A NOTE ON LIPSCHITZ COMPACTIFICATIONS

JOUNI LUUKKAINEN

1. In [1] we introduced Lipschitz compactifications or LIP compactifications as compactifications in the category LIP of metric spaces and locally Lipschitz (LIP) maps. That is, if $f: X \rightarrow Y$ is a dense LIP embedding of a metric space X into a compact metric space Y, then Y or, more properly, the pair (Y, f) is called a LIP compactification of X. Two LIP compactifications of X are called LIP *equi*valent if they are equivalent through a lipeomorphism. We proved in [1, 1.14] that a metric space has a LIP compactification if and only if it is separable and locally totally bounded.

In this note we consider the problem whether a metrizable compactification Z of a separable locally totally bounded metric space X is equivalent to a LIP compactification of X, or equivalently, whether Z can be metrized in such a way that Z becomes a LIP compactification of X. Let $K_Z(X)$ denote the set of the LIP equivalence classes of the LIP compactifications of X that are equivalent to Z. In Theorem 1 we give characterizations for $K_Z(X) \neq \emptyset$. Our main result, Theorem 2, is that $K_Z(X) \neq \emptyset$ for every Z if and only if X is locally compact. In Theorem 3 we consider the cardinality of $K_Z(X)$. We now give an example where $K_Z(X)=\emptyset$. Let X be the subspace $[0, 1] \setminus \{1/n \mid n \geq 1\}$ of \mathbf{R} and let $Y \subset \mathbf{R}$ be the union of $\{0\}$ and the intervals $(1/(2n+1), 1/2n), n \geq 1$. Then \overline{X} and $Z = \overline{Y}$ are compact and there is a homeomorphism f of X onto Y with f(0)=0. However, no neighborhood of 0 in \overline{X} is homeomorphic to any neighborhood of 0 in Z. Hence the condition (2) of Theorem 1 is not satisfied and thus $K_Z(X) = \emptyset$.

For the undefined LIP terms we refer to [1].

2. A bijection f between uniform spaces is called a *locally uniform homeomorph*ism if both f and f^{-1} are locally uniformly continuous, i.e. uniformly continuous on some neighborhood of every point. We need the following modification of Lavrentiev's theorem [2, 24.9].

Lemma. Let S and T be complete Hausdorff uniform spaces, let $A \subset S$ and $B \subset T$ be dense subsets, and let $f: A \rightarrow B$ be a locally uniform homeomorphism. Then there are open sets $U \supset A$ and $V \supset B$ and a locally uniform homeomorphism $F: U \rightarrow V$ extending f.

Proof. By [1, 2.9.5] f and f^{-1} have locally uniformly continuous extensions to open neighborhoods of A and B, respectively. The proof can now be completed as in [2, 24.9]. \Box

Theorem 1. Let X be a separable locally totally bounded metric space, let $f: X \rightarrow Z$ be a metrizable compactification of X, and let \tilde{X} be the completion of X. Then the following conditions are equivalent:

(1) $K_{\mathbb{Z}}(X) \neq \emptyset$.

(2) There are neighborhoods U of X in \tilde{X} and V of fX in Z and a homeomorphism g: $U \rightarrow V$ extending f.

(3) There are a neighborhood U of X in \tilde{X} and an embedding $g: U \rightarrow Z$ extending f.

(4) There are a neighborhood V of fX in Z and an embedding $h: V \rightarrow \tilde{X}$ extending $f^{-1}: fX \rightarrow X$.

(5) Consider Z with its unique compatible uniformity, given by any compatible metric. Then f defines a locally uniform homeomorphism of X onto fX.

Proof. (1) \Rightarrow (5): Trivial.

 $(5) \Rightarrow (3)$ and $(5) \Rightarrow (4)$: This follows from the Lemma.

 $(3) \Rightarrow (2)$: By [1, 1.13] X has a locally compact neighborhood in \tilde{X} . Thus we may assume that U is locally compact. Then gU is locally compact and hence open in Z.

(4) \Rightarrow (2): This is proved as (3) \Rightarrow (2).

 $(2) \Rightarrow (1)$: Let *e* be the metric on *V* for which $g: U \rightarrow (V, e)$ is an isometry. We may assume that *V* is open. Then by [1, 6.4] there is a compatible metric *r* on *Z* which is LIP equivalent to *e* on *V*. Hence $f: X \rightarrow (Z, r)$ is a LIP embedding. \Box

Theorem 2. Let X be a separable locally totally bounded metric space. Then $K_Z(X) \neq \emptyset$ for every metrizable compactification Z of X if and only if X is locally compact.

Proof. Suppose that X is locally compact and that $f: X \to Z$ is a metrizable compactification of X. Then X is open in \tilde{X} and fX in Z. Hence the condition (2) of Theorem 1 is satisfied. Thus $K_Z(X) \neq \emptyset$.

Suppose now that X is not locally compact. Then X is not open in \tilde{X} . Hence by [1, 6.5] there is a compatible totally bounded metric e on X having no extension to a compatible metric on a neighborhood of X in \tilde{X} . Then the completion Z of (X, e) is a compactification of X such that the condition (2) of Theorem 1 is not satisfied. Thus $K_Z(X)=\emptyset$. \Box

The sufficiency part of Theorem 2 generalizes the sufficiency part of a similar result [1, 1.6] on one-point compactifications and gives it a new proof.

In the next theorem we consider $K_Z(X)$ with its partial order which one gets through representatives setting $(Y, f) \leq (Y', f')$ if there is a LIP map $g: Y' \rightarrow Y$ with gf'=f. Theorem 3. Let X be a noncompact metric space and let Z be a metrizable compactification of X with $K_Z(X) \neq \emptyset$. Then $K_Z(X)$ has the cardinality of the continuum. In fact, $K_Z(X)$ contains a subset which has the cardinality of the continuum and whose elements are not comparable.

Proof. We may assume that Z is a compact metric space and that X is a subspace of Z. Since $X \neq Z$, the proof can now be completed just as for one-point compactifications in the proof of [1, 1.9]. \Box

This generalizes [1, 1.9 and 1.10] and improves [1, 1.15.2].

3. Finally we consider the case where we allow the metric of X to vary.

Theorem 4. Let X be a metrizable space which is not locally compact, and let $f: X \rightarrow Z$ be a metrizable compactification of X. Then X can be metrized by a totally bounded metric such that $K_Z(X) = \emptyset$.

Proof. Since fX is not open in Z, by [1, 6.5] there is a compatible totally bounded metric e on fX such that no compatible metric on Z is LIP equivalent to e on fX. \Box

References

- LUUKKAINEN, J.: Extension of spaces, maps, and metrics in Lipschitz topology. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 17, 1978, 1—62.
- [2] WILLARD, S.: General topology. Addison—Wesley Publishing Co., Reading, Mass. Menlo Park, Calif.—London—Don Mills, Ont., 1970.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 24 January 1980