A NOTE ON LIPSCHITZ COMPACTIFICATIONS

JOUNI LUUKKAINEN

1. In [1] we introduced Lipschitz compactifications or LIP compactifications as compactifications in the category LIP of metric spaces and locally Lipschitz (LIP) maps. That is, if $f: X \to Y$ is a dense LIP embedding of a metric space X into a compact metric space Y, then Y or, more properly, the pair (Y, f) is called a LIP compactification of X. Two LIP compactifications of X are called LIP equivalent if they are equivalent through a lipeomorphism. We proved in [1, 1.14] that a metric space has a LIP compactification if and only if it is separable and locally totally bounded.

In this note we consider the problem whether a metrizable compactification Z of a separable locally totally bounded metric space X is equivalent to a LIP compactification of X, or equivalently, whether Z can be metrized in such a way that Z becomes a LIP compactification of X. Let $K_Z(X)$ denote the set of the LIP equivalence classes of the LIP compactifications of X that are equivalent to Z. In Theorem 1 we give characterizations for $K_Z(X) \neq \emptyset$. Our main result, Theorem 2, is that $K_Z(X) \neq \emptyset$ for every Z if and only if X is locally compact. In Theorem 3 we consider the cardinality of $K_Z(X)$. We now give an example where $K_Z(X) = \emptyset$. Let X be the subspace $[0, 1] \setminus \{1/n | n \geq 1\}$ of \mathbb{R} and let $Y \subseteq \mathbb{R}$ be the union of $\{0\}$ and the intervals $(1/(2n+1), 1/2n)$, $n \geq 1$. Then \bar{X} and $\bar{Z} = \bar{Y}$ are compact and there is a homeomorphism f of X onto Y with $f(0) = 0$. However, no neighborhood of 0 in \bar{X} is homeomorphic to any neighborhood of 0 in \bar{Z}. Hence the condition (2) of Theorem 1 is not satisfied and thus $K_Z(X) = \emptyset$.

For the undefined LIP terms we refer to [1].

2. A bijection f between uniform spaces is called a locally uniform homeomorphism if both f and f^{-1} are locally uniformly continuous, i.e. uniformly continuous on some neighborhood of every point. We need the following modification of Lavrentiev's theorem [2, 24.9].

Lemma. Let S and T be complete Hausdorff uniform spaces, let $A \subseteq S$ and $B \subseteq T$ be dense subsets, and let $f: A \to B$ be a locally uniform homeomorphism. Then there are open sets $U \supseteq A$ and $V \supseteq B$ and a locally uniform homeomorphism $F: U \to V$ extending f.

doi:10.5186/aasfm.1980.0516
Proof. By [1, 2.9.5] \(f \) and \(f^{-1} \) have locally uniformly continuous extensions to open neighborhoods of \(A \) and \(B \), respectively. The proof can now be completed as in [2, 24.9].

Theorem 1. Let \(X \) be a separable locally totally bounded metric space, let \(f: X \to Z \) be a metrizable compactification of \(X \), and let \(\tilde{X} \) be the completion of \(X \). Then the following conditions are equivalent:

1. \(K_Z(X) \neq \emptyset \).
2. There are neighborhoods \(U \) of \(X \) in \(\tilde{X} \) and \(V \) of \(fX \) in \(Z \) and a homeomorphism \(g: U \to V \) extending \(f \).
3. There is a neighborhood \(U \) of \(X \) in \(\tilde{X} \) and an embedding \(g: U \to Z \) extending \(f \).
4. There is a neighborhood \(V \) of \(fX \) in \(Z \) and an embedding \(h: V \to \tilde{X} \) extending \(f^{-1}: fX \to X \).
5. Consider \(Z \) with its unique compatible uniformity, given by any compatible metric. Then \(f \) defines a locally uniform homeomorphism of \(X \) onto \(fX \).

Proof. (1) \(\Rightarrow \) (5): Trivial.

(5) \(\Rightarrow \) (3) and (5) \(\Rightarrow \) (4): This follows from the Lemma.

(3) \(\Rightarrow \) (2): By [1, 1.13] \(X \) has a locally compact neighborhood in \(\tilde{X} \). Thus we may assume that \(U \) is locally compact. Then \(gU \) is locally compact and hence open in \(Z \).

(4) \(\Rightarrow \) (2): This is proved as (3) \(\Rightarrow \) (2).

(2) \(\Rightarrow \) (1): Let \(e \) be the metric on \(V \) for which \(g: U \to (V, e) \) is an isometry. We may assume that \(V \) is open. Then by [1, 6.4] there is a compatible metric \(r \) on \(Z \) which is LIP equivalent to \(e \) on \(V \). Hence \(f: X \to (Z, r) \) is a LIP embedding.

Theorem 2. Let \(X \) be a separable locally totally bounded metric space. Then \(K_Z(X) \neq \emptyset \) for every metrizable compactification \(Z \) of \(X \) if and only if \(X \) is locally compact.

Proof. Suppose that \(X \) is locally compact and that \(f: X \to Z \) is a metrizable compactification of \(X \). Then \(X \) is open in \(\tilde{X} \) and \(fX \) in \(Z \). Hence the condition (2) of Theorem 1 is satisfied. Thus \(K_Z(X) \neq \emptyset \).

Suppose now that \(X \) is not locally compact. Then \(X \) is not open in \(\tilde{X} \). Hence by [1, 6.5] there is a compatible totally bounded metric \(e \) on \(X \) having no extension to a compatible metric on a neighborhood of \(X \) in \(\tilde{X} \). Then the completion \(Z \) of \((X, e) \) is a compactification of \(X \) such that the condition (2) of Theorem 1 is not satisfied. Thus \(K_Z(X) = \emptyset \).

The sufficiency part of Theorem 2 generalizes the sufficiency part of a similar result [1, 1.6] on one-point compactifications and gives it a new proof.

In the next theorem we consider \(K_Z(X) \) with its partial order which one gets through representatives setting \((Y, f) \leq (Y', f') \) if there is a LIP map \(g: Y' \to Y \) with \(gf' = f \).
Theorem 3. Let X be a noncompact metric space and let Z be a metrizable compactification of X with $K_Z(X) \neq \emptyset$. Then $K_Z(X)$ has the cardinality of the continuum. In fact, $K_Z(X)$ contains a subset which has the cardinality of the continuum and whose elements are not comparable.

Proof. We may assume that Z is a compact metric space and that X is a subspace of Z. Since $X \neq Z$, the proof can now be completed just as for one-point compactifications in the proof of [1, 1.9].

This generalizes [1, 1.9 and 1.10] and improves [1, 1.15.2].

3. Finally we consider the case where we allow the metric of X to vary.

Theorem 4. Let X be a metrizable space which is not locally compact, and let

$f: X \to Z$ be a metrizable compactification of X. Then X can be metrized by a totally bounded metric such that $K_Z(X) = \emptyset$.

Proof. Since fX is not open in Z, by [1, 6.5] there is a compatible totally bounded metric e on fX such that no compatible metric on Z is LIP equivalent to e on fX.

References

University of Helsinki
Department of Mathematics
SF-00100 Helsinki 10
Finland

Received 24 January 1980