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THEOREMS OF THE RIESZ TYPE FOR CO-FINE
CLUSTER SETS OF HARMONIC MORPHISMS

KIRSTI OJA

Introduction

For analytic mappings between Riemann surfaces a theorem of the Riesz type
concerning so-called fine neighbourhood filters of Martin boundary points was
proved by Constantinescu and Cornea in [6, Satz 16]. This result was extended to
Brelot spaces by Ikegami in [11, Theorem 7].

In this paper we prove two more general theorems concerning harmonic morph-
isms between harmonic spaces. The spaces we consider satisfy the axioms of Con-
stantinescu and Cornea in [8] with some additional assumptions. The notion of
a co-fine filter we use was introduced by Sieveking in [15, p. 21].

1. Assumptions and notations

Let X be a noncompact harmonic space in the sense of [8, p. 30]. We assume
throughout this paper that X satisfies the following additional conditions:

(A1) X is #-harmonic.

(A2) X has a countable base.

(A3) The sheaf of harmonic functions on X has the property of nuclearity.

(A4) There exists an extremal superharmonic function on X which is har-
monic.

(AS) There exists a superharmonic function s, on X with infs,(X)=0.

(A6) 1 is a Wiener function on X.

The conditions (A1)—(A3) make possible the integral representation of pos-
itive superharmonic functions ([8, p. 330]). The conditions (AS5S)—(AG6) are related
to the theory of Wiener functions presented in [10]. Together with (Al) they imply
the existence and harmonicity of the function A; ([10, p. 12]). The condition (A4)
follows from (A1), (A5) and (A6), unless A, is identically zero (cf. [8, Corollary
11.5.3)).

We denote the Martin space of X by My and the Riesz space (resp. the Poisson
space) of X by Ry (resp. Py). Then Mx=RyUPyx ([8, p. 312]). By [8, Theorem
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11.5.1] there exists a semi-regular Riesz—Martin kernel (x, &)—k:(x) on My.
In what follows we shall keep k. fixed.

For any positive superharmonic function # on X there exists a unique measure
U, on My (in the sense of [8, p. 301]) such that

u=[kedn,©)

(cf. [8, Theorem 11.5.1]). We call u, the canonical measure of u In this paper we
always assume u to be harmonic. For any Ac My let y, be the characteristic
function of A. Then

/'tu(RX) = /‘XRxd:uu = O

(cf. [8, Proposition 11.4.12.c]), and y, is a measure on Py. By (A4) we know that
Py0.

2. The co-fine filters

Let s, be the set of extremal positive superharmonic functions on X which
are harmonic. Two elements of J#, are called equivalent if they are proportional.
Let y: #,—~Px be the canonical mapping with respect to this equivalence rela-
tion ([8, p. 311]).

Definition 2.1. Let £€Py. The co-fine filter of ¢ is
Fr = {EC XIRf\E # u, for uew‘l({é})}

(cf. [15, p. 21], [12, p. 185]).
By [8, Exercise 11.4.4] %, is a filter on X. Obviously

Fe={EC X|Ri,) " # k).
Proposition 2.2. For every ZCPy the filter F. has no cluster points in X.

Proof. Since k. does.not vanish identically, %, is finer than the filter of the
complements of relatively compact subsets of X ([8, Proposition 5.3.5]). O

Let X* be a resolutive compactification of X (cf. [10, p. 16]) and A=X"\X.
We denote by pu(A4) the harmonic measure of a p-measurable set 4 of 4 ([14,
p. 41]). The function p(A) is positive and harmonic.

Lemma 2.3. Let X* be a resolutive compactification of X and U* an open
set of X*. If w(U*nA) does not vanish identically, there exists a E€Py with
U nXcF,.
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Proof. Let u=u(U* n4);
fi’f\u* Z U
by [14, Lemma 8.3]. Then

u= [ kedu, ),
where y, is the canonical measure of u. By [8, Proposition 11.4.12.¢]
RO = [ RO du,©).
If R,’fé\u*:ké for all £€Py,then RA\V"=y, which is a contradiction. [J
The following theorem is related to e.g. [9, Theorem IV.4].

Theorem 2.4. Let X* be a resolutive compactification of X. There exists
a set ECA with u(E)=0 such that for every x€ANE and every neighbourhood
U of x, UfnXEF; for some L€ Py.

Proof. Let E be the set of all x€A for which there exists a neighbourhood
U with pw(Ufn4)=0. Then EcCA\supp p, for every z&X. Hence

1z (E) = p(AN\supp p.) =0

for every z€X, and u(E)=0. The assertion of the theorem holds for every
x€ANE by Lemma 2.3. O

Definition 2.5. Let ECX. We define

8 = {CEPYIXNEC T} = {L€PxIRE # u, uey ' ().

Remark 2.6. Let E and F be subsets of X with ECF. Then &rC&g.
This is obvious since &€& implies RE(x)<u(x), ucy—*({£}), for some x€X.
As RE=RI, tcéy.

Remark 2.7. We recall [8, Exercise 11.4.5]. The outlines of the proof are
also given in [8].

Let F be a closed set of X and K a compact set of Py. By Definition 2.5

&K = {K|RE = u, uey ({ED)}.
There exists a countable set B X with
Ern K = {E€K|(3%) (x€B, RE(x) < u(x), ucy({E)).
and & nK isa K,-set on K. Since k€Y ({£}),

Ern K= LQJB{féKlﬁfé(x) = ke(x)}.
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3. Some lemmas

Let £ be the set of compact sets of Py ordered by the inclusion relation.
Let u be a positive harmonic function on X. Then a family of measures
(,uuK)KE » defines the canonical measure u, of u ([8, p. 301)).

Lemma 3.1. Let ACPy and KA such that AnK is a Borel set on K.
Then the function on X, defined by

x> [ 1anx@ (ks (DIK) it 0),

is harmonic.

Proof. Let Vk~ XanxHu,- The integral ffde exists for every feC(K),
defined by
Srdve= [frank du,

(cf. [3, IV, § 5, 4, Corollaire 3] and [3, IV, § 5, 6, Corollaire 3]). Then ﬁ—»ffde
is a continuous linear functional on C(K), and vy is a measure on K. By [8,
Proposition 11.4.12.c]

S Ul Ky dv(©) = [ xank(@) (ke K) dpt, (&)
is harmonic. [

Let AcPy. We define on X a function w,(4) by

x> [ 14 (& ks() dp (2.
Lemma 3.2. Let ACPy. The function w,(A) is harmonic.
Proof. Let K€, xcX and
1% = (Ke(OIK) -
The function k,(x)[K is M, -measurable. Then the integral
SO (ke(X)IK) dp () = [ £&)drz (©)

exists for every f€C(K) (cf. [3,1V, §5, 6, Théoréme 5] and [3, IV, § 5, 3, Corollaire
5]). Hence t% is a measure on K, and the family (t%)g., defines a measure
on Py for every x€X.

For every K€ A and xcX

S racx@d@ = inf [ 1) dez(0),

where U is an open set of K ([3, IV, § 1, 4, Proposition 19]). By Lemma 3.1

x> [ 1u(® deE(©)
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is harmonic. Thus
*
x> [ 1ank (9 dTi(©)

is harmonic ([8, Proposition 1.1.2]). Further,

0,(4) = sup [ xanx(©) dri(®)
Kex

is dominated by u and hence harmonic. [J
We say that a property holds p,a.e. on Py, if it holds for every &€Py
except for a set 4 with

(A = [ gadp, = 0.
Lemma 3.3. Let f,g and h be positive numerical functions on Py.

a) If f=g u,-a.e., then ) )
S fdw, = [ gdu,.
b) If f=g, then ) )
J fdw = [ gdu,.
0 [ U+du,= [ fdu+ [ gdp,.
d) If g and h are p,-measurable, then
[ Fe+mdp, = [ fedu,+ [ fhdp,.

Proof. The proof in [4, V, §1, 1, Propositions 1 and 2] carries over to our
case. [

Lemma 3.4. Let E be a closed set of X. Then RE=u if and only if

1 (80 = [ tepdp, =0
(cf. [9, Theorem I1.2]). .

Proof. Let p,(&p)=0. For any x€JX,
Ri() = [ RE(x) dp, (9)
(cf. [8, Proposition 11.4.12.e]). By Definition 2.5 and Lemma 3.3.a
Ri = [ R, du () = [ xp oo Riy din,(9)
= [aropke du,(©) = [ kedu, () = u
Secondly, let RE=u. Then

[ RE 4, = [ ks du, (.
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The functions fikEg and ké—R’Z are u,-measurable (cf. [8, Proposition 11.4.12.¢]
and [3, IV, §5, 3, Corollaire 3]). By Lemma 3.3.d

[ kedn @) = [ (ke RE) du, @)+ [ RE,dp, (2.

Hence
J Geg= RE) dp,(2) = 0.
Then for every x€X and for every Kex~

S (ke (0) = RE, () i () = 0.
We obtain
ke(x) = Ri,(x)

for all £€K, except for a set of I, -measure zero (I3, 1V, § 2, 3, Théoreme 11).
By Remark 2.7

EpnK = LEJB {EEK|RE, (%) # k().
where B is a countable subset of X. Hence
1(88) = sup i, (6,0 K) = 0. O
Ked
Lemma 3.5. Let E be a closed set of X. Then o,(Px\&%) is the greatest
positive harmonic minorant of RE (cf. [9, Corollary on p. 327]).

Proof. By Lemma 3.2, o,(Px\ &%) is positive and harmonic. By Lemma 3.3.b
R = [ R dp, (O = [ 1poner Ricy dpa(9)

= [ tppes ke di(©) = 0,(PYNEp).

Hence ®,(Py\&p) is a minorant of RE.
Let ' be the greatest harmonic minorant of RE. Then

u’ = RE
by [8, Exercise 5.3.2]. Hence pu, (65)=0 by Lemma 3.4. We have
u = RE=u.

For positive harmonic functions v the mapping u,~v is an additive injection
by [8, Corollary 11.4.4.c]. Then

Hur < Hy-
Thus

W= [ ipeorkedu (&) = [ 1o ke din,(©)
= 0,(Px\&p).
So, ' =w,(Px\EE). O



Theorems of the Riesz type for co-fine cluster sets of harmonic morphisms 83

Theorem 3.6. Let E be a closed set of X. Then ﬁﬁu(%) is a potential.

Proof. For every Kex the functions y, |K and yp e |K are p, -
measurable by Remark 2.7 and [3, IV, § 5, 4, Corollaire 3]. Thus Xs, and AP Nép
are u,-measurable. Then by Lemma 3.3.d

w=[ apoopke O+ [ repkedu, ().
Hence

AE 5E AE SE
R, = Ro p sp)+ouer = Rop et Roép
([8, Theorem 4.2.1]). By Lemma 3.5
ASE
wu(PX\éaE) = Rwu(Px\éb_E)
is the greatest positive harmonic minorant of RE. Hence R  , isa potential. [

Remark 3.7. The assumptions (A5) and (A6) were not used in this section.

4. Definitions

Let X and X’ be two noncompact harmonic spaces. Let ¢: X—X’ be a
continuous mapping. We denote by X’* an arbitrary compactification of X”.
For E€Py, let &, be the co-fine filter of &.

Definition 4.1. The co-fine cluster set of ¢ at ¢ is
"= N oU),
UeF,
where the closure is taken in X’* (cf. [7, p. 146], [11, Theorem 7]).

Lemma 4.2. Let ¢: X—~X’ be a continuous mapping and E€Py. If U'™
is an open set of X'* with ¢~ (§)c U™, then ¢ *(U*nX)EF;.

Proof. Cf.[7, Hilfssatz 14.1]. O

The assumptions about X imply the existence of the positive harmonic func-
tion A, on X. For any set AC Py we denote by w(A4) the function a),,l(A) on
X, ie.

x> [ 14k () dpy (O,
where =, . By Lemma 3.2 ®(4) is harmonic.

Remark 4.3. For every x¢X we can regard k.(x)y; as a measure on Py
(cf. the proof of Lemma 3.2).
We say that A is of harmonic measure zero if ®(A) equals zero.



84 KirstI Osa

Remark 4.4. For the case of a Brelot space X with some additional assump-
tions a resolutive Martin compactification exists for X. Let w,, x€X, denote
the harmonic (Radon) measure defined on the Martin boundary by the solution
of the Dirichlet problem. Then for every boundary set A

J 14 do, (&) = [ 14(©) ke (x) dpy (2)
([7, p. 140], [11, p. 262]). This motivates our definition.

Remark 4.5. If {4,},cy is a sequence of sets with A4, C Py and A=J,cyAn
o(d) = 3 od,).
neN

This follows from [3, IV, § 1, 4, Proposition 18].

5. Theorems of the Riesz type

In this section we consider a harmonic morphism ¢: X—X’. The target space
X’ is supposed to satisfy (A5) and (A6). We also assume that X’ is an MP-set.
By [10, p. 21] X’ has resolutive compactifications.

The concept of a harmonic morphism (earlier also called a harmonic mapping,
€.g. in [13]) is defined as in [13, Definition 2.2]. The definition of a polar set in
a resolutive compactification of X’ can be found in [14, Definitions 6.1 and 6.7].
For the notion of a locally polarly nonconstant mapping we refer to [14, Defini-
tion 2.1].

Lemma 5.1. Let B be a semi-polar set of X and u a hyperharmonic function
on X with u=0 on X\ B. Then u=0.

Proof. X endowed with the fine topology is a Baire space ([8, Corollary 5.1.1)).
By [2, p. 193] and [8, Corollary €.3.3] X\ B is finely dense in X. The fine continuity
of u then implies ¥=0 on X. O

We proceed to the proofs of our two main theorems. Theorem 5.3 is similar
to [7, Satz 14.1] and [11, Theorem 7]. In the axiomatics of [8] corresponding results
for neighbourhood filters of an ideal boundary point in a resolutive compactification
of X were proved in [14, Theorems 8.5 and 8.8].

Theorem 5.2. Let ¢: X—~X’ be a locally polarly nonconstant harmonic morph-
ism. Let AC Py and let

A= 10" ()
gea
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be polar in a resolutive compactification X'* of X’. We suppose that there exists an
open set W'* of X'* satisfying the following three conditions:

@) W=W™*nX" is a P-set.

(b) A/cwW’™.

(c) Either X’ is elliptic or A’ X’ is contained in a o-compact set of W’.
Then A is of harmonic measure zero.

Proof. Let
W= (W), F=X\W.

We choose an x€W and a positive hyperharmonic function #” on W’ with
(W op)(x)<o and
lim _ u'(y)) =-oo.
WSy ~A"NW’
By [14, Theorem 2.4 and Lemma 6.9] such a function exists for every x¢ W, out-
side a polar set of W. Let a=0 be arbitrary and define

Wit = {xew’

Jimint o' () = ).
Then W/* is openin X’*. Let
F, = X o'W, *nX).
Hence F,DF. Since A’C W)*, by Lemma 4.2 ¢ "(W,*nX")€ZF, and
Rz = ke
for every {€A4. Denoting &,=¢&; we obtain

ACé,.
Let

0, = &(6,) = [ 76, (ke dp (©).
Then 0=w,=h;, and w, is harmonic. Theorem 3.6 implies that

p.= Re:

is a potential.
Let {U,}.cy be an exhaustion of X by relatively compact open sets. Then

lim R} =0

n—oco

by [1, Korollar 2.4.5] (which carries over to our case). Hence we can assume that
the positive hyperharmonic function

s= 2 R;Z\U"

nEN
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is finite at x. There exists a positive hyperharmonic function » on W such that
u(x)<o and E&—ksue@g for every e=0 (cf. [8, Exercise 2.4.8]). We define
for every ¢=0 a hyperharmonic function u, on W by

u, = HYY +eu—w,+es+oa"1(u" 0p).
By the 2-harmonicity of X there exists a potential p on X with
0=h,=h—-1+1=p+1
([10, Proposition 1.4.5]). Since w,=h,,

) u,+p=0
on ¢ Y (W*nX’). Forevery neN
2 s = np,

on X\U,. There exists a semi-polar set B of X such that on F\B
©) p. = Raz = o,

(cf. [8, Corollary 6.3.6]). Let n,>1/e. Then by (2) and (3)

4 & = w,

on ((X\U,)n F,)\B. From (1) and (4) we deduce the existence of a compact
set K, of X such that (1) holds on W\UB outside K,. Since Bn(W\K,) is
semi-polar in WN\K,, (1) is valid on W\K, (Lemma 5.1).
If 0W =0, then
lim inf (HY_ () +ou(2)) = 0,0)

for every y€oW. Since W is an MP-set, (1) holds on W.
We recall that u(x) and s(x) are finite. Further, H'Zﬁ=f€£“ on W ([8,
Proposition 5.3.3]). As & was arbitrary,

@,(x) = RE, () +p(x) +a7(u 0 9) (x).
Since Acé,C&r (Remark 2.6)
@ (A) (%) = R 5 (X)+p(x) +272 (U 0 9) (x).
Observing that (#’o@)(x)<oo and letting «—<c we obtain
%) @(4)(x) = RE 6y (x) +p(x).

The relation (5) holds for every x€ W, outside a polar set of W. By Lemma
5.1, (5) holds everywhere on W. On F=X\W we obtain w(@“’p):RZ(gF), out-
side a semi-polar set of X. Hence (5) holds on X, outside a semi-polar set of X.
Since w(A4) is harmonic and Rg(gF) +p is a potential by Theorem 3.6, we obtain
w(A)=0 by Lemma 5.1. O
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In the following theorem let P’ be the set of points of X’ where all potentials
on X’ vanish. This set was introduced in [5, p. 901]. All three possibilities P’=0
(in which case X’ is #-harmonic), 0P =X’, and P’=X" may occur in the
theorem.

Theorem 5.3. Let ¢: X—>X' be a locally polarly nonconstant harmonic
morphism. Let AC Py and let

A=U e (9
£éa

be polar in a resolutive compactification X'* of X’. Then A is of harmonic measure
zero if one of the following two conditions holds:

(a) X’ is elliptic and connected.

(b) X’ has a countable base and P’ has a finite number of components.

Proof. If P’=0, the conditions of Theorem 5.2 are valid.
If P’#0, the proof of [14, Theorem 8.8] carries over to the present situation.
This follows by Remark 4.5, since AC Py, A= U,cy4, implies

wd)= Jo,) O

neN
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