the other hand, D(W)cD(Vy)*+ and
RW)CR(V )+, consequently, we must have min {a (V), . (V)}=0 or
min {o_(V), B_(V)}=0.

Conversely, let e.g. min {a, (V), B.(V)} be greater than zero. Then we can
find vectors feD(V)* and gcR((V)*: such that [f|f]=[glgl=1. By setting
V' :=V[+1(f,g)) we get a proper closed isometric extension with R(V")=R(V)



366 PEKKA SORJONEN

and V' (0)=V(0). Furthermore, V,:=V[+1{(f,g)) is an operator part of V’.
Lemma 2.4.1 guarantees that V] is ortho-complemented, and thus V'’ is rectangu-
lar by Proposition 2.4.2. The case min {&_(V), f_(V)}=0 can be handled
similarly.

(ii) Suppose first that ¥’ has the given properties. With the agreed notation
we have RPH)=RO)[+]¢, where L:=NTV)IND.[+]1D_)#{0}. Choose
a non-zero vector f from £; then f=f,+f_ with f. €D, . Furthermore, both
f+ and f_ are different from zero; hence min {«_. (V), a_(V)}=0.

If min {o, (V), a_(V)}=0, then there exist vectors f, in D. such that

[filfi]==%1. The formula
V=V IR+ +f-)) @V (0)

defines then a linear relation satisfying the required conditions.
(iii) can be proved in the same way as (ii). [

We call a rectangular isometric linear relation in © maximal rectangular if
it has no rectangular isometric proper extensions in $. As a corollary of the pre-
vious theorem we get the following extension of [2], Theorem VI.4.3.

Theorem 2.5.5. The rectangular isometric linear relation V in the Krein space
9 is maximal rectangular if and only if

min {z, (V), f. (V)} = min {oa_(V), f_ (M)}
= min {a, (), e ()} = min {f.. ("), f_(V)} = 0.

This result has a clear geometrical interpretation: J»  is maximal rectangular
if and only if the deficiency spaces D(V)* and R(V)* are semi-definite of op-
posite signs. The sign of a neutral subspace is here assumed to be different from
the sign of every semi-definite subspace.

As in the operator case, we can characterize formally unitary and unitary
linear relations by the defect numbers:

Theorem 2.5.6. The rectangular isometric linear relation V' in the Krein space
9 is formally unitary if and only if x.(V)=B.(V)=0. In this case V is unitary
if and only if o,(V)=p,(V)=0.

Proof. If V is formally unitary, then, by Theorem 2.4.4, the subspace N (V)
is hypermaximal neutral in the Krein space D . Consequently, for the angular
operator K of (V) we have D(K)=D,, and R(K)=D,_; but this means
that o, (V)=o_(¥)=0. Similarly, g (V)=p_(V)=0.

Conversely, from the assumptions we get DL=%R(V) and RL=V(0); see
(2.5.3) and (2.5.5). Proposition 2.3.1 (iv) implies now the desired result.

The second assertion is easily established on the first assertion and Proposi-
tion 2.3.3. [0
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3. Extensions of rectangular isometric linear relations

3.1. Existence. We continue the study of rectangular isometric linear rela-
tions in a Krein space by showing the existence of various kinds of extensions.
For the operator version of the following result, see [2], Theorem VI.4.4.

Theorem 3.1.1. Every rectangular isometric linear relation in a Krein space
admits maximal rectangular extensions.

Proof. Let V be a non-maximal rectangular isometric linear relation in a Krein
space ©, and let ¥V, be its rectangular operator part.

1° Suppose first that o, (V)=a_(V) and p,(V)=p_(V). The subspaces
N(V) and V(0) are neutral in the Krein spaces D(Vy)*+ and R((V)L, resp.,
and thus they admit maximal neutral extensions 9, and 9t_, resp. By the
assumption we then have

dim N, = dim D, = ¢;(V)+o, V), dimR.,=dimR,_ = f,(V)+p_-(V);

see (2.5.1) and (2.5.4). The definition V"=V [+1N, SN, gives a rectangular
isometric extension of V. Furthermore, since «_ (V' )=p_(V')=0, Theorem 2.5.5
guarantees the maximality of 7.

2° The case o, (V)=a_(V) and f,.(V)=p_(V) is analogous to 1°.

3°If ay(V)=a_(V) and B . (V)=p_(V), we can, as in 1°, construct a rec-
tangular isometric extension V’:=V[41N,@ N, for which a_(V)=p_(V")=0.
Hence, analogous to (2.5.3) and (2.5.5), we have

D)L =DL[HINE), RE)*E=R[+]V(0),

where ®’, and R’ are Hilbert spaces. Consequently, there exists a Hilbert
space isometry ¥, from D into R’ such that D(V,)=D) or RV ,)=R.
This ¥, is obviously rectangular, and, as it is easy to see, the linear relation

V7= VI+IVOIFHIRE) @V (0)

is a rectangular isometric extension of V. The construction of V" implies further
that a_(V")=p_(V")=0 and o, (V")=0 or B,(V")=0. Thus V" is maximal
rectangular by Theorem 2.5.5.

PRI a,(V)=a_(V) and B,.(V)=F_(V), we can use the same method
asin 3°. [

To examine the existence of formally unitary extensions we need the following
lemma, the proof of which is straightforward.
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Lemma 3.1.2. Let there be given four cardinal numbers o, f,. Then
o +B_=p+a_ if and only if there exist four cardinal numbers y , o, p such that
ay =pitoa, Br=yi+p,
o_=y_+oa, P_=y_+p.
Theorem 3.1.3. Let V be a rectangular isometric linear relation in a Krein
space 9. Then V has a rectangular formally unitary extension in  if and only if

(G.1.1) ar(N+B-V) = V)+a_ ().

Proof. 1° Suppose that U is a rectangular formally unitary extension of V,
and let U be its rectangular operator part. By Lemma 2.5.3 we can assume that
U,DV,, where V, is a rectangular operator part of V. Furthermore, we can
choose the components D, of a fundamental decomposition of D(V)* in such
a way that the following scheme is true:

ms-&— [+]®s— = D(Vs)_L

U U
(3.1.2) DEN+HIREK) = DUY-;
U U
DK)  REK)

here K and K’ (oK) are the angular operators of (V) and 9(U), resp,
with respect to D,.. In addition, all the subspaces in this scheme are Hilbert spaces
with respect to [+]|+] or —[-]-].
From (3.1.2) we get
D, = DK = DEN[+]DEK)L DK,

where the orthogonal companions are formed in the space D,,. Setting y.:=
dim D(K’)* and o:=dim D(K)*nD(K’) we then have o, (V)=y.+a.

Likewise, from the analogous decomposition of ®_:=R(K)+ we get a_(V)=
y_+a’, where y_:=dim R(K)'t and o :=dim R(K)*NR(K)=a. The last
equality is implied by the fact that the spaces D(K)*nD(K’) and R(K)LnR(K")
are isometrically isomorphic.

Let L and L’ be the angular operators of ¥(0) and U(0), resp., with respect
to R,.; here R,, is a component of a fundamental decomposition of R(V,)*
so chosen that the scheme analogous to (3.1.2) holds true. Then, as above, one
can prove the equalities f.(V)=45.+f, where 6, :=dim D(L)*, §_:=dim R(L)*
and B:=dim D(L)*nD(L)=dim R(LHNR(L).

Hence, in the light of Lemma 3.1.2, it is enough to prove the equalities J, =7, .
For this, decompose the space D(V,)* in two ways:

DI =DUNI+]DUYNDF Y+
and
DFI = {PEIFIDE)HFHRE)[FIREK)L}

= DU [+ HDE) [+H]IRK)L},
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where the orthogonal companions are formed in suitable subspaces; see (3.1.2).
Hence we get

DUYNDFYL = DK [+F]RK)*
and analogously

RUYNRVYL = DL [+]IREL)*.

Furthermore, one can easily check that these decompositions are fundamental
decompositions. But the Krein spaces D(U)nD(V)t and R(U)NR(V)*+ are
isometrically isomorphic, and thus y,=dim D(K)t=dim D(L)*=d,; see [2],
Theorem V.1.4. The equality y_=34_ can be proved similarly. Hence (3.1.1)
is established.

2° Conversely, suppose that (3.1.1) is valid. Then, by using Lemma 3.1.2,
we can find the decompositions

bizmyi[+]$;5 mi :mvi[_i_]g{ﬁi:

here the Greek index denotes the dimension of the corresponding space. Thus
there exist isometric (or J-isometric) operators V., K’ and L’ mapping ZDH onto

ﬂiyi,bj onto ®; and ER;“ onto R;, resp. Define

; Ny :={f+K'f1feD}}, N.:={g+L'glgcRy}
an,
U=V [V [ FIV_[H1RO)[+1%) 8 (V(0)[+]9.),

where V, is a rectangular operator part of V. Then a straightforward calculation
shows that this U is a rectangular formally unitary extension of V. []

Corollary 3.1.4. Let V be a rectangular isometric linear relation in a Pontrjagin
space . Then V has a rectangular formally unitary extension in $ if and only if

(3.1.3) 2y (V) +ay(V) = B (V) +Bo(V).

Proof. Let $ have x negative squares, and let ¥ be a rectangular operator
part of V. Then both D(V,) and R(V,) are Pontrjagin spaces with " (=)
negative squares. Consequently, D(V,)* and R(V,)' are both Pontrjagin spaces
with x—x’ negative squares. This implies the equalities o_ (V) +o,(V)=p_(V)+
Bo(VY=%—3". In this case the formulae (3.1.1) and (3.1.3) are equivalent, which
proves the result. [

As another corollary we have the following operator version; cf [2], Theo-
rem VI1.4.4.

Corollary 3.1.5. Let V be a rectangular isometric operator in a Krein space
S. Then V has a unitary extension in © if and only if

w,(V)=B.V) & a (V)=p_-(V)



370 PEKKA SORJONEN

If in addition 9 .is a Pontrjagin space, then the equality o, (V)= (V) is
a necessary and sufficient condition for V to have unitary extensions in 9.

Although we do not characterize generalized extensions, i.e., extensions beyond
the original space, we add the following result about the existence of such extensions.

Theorem 3.1.6. Every rectangular isometric linear relation in a Krein space
has rectangular formally unitary extensions in a possibly larger Krein space.

Proof. We can suppose that a given rectangular isometric linear relation V
in a Krein space $ is not formally unitary and, by Theorem 3.1.1, maximal rec-
tangular. Then, by Theorem 2.5.6, we can further assume that e.g. a, (V)>0,
and hence, by Theorem 2.5.5, o_(V)=£,(V)=0.

Choose two Hilbert spaces &, with inner products (-|.), and with infinite
dimensions 6,=a, and d_=f_, resp. Then K:=8,GKR_ is a Krein space
with the inner product [-]-]":

[fit+f-lgs+g- 1= (f+lgs)+ —(f-1g-)= (f+, g:€8:).

Now we can regard V' as a rectangular isometric linear relation in the Krein space
" :=9Hd K. Denote by V, a rectangular operator part of V. The fundamental
decompositions corresponding to (2.5.3) and (2.5.5) have the following form in $":

DEYL = {®:[FISD[+HIDEI+HK-[FIREK)),
REYL = {KL[FIDDHFAHR-[+IKO[FIRD)}

Consequently, for the defect numbers o, f, of ¥ with respect to $’ we get
o +P = (s +0)F(P_+0)=0,4+0_ =L +a’.

Theorem 3.1.3 implies now the desired result. [J

3.2. Characterizations. In this section we describe the rectangular isometric
extensions of a given rectangular isometric linear relation in a Krein space. For
the corresponding operator versions in a Hilbert space, see [4], § 5.

Theorem 3.2.1. Let V be a rectangular isometric linear relation in a Krein
space 9.
If V' is a rectangular isometric extension of V in §, then

(3.2.1) Vo=V[+IW,

where W is a rectangular isometric linear relation in 9 such that D(W)CD(V)*,
RV TRV, Vaw={0} and V°+ WO is closed.

Conversely, let W be as above, then V' defined by (3.2.1) is a rectangular
isometric extension of V in 9.
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Proof. 1° Suppose first that ¥’ is a rectangular isometric extension of V.

Using Lemma 2.5.3 and its notation we get
V =V I+ J[+]V".

As V° and PV’ are closed and V°cC V’9, there exists a closed subspace W, such
that V0=V°4 W,. Furthermore, this W, is neutral and orthogonal to ¥7°, and
it has a representation W,=9,®R,,, where N, and N_ are closed complemen-
tary subspaces of 9t(¥) and V(0), resp., with respect to N(V") and V’(0), resp.
This is easily established on the equalities V°=NR(V)D V' (0) and V=NV
¥’(0). Consequently, a straightforward calculation shows that the linear relation
W:=WJ+]W, satisfies the required conditions.

2° Conversely, let the linear relation W be given, and define ¥’ by (3.2.1).
Then ¥V’ is isometric and it has a representation
V' = W[+ [+109),
which implies, by Lemma 2.4.1 and Proposition 2.4.2, that ¥’ is rectangular. []

By combining the previous result with Theorem 2.5.5 and Proposition 2.3.1
we get

Corollary 3.2.2. Let V,V’ and W be as in Theorem 3.2.1. Then
(i) vV’ is maximal rectangular if and only if the spaces DI LD and
RNLARW)L are semi-definite and of opposite signs;
(i) v’ is formally unitary if and only if
VoL = (D)@ RY)+ DOV SRV}
or equivalently

RE)+RW) =D)L nDW)L, V(O)+W(0) = RI)- nRMI)L.

4. Symmetric linear relations

4.1. Rectangular symmetric linear relations. We first recall some basic facts
about symmetric linear relations; see [6]. Let $ be an inner product space. A
linear relation S in $ is called symmetric if ScS™, ie.,

[glh] = [f|k] for all (f,g),(h,k)ES.

Let z be a non-real complex number, and let S be a symmetric linear relation
in 9. Then the Cayley transform

C.(8) = {(g—zf, g—ZNI(f, 2 S}

of S is an isometric linear relation. Conversely, if ¥ is an isometric linear relation,
then the inverse transform

F,(V)={(g—f, zg—2NI(f. )€V}
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of V is a symmetric linear relation. Furthermore, a symmetric linear relation S
is self-adjoint, i.e., S=S*, if and only if its Cayley transform is formally unitary.
As the Cayley transformation C, preserves the orthogonality only in case z= i,
we suppose in the sequel that z=i.

For the following auxiliary result, recall that the deficiency spaces M. ;(S):=
{(h, e S +|k=+ih} of a symmetric linear relation S are operators with the
domains D(M .;(S))=RN(S * Fil).

Lemma 4.1.1. Let S be a symmetric linear relation in $ and set V:= Ci(S).
Then
@H V°=Ci(S9,
(i) NEP)=DM_(S)NS), V() = D(M;(S)nS);
(i) F(RE)BV0) = Mi(S)NS[+]1M_(S)S;
(iv) D(M4i(8))° = D(M;(S)°).

The proof is a direct verification.

We call a symmetric linear relation S in § rectangular if its Cayley trans-
form C;(S) is rectangular. A more direct definition is included in the follow-
ing result.

Theorem 4.1.2. A4 closed symmetric linear relation S in § is rectangular
if and only if
4.1.1) N(S+il) = R(S—il),

and there exists a linear relation S, S such that the subspaces R(S,+il) are
ortho-complemented and

(4.1.2) S=S,[+]S°.

For the proof, use the Cayley transformation together with Lemma 4.1.1,
Theorem 2.2.3 and [6], Lemma 2.12.

Remarks. 1° Theorem 2.2.3 and Lemma 4.1.1 imply that (4.1.1) is equivalent
e.g. to the equation
S0= M (S)NnS[+IM_;(S)nS.

2° In spite of the notation, S is not necessarily an operator. In fact, S, is
an operator if and only if the Cayley transform of S has a rectangular operator
part for which the number one is not an eigenvalue.

3° Let S be a closed symmetric linear relation in a Pontrjagin space with
the following properties: D(S) includes the negative component of a fundamental
decomposition of that space, and the constant c, introduced in [6] is smaller than
one. Then one can prove that this S is rectangular. Thus the study of rectangular
symmetric linear relations extends at least partially the considerations of [6].

Let us list some useful properties of rectangular symmetric linear relations.
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Theorem 4.1.3. Let S be a rectangular symmetric linear relation in 9, and
let (4.1.2) be its decomposition. Then
(1) R(S=Eil) are closed and

R(S+il) = R(S,+iD)[+]R(S°+iD);
(i) D(Msi(S)) = D(Ms;(S)nS) = RSFil) = R(SLil)* = R(S°£il);
(i) M+;(S)NS =M., (S)nS°;
(iv) (ST +il) = N(SF +il) AR(ST Fil).

Proof. The formula in (i) follows from Theorem 4.1.2. The closedness of
R(S+il) follows if we use the Cayley transformation, Theorem 2.2.2, Lemma
2.4.1 and the formula already proved.

To prove (ii), note that, by (i), R(S*il)* are closed and

RSN = N(STFil) = b(imii(S))O.
Furthermore, by Theorem 4.1.2, we have
R(SLi)° = N(SFil) = b(imi;(S)mS).

Using the Cayley transform ¥ of S and the equation V=N (V) V(0) we get
the missing link M(STFi=R(S°+il).

The verification of (iii) is a straightforward calculation, in which one can use
(ii). (iv) follows from (i) and (ii). [

From Theorem 4.1.3 and from similar considerations as in the operator case
we get the following extension of the von Neumann formula; cf [4], Theorem 6.1
and [6], Theorem 4.10.

Theorem 4.1.4. Let S be a rectangular symmetric linear relation in $, and
let (4.1.2) be its decomposition. Then

St = S[+HIM(S)[+]IM_i(S).

Corollary 4.1.5. Let S be a rectangular symmetric linear relation in 9.
Then the following assertions are equivalent:
() S is self-adjoint;

(i) S°= M;(S)[+]IM_i(S);
(iiiy N(STEil) = N(SLiD).
4.2. Extensions. Let S be a rectangular symmetric linear relation in a Krein

space $. Using the Cayley transformation and the results of Section 2.5 we can
find the fundamental decompositions

RS—iNL = D, [FID_[FIN(S+iD),
R(S+il)L = R, [FIR_[FINES—iD)
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such that the subspaces D, and R, are ortho-complemented and the dimensions
of these spaces are independent of the particular decomposition of this type.
Define o, (S):=dim D, 0,(S):=dim N(S+il), B+ (S):=dim R, and o(S):=
dim N(S—if). Then a,(S)=0,;(Ci(S)) and B,(S)=p,(Ci(S)) for ic{+, —,0}.
Thus we call «,(S) and B.(S) the defect numbers of S.

Using the Cayley transformation we can deduce the following result from
the corresponding results concerning rectangular isometric linear relations; see
Sections 2.5 and 3.1.

Theorem 4.2.1. Let S be a rectangular symmetric linear relation in a Krein
space 9. Then
(i) S is maximal rectangular if and only if

min {o, (S), B, (S)} = min {o_(S), B_(S)}
= min {o, (S), «— (S)} = min {, (5), f_(S)} = 0;
(i) S is self-adjoint if and only if «.(S)=p4(S)=0;
(iii) S has always maximal rectangular extensions in $;
(iv) S has rectangular self-adjoint extensions in § if and only if
2 (S)+B-(S) = B (S)+a_(S);
(v) S has always rectangular self-adjoint extensions in a possibly larger

Krein space.

Characterizations of rectangular extensions of a rectangular symmetric linear
relation follow also with the help of the Cayley transformation; for the Hilbert
space case, see [3], II.2 and [4], §6.

Theorem 4.2.2. Let S be a rectangular symmetric linear relation in a Krein

space 9.
If S’ is a rectangular symmetric extension of S in , then
“4.2.1) S'=S[+1T-VHDW),

where V' is a rectangular isometric linear relation such that ©(V')c M(S), R(V')c
M_(S) and S°+(I—-V)DWV)) is closed.

Conversely, if V' is as above and if the sum S+(I—V'YD(V’) is direct, then
the formula (4.2.1) defines a rectangular symmetric extension S’ of S in §.

Proof. Let S’ be a rectangular symmetric extension of S. Then V,;:=C,(S")
is a rectangular isometric extension of the rectangular isometric linear relation
V:=C(S). Define

V7= {((k, ik), (h, —ih))|(h, k)eW'},
where W is the rectangular isometric linear relation attached to ¥, by Theorem

3.2.1. Then a boring but straightforward calculation shows that this ¥’ has the
desired properties.
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The converse follows similarly. We remark only that in this case one can
define the W to be used in applying Theorem 3.2.1 by the equation

W= {(g. ES(L, if). (g, —i)eV’}. O

Corollary 42.3. Let S, S’ and V' be as in Theorem 4.2.2. Then S’ is
self-adjoint if and only if

422 SUHT-V)DE)) = Mi(S)NDF )L [+IM_((S) nRE )

This result can be deduced from Corollary 3.2.2 in a similar way as Theorem
4.2.2 was deduced from Theorem 3.2.1. We only write down two formulae, which
can be used in the course of the proof:

S+ NI-V)IDI)) = FE LIV,
F((@M@RE)+DW)@RIV)L) = My(S)n DI +M_(HnRE)*

Note that although the relation (4.2.2) looks quite cumbersome, it gives us
the known criteria for self-adjointness in the Hilbert space case. In that case the
left side of (4.2.2) is automatically zero, and then Corollary 4.2.3 says that S’ is
self-adjoint if and only if the corresponding isometry ¥’ maps M;(S) onto
M_(S); cf [4], Corollary 6.4.
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