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ENTIRE FUNCTIONS WITH TWO LINEARLY
DISTRIBUTED VALUES

I. N. BAKER

In a series of papers [2, 3, 4] T. Kobayashi has given some interesting charac-
terisations of the exponential function by its property of having its a-points col-
linear on a line A(a) for several values of a. In [4] he proved

Theorem A. Let G be a transcendental entire function of finite lower order
Assume that the zero points of G lie on the line Re z=0 and that the one-points lie
on Rez=1. Then

G(z) = P(exp Cz)

where P is a polynomial and C a non-zero real constant.

Of course there are restrictions on the polynomials which can occur in Theorem
A and the possible forms are given in [4].

Kobayashi asks whether Theorem A still holds if the assumption that G has
finite order be omitted from the hypotheses. We prove the

Theorem. Let f be a transcendental entire function such that all the zeros of
f lie on Rez=0 and all the one-points on Rez=1. Then [ has finite order, so
by Theorem A there exist a polynomial P and a non-zero real constant C such that

f(z) = P(exp C2).

The proof depends on a recent result of J. Miles (Lemma 6) which states that
if an entire function has both infinite order and real zeros then the zeros are in
a certain sense scarce. Applying this to f(—iz) and f(1—iz)—1 and using
Nevanlinna’s second fundamental theorem gives the result after a number of sub-

sidiary points have been checked.
The proof follows in six lemmas and a concluding section.

Lemma 1. Let g be analytic in H: Im z=0 and omit the values 0 and 1 in H.
Then there exists a constant K=K(g) such that

) log |g(re%)] < Kr/(sinf), r=1,0<0<m.

Proof. The map z=¢(t)=i(l+1)/(1—t) maps the disc D: [f|<] to the
half-plane H. Applying Schottky’s theorem to g(¢ (7)) we obtain

lg (e (D)l = exp {K/(1—]t])}.
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Using

1 —|t]> = 4rsin 0/{r*+2r sin 6+1}, z = re®
we have

1—{t] = 2rsin 0/{r*+2rsin0+1}, [t| <1
and

log|g(re®)| < K(1+r)2/(2rsin 0) < Kr/(sin 0).

Lemma 2. Let g be analytic in the strip S: O<Im z<1 and omit the values
0 and 1 there. Then there exists a constant K=K(g) such that

log|g(x+iy)| < Ke*'*l/(sinny), 0<y<1, —oo= x <eo.

Proof. Putting w=e™ which maps S onto the half-plane H: Im w=0, the
result follows from Lemma 1 for x>0. For x<O0 the result follows by symmetry.

Lemma 3. Suppose f is entire and that all the zeros of f are real and all the one-
points hayve imaginary part one. Then there is a constant A such that

@ T(r)=T(r,f) <Ar~*e'™
Sfor all sufficiently large r.

Remark. We assume without explanation the standard notations of Nevan-
linna theory.

Proof. The result of Lemma 1 shows that f is of order one and exponential
type in any angle which is either strictly interior to Imz=0 or to Imz<0. If
the Jower order p=lim, . (log T(r))/(log r)<oo it follows from the Phragmén—
Lindeldf principle that f has at most order one in the plane and the assertion of
the lemma holds.

Thus we may assume that p=-oo so that 7(r)--oo faster than any power of r.
Put n=sin~!(1/r) and §={T(r)}~/2. Split the range of integration in
3 T(r)= ! 2”1 + %)) do
3) (") =5= f og* |f(re?)|
at +46,n*td,m—n+té and n+d. In the intervals [—6,68], [y—0, n+dl,
[r—n—0,7—n+48] and [x—6, n+5] we put

log* | f(re?)| = log M(r, f),

and in the remaining intervals use the estimates from Lemmas 1 and 2. It follows
that there are constants K, K’, P and Q such that for sufficiently large r

N B 2 log (e, f)

) T =5 sin (2r0) | 7w

Pr  Qe™ 45 )
< 7+W+—n—10gM(',f)-
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Taking R=r+¢ where ¢@=r/log T(r) we have

R—I—r_
R—r

3r r
®) logM(r,f) = T(R) > Tp—T(r+m] .

A lemma of Borel [1] states that for any increasing function V(r) which is
continuous in r>r, and such that V(r)—~co as r—eo and for any e=>0

V[r+@-;(—r)] = ()i

holds outside a set of finite logarithmic measure. Taking V=T and 1/2=¢=0,
(4) and (5) show that outside a set E of finite logarithmic measure in r=>1

T(r) < Pro~t+Qr251e™ +126rT (1) *¥/(n ),
or putting in the values of 6 and ¢
T(r) = PrT(r)2+Qr~2e™ T(r)"2+(12/m)(log T(r)T (V2.
For 0<e<¢g'<1/2 we have

log T(r) =o((T(r)* %)  (r =)

(1 _0(1)) T(r)V/2 < 2Qr 2e™

and so

as r—oo outside E. Hence for large r outside E
(6) T(r) < 502r~%e*™.

Since E has finite logarithmic measure there exists r, such that for any r=>r,
there are s4 E, 14 E, s<r<t<2s, while (6) holds for r=s and r=t¢. Thus

T(V) — T(t) - 5Q2t—4e27:t - 5Q2r—4e4nr’
so that (2) holds with A=50Q2
Lemma 4. Suppose the increasing continuous function V(r) satisfies V(r)=e
for some constant A, at least for all r=r,>0. Suppose also that V(r)—>oco as r—oo.

Then
(@) V(ir+rt) <2V (r)

holds outside a set of finite logarithmic measure in [ry, ).

Proof. Suppose the assertion is not true. Then there is a first r;=r, where (7)
fails. Define rf=r,+r;". Then
V(ry) = 2V (ry).

Denote the interval [ry, ri] by 1;.
Now proceed inductively. Assuming r,,rj=r,+r;' and I,=[r,, r;] have
been constructed, let r, , , be the first r=r; at which (7) fails, i.e. V(ry)=2V(r, o).
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Such an r, ., exists since we are supposing that (7) fails for a set of infinite logarithmic
measure. Thus there is an infinite sequence r,, n=1, 2, ..., and we have

- Fo— *
ry <=1y = Fpep = T

From this it follows that r,—~e for otherwise we would have lim rp=limr,, =
lim ry=finite and thence limr,; =0 which gives a contradiction. Further, the
inequality (7) holds in the complement of F =U,_i I

The logarithmic measure of 1, is log (1+r, %) <r 2. Since the logarithmic
measure of F is infinite > r, *=eco. Take any constant B such that Blog2=A.
There must be arbitrarily large 7 such that r;*=B*n~% that is such that n=Br,.

For any n
V() =V () =2V (r,-) = 22",

where 4=V¥(r))/2. For infinitely many » we have in addition that n=Br, so that
V(r,) = Zexp (r,Blog2).

Since r,—~e and Blog2=>A thiscontradicts the hypothesis that V(r)<e™,
r=>ry. Thus the lemma is established.

Lemma 5. Suppose f satisfies the assumptions of Lemma 3 and let g be defined

by g(2)=f(i+2).
Then
T(r,g) <=8T(r,f)

outside a set E,C[l, ) of finite logarithmic measure.

Proof. We can assume [ transcendental. By Nevanlinna’s second fundamental
theorem
(®) T(r,g) = N(r,0,2)+N(r, 1, 9)+5(r)

where S(r)=0 {logr+log T(r, g)} as r—oo outside a set H of finite measure.
Now
n(r, 0,¢) = n(r,0,f),

n(r, 1, g) = n((L+)Y2, 1, f),

so that

©) N(r, 0, ) = N(r, 0.f)+O(log r)

and

10 N1, g) = 0Gog )+ [ n(r, 1 g) o
1

vassy o
1
= O(logr)+ f ﬁ% udu

V2
= O(log r)+2N((1+r9)V2 1, f).
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Thus from (8), (9) and (10) we have outside H that

T(r,g) < 3T((1+r3)'% f)+ O(logr+1logT(r, 2)
whence

(11D T(r,g) <4T(r+rLf)

outside a set H’ of finite measure.
By Lemma 3 T(r, f, )<exp (4nr) for large r, so applying Lemma 4 with
V(r)=T(r, ) (11) gives
T(r,g) <8T(r.f)

outside a set E, in [1, =), of finite logarithmic measure.

Lemma 6. (Cf. [5].) Suppose h is entire of infinite order with zeros restricted
to a finite number of rays through the origin. Then there exists a set GC[1, <) having
logarithmic density zero and such that 1im N(r,0)/T(r, h)=0 as r—o outside G.

Final section of the proof of the theorem. Let f satisfy the assumptions of the
theorem and consider /(z)=f(—iz) which has the same characteristic as f, while
the zeros and ones of / lie on the lines Im z=0 and Im z=1 respectively.

Suppose that the order of f (and hence of /) is infinite. Then by Lemma 6
there is a set G;C[l, =) of logarithmic density zero and such that

(12) lim N(r, 0, ))/T(r,h) =0 as r —o, r¢G.

Now consider g(z)=h(i+z)—1 which is also of infinite order with real zeros.
By Lemma 5 there is a set G,C[lI, <») of finite logarithmic measure such that
T(r,g)<8T(r, h), r¢G,.

Since n(r, 1, =n(r.0,g) holds we have

N(r.1,h) = N(r,0,g)+0O(logr)
and for r¢ G,
(13 N(r, 1, h) _ 8N(r,0, g)
) Tl — T 9

+o(1).

Applying Lemma 6 to g shows that there is a set G, of logarithmic density zero such
that as r—<e outside G, the right hand side of (13) tends to zero.
The second fundamental theorem shows that

14 (14+o()T(r, h) = N(r, 0, h)+N(r, 1, h)

outside a set G, of finite measure. Thus G=G,UG,UGUG, has zero logarithmic
density and as r—oo outside G we have by (12), (13) and (14) that

(1 +o())T(r, h) = o(T(r, h))

which is a contradiction. The proof is now complete.
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