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THE FINITE ELEMENT METHOD FOR THE
ELECTRIC FIELD OF MAXWELL’S BOUNDARY
VALUE PROBLEM IN POLYGONAL DOMAINS OF PLANE

JUKKA SARANEN

Let Q be a bounded polygonal domain in the plane R% The boundary I’
is composed of a smooth part I'y and of the vertices {a;};’. We study a finite ele-
ment approximation process for Maxwell’s boundary value problem

{VXVXE—),E =F 1#0, /i€R

0.1
©.1) nXElr, = 0.

Here E and F are fields over Q and n denotes the outer unit normal in the
points of I'y. The above equation is satisfied by an electric field in a cylinder-type
infinite spatial domain where the fields are independent of one of the coordinates.
The study of the finite element approximation for Maxwell’s boundary value problem
was begun by Saranen in [12] with a discussion of a more general problem covering
the anisotropic inhomogeneous case in smooth domains. Neittaanméaki and Picard
[10] generalize the discussion to cover the pair (E, H) of the electric field £ and
magnetic field H. As regards the approximation of elliptic equations in the case
of nonsmooth domains with the difference method or with finite elements, sce
Laasonen [5], Babuska [1] and Babuska—Rosenzweig [2]. In these papers a second
order elliptic equation was considered. A general review can be found in Strang—
Fix [16]. The plate equation is discussed in Melzer—Rannacher [9] and Stephan
[15]. A wuseful tool in singular domains is a prior knowledge of the behavior of
the solution in a neighborhood of singular boundary points. A highly significant
— and frequently used — work in this respect is the article of Kondrat’ev [4] on
general elliptic equations. However, the equation (0.1) represents a nonelliptic
system, and the asymptotic of the solution near the corners is not known. This
problem is considered first. Our trial subspaces consist of some piecewise linear
continuous fields to which appropriate singular elements in the corners are added.
Thus, a convergence

0.2) h=1R| E—E"|[ +[VX(E—E")]| +|div (E—E")|
= ch(| Fl| +[VX F| +|div F|l,+||4 div F[))

with ¢=c(4) is achieved.
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1. Continuous problem

We put the problem (0.1) into the usual variational frame. All the functions
and fields are real valued. The notations used for testfields, Sobolev spaces and
for square-integrable fields are Z(Q)2=2(Q)X2(Q), 2(Q)=Cg(Q), H*(Q)*=
HY(QXH*(Q), L2(Q)2=L*(Q)X L2(Q). The space L2*(Q)? is endowed with the
scalar product

(EIF)= [E-Fix= 3(EIF)

with the corresponding norm | -|. Similarly the Sobolev-norms |-, are given
through the components. In H'(Q)% H'(Q) the curl and divergence are given
by VXE=0,E,—0,E,, divE=0,E+0,E,, EcHY(Q)? VXH=(0,H, —0,H),
Hc H'(Q). These operations are defined in a weak sense ([6], [7], [18]) as well; put

R(Q) = {E€L?(Q)?|3F€L*(Q): (VXP|E) = (@|F,) for every PP (Q)},
D(Q) = {E€L2(Q)?|FF,L2{Q): (VP|E) =—(P|F,) for every $€2(Q)}

and define VXE=F,, EER(Q), div E=F,, EeD(Q2). In R(Q) the scalar product
(E|F),=(VXE|VXF)+(E|F) is also used, with the corresponding norm | -|,.
The space R°(Q)=2Z(Q)"""~ characterizes the boundary condition nXE| r,=0-
The imbedding R°(Q)c R(Q) is obvious.

1.1. Definition. Let FeD(Q). The field ECR*(Q)nD(Q) is a solution of
the problem (0.1) if
(1.1 (VXP|VXE)—A(P|E) = (P|F)
for every ®PER°(Q).

The theory of existence for this problem is well developed. For example, the
Fredholm property has been proved for a large class of domains ([7], [17]). The
approximation of solution E will be considered, when the right hand side F
satisfies the auxiliary conditions F€R(Q), div FEH,(Q). The latter condition en-
ables an “elliptization” of the problem ([6], [7]). Denote B(a, r)={x||x—a|<r},
U;(r)=B(a;,r)n Q. In the following the radius r is taken so small that the sets
U;(2r) are disjoint. Write Q(r)=Q\UT_, U;(r). The notation C refers to
a generic constant independent on the fields under discussion. In some cases em-
phasis will be laid on its dependence on A,r etc. as C(1) etc.

1.2. Lemma. If E is a solution of (0.1) such that div FEH}(Q) then
ECcH*(Q(r))? and

(1.2) IEls, 00 = C(r, HUEN+IFll +div Flly, ).
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Proof. The equation (1.1) implies div E€H,(Q) with div E=—/A"1div F.
For ®#cR(Q)nD(Q) we get

(1.3) (VX ®|V X E) +(div &|div E)—1.(9|E)
= (®|F)— A~ (div @|div F) = (2|G)

with G=F+171V div FEL2(Q)%. For smooth domains €, the equation (1.3)
yields the regularity E€ H?2(£,)* with

IEll2,0, = C(IEo,0,FGllo, 2y)s

([8], [11]). The estimate (1.2) follows with a standard smoothing and utilizing the
equivalency of the norms [E[; and [E|,;,=(E|?+|div E|®»"* in R°(Q)n
D(Qy) (7). O

The behavior of the solution in a neighborhood of a corner a; will be dis-
cussed. The three dimensional case was considered in [13] and [14]. [t is sufficient
to choose a;=0. For some R=0, O<x<2m we have U(R)={x€Q||x|<R}=
{x=x(r, ) |0<r<R,0<@p<a}, where r, ¢ are the usual polar coordinates. Let
us develop the fields £ and F in U(R) as follows. We write E(r, 9)=E"(r, p)e,+
E®(r, )é,. Since EE€L*(U(R))* the relation E’(r, ¢), E?(r, )€ L*((0, «)) holds
for almost all O<r<R. Let uv,(p), w,(¢) denote the orthonormal eigenfunctions
for the Dirichlet and the Neumann problem u«”+Au=0 in (0,a); v,(¢)=
V2/a sin (n(n)a) ¢), w,(@)=V2/acos (n(n/x)p), n=1, wy(p)=1/fa. The corre-
sponding eigenvalues are Z,=(n(m/x))?, n=1, 2,=0. For almost all r the ex-
pansions

(1.4) Er(r, ) = 2” a,(r)v,(9), E*(r, ) = g“ ba(r) wa(9)

hold in L%((0, o). Because of E€L2(U(R))* it can be verified that

(1.5) E(r0)= 3 a,0u@)a+ 3 bw )2,
converges in L*(U(R))? with
R - R
(1.6) VEI8 vimy = [ ribo2dr+ 3 [ r(a+ (b, dr.
0 n=1lyg

The field F is similarly developed as

(17 F(r, ¢) = 2" 0, (F) 0,(9) 2, + 5 Bo(r) W, (@)¢,.

The equation (0.1) is considered for a moment in the case where the fields have
no sources, div E=div F=0. Because of AE=—VXVXE+VdivE the equa-
tion AE+JE=—F is distributionally satisfied. The vectorial Laplacian has the
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(distributional) representation
(1.8) AE = (AE"—r2E"—2r"%0,E"e,
+(4E?—r 2E*+2r7%9,E")é,
in polar coordinates, and for the divergence we can calculate the expression
(1.9) divE =0,E"+rYE"+r~10,E°.
The equation AE=—F—AE, E€R(Q)nD(Q) implies

(1.10i) al+rta,—r=2(14+21)a,+2r2yY7,b,
= —(Oln—|-)v(l")a nEN,
(1.10ii) bl +r b, —r2(144,) b, +2r2V1,a,

=—(B,+4b,), neN, = Nu{0}
(define a,=0). The condition div E=0 leads to
(1.11) a,+r-ta,—r1yY2,b, =0, neN.

These equations are distributionally satisfied and the coefficients have the regularity
a,, b,cHZ. ((0, R)). For the rotation one obtains

(1.12) VXE = ,E*—r~19,E",
and therefore
R ~ R -
(1.13) IVXE3 umy= [ rlbi2dr+ 3 [ riby—r='V2,a,2dr.
0 n=1gq

We decompose the solution into a singular part and into another belonging to
H?2(Q)2. This is carried out by application of Kondrat’ev’s method to the differential
equations (1.10) and (1.11). Thus we obtain an appropriate decomposition for
the coefficients a,, b,. The three dimensional case was handled similarly in [14].
Some notations will be needed in the following proof. Denote

Ly =—u"+3r"u'+r"2(1=4,)u), néN,
(1.19) Syu =—W"+r ' —r"2,u), néN,
Sou =—@"+r tu"—r"2u).

Let the spaces WX (R), R=0 be introduced with the norms | -[/ ,(R) such that
d v
()«

_ 3 IruO @R,
y=0

2
dr

k R
g (R = 3 [ re=®
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lu] (R):=llullo, yry> and that WjF(R)={u€H (0, R)| |ul,, ,(R)<<}. Further, the
norms || “k a,(ln)(R)

o (R = 3 2 1= O (R
will be used.

1.3. Theorem. Suppose that o=k(n/2). For the solution E€R°(Q)nD(Q)
of (1.1) with FER(Q) nD(Q), div FEH}(Q) in U(Ry), 0<Ry,<R the decomposition
(1.15) E= 3 r- (sl (p)e, 463w, (p)e,)+osre,+W

0<nl<2
with  WeH2(U(Ry))? and with the constants &, such that
(1.16) W 113,0rp) + 06+ Zn (CHEICHE

O0<n—<2
a

= COH(IE+I FII7+ divE5)
holds.

Proof. We apply the usual decomposition F=F;+F; of the field F into
a sourcefree part F, and into another F€VH}(Q); F,=VA;*(div F) ([7]).
Here A4, denotes the Laplacian with the homogeneous Dirichlet boundary con-
dition defined in D(4,)={u€ Hy (Q)|Auc L*(Q)}. If the solution E=E,+E, is
analogously decomposed, E;=—/."'F; from (l.1) is obtained. Since div F€ Hy(Q)
the equation Adyu=—/"1div F implies in U(R,)

(1.17) u= 3 3,7""v,(p)+w,

0<ﬂ<2
where we H*(U(R,)) and where

R
— x 1 —n(n/2)

(1.18) =5 Of 7 S, (ne,) dr.
Further,
(1.19) W3 vrgt 2 vi=C()|divF|q

0=—=2
x

[14, Lemma 3.2]. In the formula (1.18) # is an arbitrary function y€Z2(—<, R)
such that n(r)=1 in a neighborhood of r=0. The functions ¢, are the coeffi-
cients in the expansion u(r, 9)=>"_ c,(r)v,(¢). It follows from (1.17) and (1.19)
that the part E,=Vu satisfies the decomposition of (1.15) with (1.16). Accordingly,
the case div E=div F=0 can be considered. The equations (1.10i) and (1.11)
imply

(1.20) L,a,=uo,+4a,, neN.

Fix a number R;, Ry<R;<R and n€ZR) with 5(r)=1,0=r=R,, n(r)=0,
r=R,;. The relations (1.6), (1.11) and (1.20) give na,€ WZ2(R,). Since L,(na,)€¢ WXR;)
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and since n(w/a)=2 for every n, Lemma 2.1 can be applied (see also Satz 2.2
in [14]). This yields

(1.21) a,(r) = a?,(r)+a,1,r—1+"("/“)
in (0, Ry) with a%c W2(R,)
(1.22) lagllz, 1, 1y (Ro) = ClIL,(na,)lle.1(Ry)
and with
R
1__ % Y e nnia) o
(1.23) o) = Of r Ly(ra)dr, — <2

0:=0, nn/a=>2. From (1.22) we can conclude further
(1.24) laall2,1, ) (Ro)
= CA(Ir2e,ll (R) +172a, ]| (R) + @yl (o, &)
= C(Ir el (R +[172a, ]l (R) +V 2,12 b, | (Ry).
It is enough to consider the values n(n/«)>2. For those indices
(1.25) Iulle, 1, (2 (Ro)
= CO(Ir e, (R) +117 2 a,ll (R) + 1@yl ko, k1))

is obtained from (1.24). This inequality holds in the same way for the pair R;, R
as for Ry, R,. Thus

(1.26) laull1, (Ro, Ry = C(A) 27 2 Nl all2, 1, (1, (Ry)

= COY(Ir2a, ]| (R)+[7"2a, || (R) + [ /2D, | (R)).
From (1.25) and (1.24) follows
(1.27) [ 02"2,1,(/1,,)(Ro)

= C(Ir2e, ) (R)+ 72 a,|l (R) + 72D, (R)).

The same bound can be found for ¢} from (1.23). For ihe indices n=1 the coeffi-
cients b, are decomposed through formula (1.11) as

(1.28) b, = bY+g2rt-n(/0),
where
0o % 0y 0
(1.29) by = — (r(an) +an),
(1.30) o= [1 +11-5] ol.
nm o

Utilizing (1.27) and (1.10ii) we can verify

(1.31) 162ll2,1, (2. (Ro)
= C(Ir 2 e[| (R)+ (712 B, | (R) + 112 a, )| (R) + (|12 b, (R)).
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The coefficient b, must be handled in a different way. The assumption
VX FeL*(Q) will be used here. Indeed, this implies ((1.13))

R
[ riBipdr = |VXF|? <eo.

0

Choose ¢, O0<e<1. According to [4, Lemma 4.4],

R

R
(1.32) [ pdr = e [ By Pdr
0

0
R

R
= c(j r|giRdr+ [ r|ﬁ0|2dr]
0

0

= C(IVXFIP+]FI®
can be calculated with C=C(g). We estimate nb, in the same way. Then
by +r71bg—r"2by = —(Bo+4by)

nbo€ W2 5. (R), So(nbg)e W, . ,.(R) is concluded from equation (1.10ii). Applying
[14, Lemma 2.1] again we obtain

(1.33) bo(r) = b3(r) +air
in (0, R,) with
(1.34) [B3]l2,1(Ro) = C1bgllz,1-2:(Ro) = C [ So(mbo)llo,1-2:(R)

= CA)UIVXEI+IFI+IED.
The coefficient ¢ has the form
. 1 £
(135) ot == [ Solnbo) dr,
0

and it can be estimated with the bound in (1.34). The field E takes the represen-
tation

(1.36) E(r, p)
= 3 r ™ (ely,(9)é,+ 0w, (9)é,)+asré, +W

0<n{-<2
in L*(U(Ry))? with
(1.37) W= 3ay,e,+ > byw,é,.
n=1 n=0

The expansion (1.37) converges in L*(U(R,))? because al=a,, bS=b,, n(n/a)=>2.
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Tt remains to analyse the convergence of (1.37) with respect to the | -l yez, norm.
Denote

N N
(1.38) Sy = 2 ayv,é,+ > byw,é,.
n=1 n=0
The estimate
I1S¥I2 veroy

N
= C 18131 R+ (10313 6, (R + 153151, (R0)

is verified. We have through (1.27), (1.31) and (1.34)

(1.39) I bg”%,l(RO)'!'né (IRl 1, (Ro) +11D3IZ 1, (1, (Ro))
= CAEIPHIFIP+IVXE?).

Thus, the series (1.37) converges with respect to the norm |-/, U(Ry> and for the
limit WeH?(U(R,))? the inequality

(1.40) W13, vrey = CAOUEIP+]FI?)

is true. [

A global decomposition can now be given. Fix polar coordinates in the neigh-
borhood U;(2R) of the corner a; and take (€Z(R) with {(r)=1, 0=r=R,/2,
E(r)=0,r=R,. Define the singular fields

Sr:,j(x) = ]x—aj['1+”("/“j) f(|x_aj|)l’f;((l7j)é{,

S50 = lx—a;| =" E(1x—a, ) wi(9,) &),

S¢;(x) = |[x—a)|&(x—a))e).

1.4. Theorem. Suppose that «;#k(n/2). The solution ECR°(Q)nD(Q) of
(1.1) with FER(Q) nD(Q), div FEH}(Q) has the decomposition

(1.41) E=

s

( Zn (5;11,;"55,1‘4"55,1'5;2;)+5§,j56'fj]+W
O<n—<2

J

with WeH?(Q)? and with the constants 6f,! ; Such that

(1.42) IWlhat 2 (3,+ 2 (000409
7= 0<ni<2

= COUEP+IFIF+ldiv FID).
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2. Finite element approximation

The solution E will be approximated by means of the bilinear form
2.1 B,(®, E) = (VX®|VXE)+(div @[div E) —A(D|E).
According to (1.3), E satisfies the variational characterization
(2.2) B,(®, E) = (9|G), PER(2)nND(Q)

with G=F+A-1Vdiv F. Let (), 0<h=h, be a family of regular triangulations
of the domain Q. By regularity we mean that there exist two constants ¢,, ¢;>0
such that every triangle 7,69, contains a circular disc with the radius ¢4 and
is contained within another disc with the radius c;4. As usual Q= U{T,| T,€7,}.
Let 2, denote the set of knots of 7, lying on the boundary 90Q. Note especially,
that the vertices a; belong to 2. Define

(2.3)
St = {® = (&,, D)€ C(Q)?| /|, linear, (n X P)(x) =0, x£P,N T, P(a;) = 0).v

Note that if E is a solution satisfying E€ H2(Q)?, then the linear interpolate
J"E belongs to S”* The trial subspace which is to be used is defined by

2.4) §h={w=21( > (a,,,jS:,f+ﬁn,js,:€j)+ﬁo,,-saf,~)+¢’¢ES'& a,,,j,ﬁ,,jER}.
i= o

0<n 2

%

Observe that S"cR°(Q)ND(Q). Hence the method is conform. For arbitrary
smooth domains the situation is different, the use of S" leading to a non-conform-
ing method. In such a case it is natural to utilize the equivalency of the | -], and
|l -1l s-norms over S" ([12]). Here it is not necessary. The approximate solution
E"¢8" is defined through

(2.5) B,(Y, EM = (1G), yeS™

If <0, then (2.5) has a unique solution. In the case A=>0, when 1 is not an
eigenvalue of (2.2), it turns out that the equation (2.5) has a unique solution for
a sufficiently small & (for a similar situation see [12]). Let us first consider the
case A<0. Owing to conformality one has the minimum characterization

(2.6) By(E—E") = min B,(E—Y)

(see [16]). Here we have denoted B,;(y)=B,(, ). For a solution E=S+W,
where S is the singular term, we use the “generalized interpolate” J'E=S+J"W.

1) C(2) refers to continuous fields over &.
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Because of We H?(Q)?
2.7 B,(E—E"Y = B{(E-J"E) = B,(W—J"W) = Ch*|W |},
= COR*(| FI?+div FIID

is obtained from (1.42). We shall now consider Nitsche’s trick. As is known, the
essential point there is to solve the equation Z€R°(Q)ND(Q)

(2.8) B,(®,Z) = (P|[E—E"), ®cR(Q)ND(Q).

Here this causes additional difficulties since our decomposition (1.41) was proved
only for solutions Z of the type

(2.9) (VXDVXZ)—/(D|Z) = (B|F), PER(Q)AD(Q)

(or equivalently ®€RO(Q), since R(Q2)ND(Q) is dense in R°(Q)) with
ZER(2)nD(Q), FED(Q) N R(Q), div FEH}(Q). However, because Z is a solu-
tion of (2.8) it satisfies the regularity divZ€H,(Q) ([10]). Hence Z satisfies
(2.9) with F=E—E"+V div Z¢ L2(Q)%. Moreover, div F=div(E—E")+V div Z=
—AdivZEH(Q). Thus the decomposition (1.41) is applicable to Z:

(2.10) Z = S,+Ww,,
where
(2.11) Wille = CO(IZ] + | E—E"| +||VX(E—E")| +|/div Z]),)

= COY(IE=E"| +|VX(E—EM|| +|div (E—E)]).

The last inequality follows from (2.8) and from (V,+4)div Z=—div(E—E").
With an arbitrary field y€8"* the inequality

(2.12) |E—E"|? = B,(E—E",Z—V) = B,(E—E"2B,(Z — )\

holds. We choose Y =J"Z=S,+J"W,. Then

(2.13) B,(Z—)V2 = ch|[Wy,.

Using (2.7), (2.11)—(2.13) we obtain

(2.14) IE—E"* = COYR*(|E|l +| Fll,+div Fll) |[E—E"], 4
= CR(IFll,+div Fll >

Thus inequality (0.2) is proved.

The case 2=>0, when 4 is not an eigenvalue of (2.2), can be handled by means
of an inversion with a compact operator as in [12]. However, since in the estimates
(2.7) and (2.14) more regularity than L? from the right side was needed, the suffi-
ciency of the same conditions for the right side is not obvious. In fact the require-
ment Adiv FEL2(Q) comes here into use. Let us formulate our result:
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2.1. Theorem. Assume that QCR? is a polygonal domain of the plane such
that a;#k(n2) for every j. If ECR(Q)ND(Q) is a solution of (1.1) with
FER(Q)nD(Q), div FEH;(Q), Adiv FEL*(Q) such that . (#0) is no eigenvalue
of (2.2), then the approximation E"¢S" defined by (2.5) gives the error estimate
(0.2). The assumption Adiv FEL?*(Q) is not necessary if A<O0. Accordingly, the
estimates (2.7), (2.14) are valid instead of (0.2).

Proof. Only the case 1=0, . being not an eigenvalue, needs an argumentation.
Take a number u<O0. Let K,: L*(Q)*->R°(Q)nD(Q) be the solution operator
of the equation

(2.15) B,(®, E) = (9|G), ®ER(Q)nD(Q)
with E=K,GER(Q) nD(Q). Equivalently
(2.16) (I-(G+wK,)E=K,G, ECR(Q)nD(Q).

Since K, is compact in L*(2)? ([17]), one verifies that the restriction of K, to
R(Q) nD(Q) is compact, too (compare [12]). Equation (2.5) in turn is equivalent
with

(2.17) (I-(A+w KN E" = K!G, E"¢R(2)nD(Q),

where K,’l’ denotes the solution operator of (2.5) with A=pyu. Let us consider the
approximation error with respect the | -|,+, norm. First, the inequality

(2.18) (K, =K Gl ra = ch|Gll,ysa

holds for GER(Q)ND(Q). Indeed, take G=G in (2.15) and denote E=K,G,
E"=K!'G. Then (2.15) implies div E€ Hy(Q) and (—4,+|ul) div E=div G. Thus

(2.19) Idiv E||; = c|/div G].
On the other hand, (2.12) leads to
(2.20) (VX®BIVXE)+|ul(B1E) = (BIF), PER(Q)

with F=G+Vdiv E, div F=div G+ 4, div E=|u| div Ec H(Q), FER(Q)nD(Q).
According to (2.7), (2.19)

(2.21) |E—=E"|,+a = ch(IE[+|Fll,+|div Flly) = ch]| G,

If |K|,+4,:+a denotes the operator norm for operators K: (RND, |« 15—
(R('\D, ” '”r+d)’ then
(222) 1Ky~ K, v a = ch

follows from (2.18). Owing to compactness, the inverse (1'—().-}-;1)K,,)‘1 in
R(Q)nD(Q) exists, since A is no eigenvalue of (2.2). Accordingly, the inverse
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of I—(A+ u)KL’ also exists if / is sufficiently small. Hence (2.5) is uniquely solv-
able for small /4. Moreover, a Neumann expansion gives the estimate

(2.23) [(I=CA+wK) =T~ CA Kf) s g,rea = ch.
We can now calculate
(2.24) [E—E",rq= H[(I—(/l+#)K,‘)'1~(1~()-+#)KL’)“1]K,,G||r+a

H|(I= G+ KK~ KD G4
ch| K, Gl v o+l (K~ KD Gl 44
ch||Gl, s atel(K,— KD Gl 44

= ch(|F| +|div Fll}) +c|(K—K) Glly +4-

1)

A

For the estimation of the second term we make use of the assumption 4 div F€L?(Q)
This garantees that G=F+A"Vdiv FER(Q) nD(Q). Hence inequality (2.18) is
applicable with G=G. We are led from (2.24) to

IE—E"|,+s = ch(|Fll,+]div Fll;+[4 div F]).
The error estimate with respect of the L,-norm can be derived similary. [J

2.2. Remark. If the polygon is convex, it is possible to prove that the norms
| -ll,+4 and 1 are equivalent over R°(2)nD(Q) (see [14] for a similar state-
ment in R3). For such a polygon the term ||VX(E—E")| +|div(E—E"| in (0.2)
can be replaced with |V(E—E")].
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