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trNTIRE F'UNCTIONS WITH TWO LINEARLY
DISTRIBUTED VALUES

I. N. BAKER

In a series of papers 12,3,4) T. Kobayashi has given some interesting charac-

terisations of the exponential function by its property of having its a-points col-

Iinear on a lirc )'(a) for several values of a. In [4] he proved

Theorem A. Let G be a transcendental entire function of finite lower order

Assume that the zero points of G lie on the line Re z:0 and thqt the one-points lie

on Re z:1. Then
G(z) : P(exP Cz)

where P is a polynomial and C a non-zero real constant.

Of course there are restrictions on the polynomials which can occur in Theorem

A and the possible forms are given in [4]'
Kobayashi asks whether Theorem A stilt holds if the assumption that G has

finite order be omitted from the hypotheses. We prove the

Theorem. Let f be a transcendental entire function such thqt all the zeros o/

f tie on Rez:0 and all the one-points on Rez:l. Then f has finite order, so

by Theorem A there exist a polynomial P and a non-zero real constant C such that

f (') : P(exP Cz)'

The proof depends on a recent result of J. Miles (Lemma 6) which states that

if an entire function has both infinite order and real zeros then the zeros are in

a certain sense scarce. Applying this to f (-iz) and f (|-iz)- 1 and using

Nevanlinna's second fundamental theorem gives the result after a number of sub-

sidiary points have been checked.

The proof follows in six lemmas and a concluding section'

Lemma 1. Let g be analytic in H: Imz>0 and omit the ualues 0 and I in H.

Then there exists a constant X:K(d such that

(l) loglg(re'o)l<Kr/(sin0), r>1,0=0-n.

Proof. The map 7:EQ):i(l:+t)l1-t) maps the disc D: ltl''l to the

half-plane 1L Applying Schottky's theorem to g(E(t)) we obtain

lgGr(r))l = exp {K/(1 - lr l)}.
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Using
l-ltl': 4r sin 0l{r2l2r sin 0*l}, z : reiq

we have
1-ill > 2r sin0l{r2]-2r sin 0+ l}, ltl < I

and
loglg(rete)l = K(l *r)zl(2r sin0) - Krlgin0).

Lemma 2. Let g be analytic in the strip ,S: 0"<Im z<l qnd omit the ualues
O and I there. Then there exists a constant X:K(d such that

log l7@+iy)l - Ke"l*lf(sinny), 0< y - l, --< n<6.
Proof. Puttirtg w:enz which maps,S onto the half-plane ä: Imw>0, the

result follows from Lemma I for x>0. For x<0 the result follows by symmetry.

Lemma 3. SupposeJ'is entire and that all the zeros of f are real and all the one-
points haue imaginary part one. Then there is a constant A such that

(2) T(r) : T(r,f) < fy-4s4nr

for all sfficiently large r.

Remark. We assume without explanation the standard notations of Nevan-
linna theory.

Proof. The result of Lemma 1 shows that f is of order one and exponential
type in any angle which is either strictly interior to Im z>0 or to Im z=0. If
the lower order tr1:lim,--(log f?))llogr)=- it follows from the Phragmön-
Lindelöf principle that f has at most order one in the plane and the assertion of
the Iemma holds.

Thus we may assume Lhat 7t:- so that T(r)** faster than any power of r.
Put 4:sf1-r(llr) and 5:{7(r)}-1lr. Split the range of integration in

(3) r(r): + f" ,or* lf (reto)ld|
ztL i

at tä,4td, n-q*6 and nXö. In the intervals [-ä, ä], lr1-ö, 4*ö1,
ln-4-ö, r-4+äl and [zr-ä, z*ä] we put

log+ lf (reto)l < log M(.r,f),

and in the remaining intervals use the estimates from Lemmas I and 2. It follows
that there are constants K,K',P and Q such that for sufficiently large r

(4) r(r) <#.ffi+Lbga?,fl

=++#++bgM(r,r)
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Taking R:r+E where 9:llloeT(r) we have

(s) tosM(r,f)= +*'7(Ä)= *r(,-äJ
A lemma of Borel [1] states that for any increasing function z(r) which is

continuous in r>-ro and such that V(r)*@ as r+@ andfor any e>0

,(,*ffi)=v@)t*"
holds outside a set of finite logarithmic measure. Taking v:T atd lf2>e>0,
(4) and (5) show that outside a set E of finite logarithmic measure in r>l

T (r) = Pr6-L * Qr-z 5 -r str { l2örT (r)t + 
" | (nrp),

or putting in the values of ä and E

T (r) -. PrT (r)Ltz t, gr'z ,* 7 Trytz + (l2ln)(log T (t))T lryrz+" -

For 0<e<e'<lf2 wehave

log 7(r) :o((r(t))"'-') (r *-;
and so

(t -o(t)) T(r)rtz = 2Q,r-ze"'

as r + @ outside ,8. Hence for large r outside -E

(6) T(r) <. SQzY-a Pznr.

Since E has flnite logarithmic measure there exists ro such that for a1nt r>ro

there are s{E,tQE,5<.7<l<.)5, while (6) holds for r:s and r:l' Thus

T(r) -. T(t) = 5Qz 1-a ,zt = 5Qzt-4 e4n',

so that (2) holds with A:5Q2.

Lemma 4. Suppose the increasing continuous function V(r) satisfies V(r)=eA'

for some constant A, at leastfor all r>ro=0. Suppose also that Y(t)** as r+a'
Then

(7) V(r*r-r) = 2V(r)

holds outside a set of finite logarithmic measure in lro, *)'

Proof. suppose the assertion is not true. Then there is a first rr>ro where (7)

fails. Define rf :rr*r;1' Then
V(rI) = 2V(t')'

Denote the interval lr' rlf bY Ir.
Now proceed inductively. Assuming r,,rl:ro*rrr and lo:ltn,r|l have

been constructed, let r,*, be the flrst r>r[ atwhich (7) fails, i.e. v(rl*r)>2v(t,*J.
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Such an r,*, exists since we are supposing that (7) fails for a set of infinite logarithmic
measure. Thus there is an infinite sequence rn,n:|,2, ..., and we have

rn=rf,Srn+t=r|+t,
From this it follows that rn** for otherwise we would have lim r,:lim rn*r:
limr):flni1s and thence limr;r:g which gives a contradiction. Further, the
inequality (7) holds in the complement of r':![rl,.

The logarithmic measure of In is log (l*r;2)-.r;2. since the logarithmic
measure of .E is infinite Zr,': -. Take any constant B such that Blog2>-A.
There must be arbitrarily large z such that r;z>gzn-z, that is such that n>Brn.
For any n

V (r,) = V (*_r) > 2V (r,_r) = 12,

where l:It(rr)12. For infinitely many n we have in addition that n>Brn so that

V(r,) > A exp (r,B logZ\.

since rn*- and Blog2>A thiscontradicts the hypothesis that v(r)-<eA,,
r>ro. Thus the lemma is established.

Lemma 5. suppose f satisfies the assumptions of Lemma 3 and let g be definecl
by g(z):f(i*z).

Then

T(r, g) = 8T(r,f)

otttside a set Ercl1, *) of finite logarithmic measure.

Proof.we can assume ;f transcendental. By Nevanlinna's second fundamental
theorem

(8) T(r, g) = iy'(r,0, g)*1/(r, l, g)*,S(r)

where ,s(r):o {logrtlog T(r,d} as r+6 outside a set H of finite measure.
Now

n(r,0, g) < n(r,0,f),

so that 
n(r' l' g) = n((l +t'2)u2' 1'f)'

(9) -ly'(r, 0, g) = N (r,0, /) * O (log {
and

(10) N(r,l,g) : O(1og n+ i n(i,1. sy 
!!

{ -t

= o(ros ,"7*/f '&L!),ou
Yz

= O(log r) +21i((l + r,)uz, t, f).



Entire functions with two linearly distributed values

Thus from (S), (9) and (10) we have outside H that

T (r, g) = 3r((1 + r')'t', f)+ o (log r + I ogT (r, g))

whence

(11) T(r, g) -<  T(r*r-t,f)

outside a set H' of finite measure.

By Lemma 3 T(r, / )=exp (htr) fot latge r, so applying Lemma 4 with

Y(r):T(r, f) (11) gives
T(r, g) <.87(r,f)

outside a set .8, in [1, -), of finite logarithmic measure.

Lemma 6. (Cf. l5l.) Suppose h is entire of ffinite order with zeros restricted

to a finite number of rays through the origin. Then there exists a set Gcll, *) hauiny

logarithmic density zero and such that limN(r, O)lT(r,h):0 as r** outside G.

Final section of the proof of the theorem. Let f satisfy the assumptions of the

theorem and consider h(z):.f (-iz) which has the same characteristic as / while

the zeros and ones of hlie on the lines Im z:o and knz:1 respectively.

suppose that the order of f (and hence of å) is infinite. Then by Lemma 6

there is a set G.,c[l, -) of logarithmic density zero and such that

(.12) lim N(r, 0,h)lT(r,h):0 as r +@, rtGr.

Now consjder g(z):11(i*z)-l which is also of infinite order with real zeros.

By Lemma 5 there is a set Grc[I,.-) of finite logarithmic measure such that

T(r, g)-87(r, h), r{Gr.
Since r(r, 1,h)=n11'.0, g) holds we have

N(r,l,h) = N(r,0, g)+O(logr)
and for r(G,

(13) *!:''*) 
= 

8{!!:o:,gl+o(r).
T(r, h) T(r, g)

Applying Lemma 6 to g shows that there is a set G, of logarithmic density zero such

that as r*- outside G, the right hand side of (13) tends to zeto.

The second fundamental theorem shows that

(t4) (l +o(1))?'(r,h) < N(r,o,h)IN(r,l,h)

outside a set Gn of flnite measure. Thus G:GrvGrvGrvGa has zero logarithmic

density and as r*- outside G we have by (12), (13) and (14) that

(t +o1t))z-(r, h) : o(T(r, h))

which is a contradiction. The proof is now complete.
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