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Introduction

For analytic mappings between Riemann surfaces a theorem of the Riesz type

concerning so-called fine neighbourhood filters of Martin boundary points was

proved by Constantinescu and Cornea in [6, Satz 16]. This result was extended to
Brelot spaces by Ikegami in [], Theoreni 7].

In this paper we prove two more general theorems concerning harmonic morph-
isms between harmonic spaces. The spaces we consider satisfy the axioms of Con-

stantinescu and Cornea in [8] with some additional assumptions. The notion of
a co-fine filter we use was introduced by Sieveking in [15, p. 211.

1. Assumptions and notations

Let" X be a noncompact harmonic space in the sense of [8, p. 30]. We assunxe

throughout this paper that X salisfies the following additional conditions:
(A1) X is Z-barmonio
(A2) X has a countable base.

(A3) The sheaf of harmonic functions on X has the property of nuclearity.
(A4) There exists an extremal superharmonic function on X which is har-

monic.
(A5) There exists a superharmonic function s0 on X with inf so(X)>O.
(A6) 1 is a Wiener function on X.
The conditions (Al)-(A3) make possible the integral representation of pos-

itive superharmonic functions ([8, p. 330]). The conditions (A5)-(A6) are related

to the theory of Wiener functions presented in [0]. Together uith (Al) they imply
the existence and harmonicity of the function h (110, p. l4). The condition (Aa)
follows from (Al), (A5) and (A6), unless å1 is identically zero (cf. [8, Corollary
1l.s.3l).

We denote the Martin space of X by My and the Riesz space (resp. the Poisson

space) of X by rR1 (resp. Pr). Then Mx:Rx uP1 (8, p.3l2l). By [8, Theorem
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l1.5.ll there exists a semi-regular Riesz-Martin kernel (x, ()*kc\) on Mx.
In what follows we shall keep ka fixed.

For any positive superharmonic function u on X there exists a unique measure

Itu oa My (in the sense of [8, p. 301]) such that

(cf. [8, Theorem 11.5.1]). We call pu the canonical measure of u In this paper we

always assume u to be harmonic. For any AcM* let XA be the characteristic
function of l. Then

P"(R*)

(cf. [8, Proposition ll.4.l2.c]), and po is a measure on Py. By (Aa) we know that
Px/9.

2. The co-fine filters

Let ,tr be the set of extremal positive superharmonir" functions on X which
are harmonic. Two elements of tr" are called equivalent if they are proportional.
Let rlt: ff"*p, be the canonical mapping with respect to this equivalence rela-
tion ([8, p. 311]).

Definition 2.1. Let (€.f*. The co-fine filter of ( is

q - {2. xlnf\' # ,, for

(cf. [15, p. 2l], ll2, p. 1851).

By [8, Exercise 11.4.4] g< is a filter on X. Obviously

9a: {E c xlR{}E * t<r}.

Proposition2.2. For euery (1P* the filter 71 has no cluster points in X.

Proof. Since ft6 does. not vanish identically, 9, is finer than the fllter of the
complements of relatively compact subsets of X ([8, Proposition 5.3.5]). tr

Let X* bearesolutivecompactificationof X (cf. [0,p. 16]) and A:X*\X.
We denote by p(A) the harmonic measure of a p-measurable set I of / (114,
p.4lD. The function p(A) is positive and harmonic.

Lemma 2.3. Let X* be a resolutiue compactification of X and (J* an open

set of X*. If p(U* n/) does not uanish identically, there exists a teP* with
U* nX(frc.

i urdp,(o

- { xn*dPu- o

u€{/ -'({(})}
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Proof. Let u:tt(U* n/),
Rf,\'* + u

by ll4, Lemma 8.31. Then

u : i kcdt,(O,

where p, is the canonical measure of u. By [8, Proposition ll.4.l2.e]

.n)" : j R{;""ap"g1.

If Åf\u-:7.6 for all ?€Px,then Åf\u*:z, which is a contradiction. n

The following theorem is related to e.g. [9, Theorem IV.4].

Theorem 2.4. Let X* be a resolutiue compactification of X. There exists

a set Ecl with p(E):O such that for euery x(/\E and euery neighbourhood

U! of x, U] aX(fra for some t(Px.
prooJ. Let E be the set of all x(a for which there exists a neighbourhood

t/j with p(Ulo/):0. Then Ecl\supp p, for evety z(X. Hence

p,(E) = pr,(/\supp p"):0

for every z(x, and p(E):o. The assertion of the theorem holds for every

x€l\E by Lemma 2.3. n
Definition 2.5. Let EcX. We define

Ea: {((pxlX\E<gE} : {(<PÅRl + u, ue{t-,({(\)}.

Remark 2.6. Let E and .F be subsets of X with EcF. Then ErcEu-
This is obvious since (c-8, implies Åf(x1=rz(x),u(r!-L({€\), for some x(X.
As R1,=-Rl, 165r.

Remark 2.7. We recall [8, Exercise 11.4'5]. The outlines of the proof are

also given in [8].
Let F be a closed set of X and K a compact set of P*. By Deflnition 2.5

EpaK: {((Kl Rl * u, 
"erl,-'(ED}.

There exists a countable set -BcX with

EpnK: {(€Kl(3r) (xcB, R!(x) = u(x), r.,e r/-'({(}))},

and EonK is a K"-set on K. Since k6€f-'({(}),

8r 
^ 

K - _?, {(e Kl R[r(*) * t*(x)].
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3. Some lemmas

Let ,tr be the set of compact sets of P* ordered by the inclusion relation.
Let u be a positive harmonic function on X. Then a family of measures

Qtu*)*e* deflnes the canonical measure Fu of u ([8, p. 301]).

Lemma 3.1. Let AcPy and Ketr such that AaK is a Borel set on K.
Then the function on X, defined by

is harmonic. n

Let AcPy. We define ot X a function a"(A) by

x*jxnG)k<(x)itp,(4).

Lemma 3.2. Let AcP*. The function a,(A) is hqrmonic.

Proof. Let K€tr, x€X and

rp: (kr(x)lK) u,*.
The function kr(x)lK is p,*-measurable. Then the integral

I f@trrrfOlK) dp,*G) : { fG) a,n{C)

exists for every f(C(K) (cf. [3, IV, § 5, 6, Thdoröme 5] and [3, IV, § 5, 3, Corollaire
5]). Hence fi, is a measure on .K, and the family (rk)r<* deflnes a measure
on Py for every x6X.

For every Ke lf and x€X

t xenx()dri(O: rjl!^.[ xa()dr*(O,

where U is an open set of K ([3, IV, § l, 4, Proposition 19]). By Lemma 3.1

x + { r"nK(O (k*(x)lK) dp,*(C),
is harmonic.

Proof. Let rx:Xtor4u*. The integral {f dvx exists for every f(C(K),
defined by

lfau": !fxnn*dp,*
(cf. [3, IV, §5,4, Corollaire 3] and [3, IV, §5,6, Corollaire 3]). Then f*[fdv6
is a continuous linear functional on C(K), and v* is a measure on K. By [8,
Proposition ll.4.l2.c)

**
[ {t 4na,*(0: I x,Enx(O@<lK)dp"*(o

x,+ i rr0) drfr(C)
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is harmonic. Thus
*

**l xtnx(€)dd<(E)

is harmonic ([8, Proposition 1.1.2]). Further,

a,(A): ru, I xenx(E)dfi,(o
K(ldu

is dominated by u and hence harmonic. n
We say that a property holds pu-a.e. on Pr, if it holds for every (6P,

except for a set A with

tt".(A) : i rodpu:0.

Lemma 3.3. Let f, g and h be positiue numerical functions on Py.

(cf. [9, Theorem II.2])

Proof. Let Fu' (8 p) :0. For any x€. X,

n1tx)-i RI,@)dp,(€)

(cf. [8, Proposition ll.4.l2.e)). By Deflnition 2.5 and Lemma 3.3.a

R:" - i nlordttu(O : ,f ,r*... r,R:ordt ,G)

: i.rr*1a, kc dpu(() : i urduu(() : u

Secondly, let RI -u. Then

i a:rrdttuc) - j k< dp,(o.

a) If f: g pu-a.e., then

! f au,: I srtu,.
b) If f=g, then

Ifau"=[ t,,tu,.

c) jff*Oap,= jfap,+j sau,.

d) If S and h qre po-measurable,then

j rk*rlay,: i fsap"+j fnau,.

Proof. The proof in [4, V, § 1, 1, Propositions I and 2] carries over to our
case. D

Lemma 3.4. Let E be a closed set of X. Then Rf;:s if and only if

p,'(Eu): j xr,d.p,: o
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The functions .Rf. and kr-RX, are pu-measurable (cf. [8, Proposition ll.4.l2.e]
and [3, IV, § 5, 3, Corollaire 3]). By Lemma 3.3.d

i'

I uror,(€): [ {t e-R!0,)dp"(q+l R!o,ap,G).

Hence

j Qrr-nf ,l dp,(t) : o.

Then for every x(X and for every K€ff

I @ rfrl - u:k,@)) d ti,*(O : o.

We obtain

ka(x): n[(x)
for all (€K, except for a set of p,*-measure zero (13, IV, § 2, 3, Thdoröme l1).

By Remark 2.7

EroK: ,!, {f e r|,efr(x) * ka@)\,

where .B is a countable subset of X. Hence

pi(E): s*!p*utr*@an() : 0. n

Lemma 3.5. Let E be a closed set of X. Then aulPy\du) rs the greatest
positiue hqrmonic minorant of RX (cf. [9, Corollary on p. 327]).

Proof. By Lemma 3.2, ar,(Pa\dr) is positive and harmonic. By Lemma 3.3.b

R!, : j R!o, a p,G)= ;[rr*..a, Å f , a u,(C)

: f xr*".r.kcdP"(Q: al,(Pv\d6).

Hence al,(Pr\dr) is a minorant of R!,.
Let u' be the greatest harmonic minorant of ,Rf. then

u' : RI,

by [8, Exercise 5.3.2]. Hence p,, (E):0 by Lemma 3.4. We have

u,=RI=u.
For positive harmonic functions u the mapping pu-u is an additive injection
by [8, Corollary 11.4.4.c]. Then

Thus 
Pu' < ltu'

ltrt :,f ,"r., suk<dp,,,(O = i.rrrya, kcdp,(()

: @u(Pr\dr)'

So, u':@u(Px\dr). n
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Theorem 3.6. Let E be a closed set of X. Then R9..rr", is a potential'

Proof. For every K(tr the functions XaulK and xrr..arlK are !u*-
measurable by Remark 2.7 and [3, IV, § 5, 4, Corollaire 3]. Thus ;r, and Xpx\d,
are ps-measurable. Then by Lemma 3.3.d

u : j xr,'..e,k1 dp-(t) * j xu,kedu,(0.
Hence

,Rf : iRå,r"r... E,)*au(.2): f;å,<r'\rr>+ R!..<u,>

([8, Theorem 4.2.l]). By Lemma 3.5

ar,(Pa\6'r) : Åå"(r*\r,)

is the greatest positive harmonic minorant of Åf. Hence Rl.rr,, is a potential. g

Remark 3.7. The assumptions (A5) and (A6) were not used in this section.

4. Definitions

Let X and X' be two noncompact harmonic spaces' Let E: X*X' be a

continuous mapping. We denote by X'* an arbitrary compactificalion of X'.
For (1P*, let fr1 be the co-fine filter of (.

Definition 4.1. The co-flne cluster set of E at ( is

E^ G): uJ,@),
where the closure is taken in X'* (cf. [7, p. 146], [11, Theorem 7]).

Lemma 4.2. Let E: X*X' be a continuous mapping and ((Pv;. I"f U'*
is an open set of X'* with E^G)c(J'*, then E-'(U'*nX')(fra.

Proof. Cf. [7, Hilfssatz 14.1]. n

The assumptions about X imply the existence of the positive harmonic func-

tion h, on X. For any set AcPy we denote by a(A) the function ao,(A) on

X, i.e.

*- j pg)ka@)dwG),

where pr:pr,. By Lemma 3.2 a(A) is harmonic.

Remark 4.3. For every x€X we can regard ka@)u, as a measure on Pa

(cf. the proof of Lemma 3.2).

We say that A is of harmonic measure zero if o(A) equals zero'
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Remark 4.4. For the case of a Brelot
tions a resolutive Martin compactification
the harmonic (Radon) rneasure deflned on
of the Dirichlet problem. Then for every

The o re m 5.2. Let E:
isrn. Let Ac. P* and let

space X with some additional assump-
exists for X. Let at*, xQX, denote
the Martin bound ary by the solution

bound ary set A

X*X' be a locally polarly nonconstant harmonic morph-

A': u E^G)
€€ rq'

**
I xo@da.(0 : I xo{)trr{*) dy,(o

(U, p. 1401, Ul, p.2621). This motivates our definition.

Remark 4.5. lf {A,),<N is a sequence of sets with AncP* and A:l)oexAn,

a(A)= ,är(u,).

This follows from [3, IV, § 1, 4, Proposition 18].

5. Theorems of the Riesz type

In this section we consider a harmonic morphism E: XtX'. The target space
X' is supposed to satisfy (A5) and (A6). We also assume that X' is an MP-set.
By [0, p. 2l] X' has resolutive compactifications.

The concept of a harmonic morphism (earlier also called a harmonic mapping,
e.g. in [3]) is defined as in [3, Definition 2.2]. 'the definition of a polar ser in
a resolutive compactification of X' can be found in|4, Definitions 6. I and 6.7].
For the notion of a locally polarly nonconstant mapping we refer to [14, Deflni-
tion 2.11.

Lemma 5.1. Let B beaseni-polarsetof X and u ahyperharmonicfunction
on X with u=-O on X\8. Then u>0-

Proof. X endowed with the fine topology is a Baire space ([8, Corollary 5.1.1]).
By 2, p.i93l and [8, Corollary 6.3.3] X\B is finely dense in X. The fine continuity
of z then implies u>0 on X. n

We proceed to the proofs of our two main theorems. Theorem 5.3 is similar
tofT,Satz 14.1land [], Theorem 7]. In the axiomatics of [8]corresponding results
for neighbourhood filters of an ideal boundary point in a resolutive compactiflcation
of X were proved in fl4, Theorems 8.5 and 8.81.
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be polar in a resolutiue compactffication X'* oJ' X'. We suppose that there exists an

open set W'* oJ' X'* satisfying the following three conditions:

(a) W':W'*iX' is a T-set.
(b) A'cW'*.
(c) Either X' is elliptic or A'aX' is contained in a o-compact set oJ' W'.
Then A is of harmonic measure zero.

Proof. Let
W:E-L(W'), r,:XV,Y.

We choose an x(W and a positive hyperharmonic function Lt' on W' with
(u'oq)(x)<- allf,

*'rrli51,n*'' 
(Y') : *'

By ll4, Theorem 2.4 and Lemma 6.9] such a function exists for every x€ W, out-
side a polar set of W. Let a>0 be arbitrary and define

Wl* : {x'ew*lliminf ,u'(y') = a).

Then W'r* is open in X'*. Let

F, : X\rP-t(1ry!* ox').

Hence Fo=F. Since l'c Wl*, by Lemma a.2 q-t(Wi* aX')(fra and

RX; * r<,

for every C(A. Denoling 8,:6r, rve obtain

AcEo.
Let

a,: a(?o): [ ru,G)*rdy,.(O.

Then 0--aro=hr, and cr;o is harmonic. Theorem 3.6 implies that

p,: Rlri
is a potential.

Let {t/,},6iy be an exhaustion of X by relalively compact open sets. Then

j'il nI)'" : o

by [, Korollar 2.4.5] (which carries over to our case). Hence we can assume that
the positive hyperharmonic function

': Z Aä),"
tr€N
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is finite at x. There exists a positive hyperharmonic function u on W such that
u(x)-- and' E("+eu(o?tf- for every e>0 (cf. [8, Exercise 2.4.8)). We define

for every e >0 a hyperharmonic function ue on W by

u" : EY,* eu - ao* es ! o-r (v' o q).

By the Z-harmonicity of X there exists a potential p on X with

0 =- ht= lhr- 1l*1 = p*1

([0, Proposition 1.4.5]). Since crr,=år,

(1) u"*p > 0

on E-t(14/'* nX'). For every r(N
(2) s >- npo

on X\7,. There exists a semi-polar set "B of X such that on F,\-B

(3) po: RI".: an

(cf. [8, Corollary 6.3.6]). Let n">lf e. Then bV Q) and (3)

(4) 8s = alc

on ((x\U,") n rJ\B. From (1) and (4) we deduce the existence of a compact
set 1(" of X such that (l) holds on 7Z\-B outside K,. Since .Bn(Iat\K,) is

semi-polar in l/\rf,, (1) is valid on lZ\f, (Lemma 5.1).

If 0W*0, then

$ ;2f (aT 
"{z) 

* eu (z)) 
= c't,(Y)

for every ye|W. Since W is an MP-set, (1) holds on W.

We recall that u(x) and s(x) are finite. Further, EY_:R:_ on W (18,

Proposition 5.3.3D. As e was arbitrary,

a,(x) = nfl,1x;+p1x; +a-,(u'od@).

Since AcEncd. (Remark 2.6)

a (A) (x) = .R[,r., (x) + p (x) * a*l (u' o E) k).

Observing that (u'oE)(x)=- and letting o(+@ we obtain

(s) a(A)(x) = ,Rå(6,)(x)+p(n).

The relation (5) holds for every x(W, outside a polar set of W. By Lemma

5.1, (5) holds everywhere on W. On ,F:X\Z we obtain a(E):R[rrpy, out-
side a semi-polar set of X. Hence (5) holds on X, outside a semi-polar set of X.
Since o(,4) is harmonic and,Rf,,r,1+p is a potential by Theorem 3.6, we obtain
@(A):0 bY Lemma 5.1. tr
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In the following theorem let P' be the set of points of X' where all potentials

on x' vanish. This set was introduced in [5, p. 901]. All three possibilities P':0
(in which case X' is z-harmonic), T4P'*X', and P':X' may occur in the

theorem.

Theorem 5.3. Let E: X*X' be a locally polarly nonconstant harmonic

morphism. Let AcP* and let

A,: l)nq^(o

be polar in a resolutiue compactification X'* of X'. Then A is of harmonic measure

zero if one of the following two conditions holds:
(a) X' is elliptic qnd connected.

(b) X' has a countable base and P' has afinite number of components.

Proof. lf P':A, the conditions of Theorem 5.2 are valid.

lf P'+A, the proof of [4, Theorem 8.8] carries over to the present situation.

This follows by Remark 4.5, since AcPr, A: v,,qyA, implies

w(A)= )o(A,,). I
l? €.N
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