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ON THE EXTREMALITY OF AFFINE MAPPINGS
WITH SMALL DILATATION

STEPHEN AGARD

1. Introduction. In a paper [1] of 1975, Ahlfors introduced a new dilatation
for quasiconformal mappings in space. This dilatation is apparently due to Clifford
Earle, and has a number of theoretically desirable properties, but (perhaps) suffers
from computational awkwardness. In his paper, Ahlfors notes that a crucial test
for the dilatation would be whether the affine mapping is extremal for “the classical
rectangular box problem of Grétzsch™.

In this paper I will present an affirmative answer to this question for the special
case of three dimensional mappings with small dilatation. I believe that the method
proniises to extend to higher dimensions, but that the three dimensional presenta-
tion is desirable for clarity of exposition. There is precedent for special treatment
of dimension three, e.g. [2], and indeed the pioneering work of Gehring and Vaisila
([41, [3], [7]) was all carried out in this context.

Because the Earle—Ahlfors dilatation is somewhat difficult to explain, I shall
defer its introduction until Section 5, where the main result will be proved. In
the final Section 6, I will prove as an application of the method, that the dilatation,
if small, is not increased under uniform convergence. This result and its proof are
somewhat similar to the results of Bithimann [3] for the more usual dilatations.
Biithlmann’s article is also confined to the case of three dimensions.

The essential feature of the present method is the finding of a convex function
with various special additional properties, which are summarized in Section 4.
Once this function is in hand, the applications follow by Jensen’s inequality and
the usual length-area estimates common in the field. The method cannot overcome
the requirement for small dilatations, but may prove valuable at some later time
for the more general case.

2. Notation and preliminaries. Some of the time I will be working with the
vector space structure of the Euclidean space R", and then I will usually think
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56 STEFHEN AGARD

of points as column vectors, using letters like u, a. The usual norm will be |ul =
(S u®)2. The symbol S will be used to identify the sphere {u: [lu]=1}.

However, I prefer to use traditional notation as far as possible. For example,
R3*+ will denote the first octant, that is

{p:(x,y,Z)Z x>0, y>0, Z>0}

For any real =0, and p=(x, y, z)CR**, I shall denote the point (x*, y*, z%) by p*.

As regards functions, C? will mean twice continuously differentiable, and
M will mean monotone. I will use the relation p=g¢ to mean that each coordinate
of g is not less than the corresponding coordinate of p, so that monotonicity
will have the usual formal appearance:

f(p) =f(q) whenever p = gq.
1 shall consider extensively the hyperboloid
H={q=(n R inl =1},

which bounds the convex set H*={(x,»,z): xyz=1}. We note that the map
p—p? always maps H* onto itself, and also H onto itself.
For g=(&,u, O)€H, 1 will denote by d(g) the matrix
E00
0n 0f.
00 ¢
A point g€ H will be termed a representative of the matrix A€GLy(3, R)*) if
there exists an orthogonal matrix U¢ SO(3, R) with
urTATAU _ s
devig M)
In particular, then, ¢% is a representative of d(q).

An important notion for g€ H will be a set which I denote by S(g), defined
as follows: if p=(x, y, z)ER?**, then p€S(q) if and only if there exists an ortho-
gonal matrix V€SO3, R) with (x,y,z) the respective diagonal entries of the
matrix

VTs(q)V.

The motivation for considering this set is that if A is any matrix in GLy(3, R)
whose representative is ¢, and whose columns are respectively a, ds, as€R®,
then

(e Jee e )
@.1) Pa= [det2/3A > det?3 4’ det?3 4

belongs to S(g). Evidently S(g)SH+*.

*) GL,(3, R) will be those matrices in GL(3, R) with positive determinant.
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We have the important map 7: H*—R, defined for p=(x,y,z) Ht by
T(p)=x+y+z. This is motivated by the fact that the trace of a matrix is invariant
under orthogonal conjugation. Therefore, if p€S{g), we must have T(p)=T(q).

We have the inner and outer dilatations K;, K, defined for any matrix
A€GLy(3, R) by

o [ Au? [ Aul®
== f K / = —_
K;[A4] :}gs det234° ol4] f’,‘é? det?3 4’

and functions M, m: H*—~R, defined for p=(x,y,z) by
M(p) = max {x, y, z}, m(p) = min {x, y, z}.

The connections here are that if g€ H is a representative of a matrix 4€GLy(3, R),
and if p€S(q), then

T = ) = m() = M) = M(g) = Kol

The following lemma is a consequence of the preceding considerations:

Lemma 2.1. For gcH, the set S(q) is a subset of the convex hull of the per-
mutations of q, which is in turn a subset of the plane x+y-+z=T(q).

Proof. Since the result depends only on the permutations of ¢, we may sup-
pose that g=(&, n, {), with é=p={. In this case then, S(g) is evidently a subset
of the intersection of the plane

xt+y+z=<+n+(
with the cube

IIA

A
[
A

&

The vertices of this intersection are precisely the permutations of ¢. [

y=d, z

oy o) E=x=0 ¢

3. Convexity. A set E in R" is convex if it contains the entire line segment con-
necting any pair of its points. A real valued function ¢ defined in a convex set
E, is said to be convex if, for x, y€E,0=.=1, we have

P(x+(1=2)y) = o) +(1 =) ().
For ¢@€C?, it suffices that for each x€FE, the second differential
@”(x): R"XR" - R

be positive semidefinite. This form may be identified with the matrix whose (i, j)
entry is 9%¢/dx;0x;, and the requirement then is that for all u€S, we have

{(p"(x); u u>—232—¢uu =0
@D U= ox;0x; T
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Some functions are not convex, but may be made convex by composition with
a suitable nondecreasing function of a real variable. Thus, suppose O0=y€C?
and a€C2n M. What are the requirements that ¢@=ooy be convex?

Routine calculation shows that

0P dl//
Era LW -

Fe ;Y " 9llf o
ox;0x; “ W) Bx,ﬁx (W) . O0x;’

or, in the language of differentials,
/()3 u) = o/ (0 () ') ),
(" (¥): vy = 2 ( () ) o)
() W 0 W) e

Consequently, if a function o of a real variable, belonging to M N C?, and defined
on the interval (0, sup yy] has the property that
G.1) A ORI
2'(¢) Wi(x); u)?

whenever O<y(x)=c and u€S, then it is apparent that ooy is convex. The
behavior at ¢=0 will not be a problem, because that is the absolute minimum.

For a function (x,)) defined in R?% we adopt the temporary notation
V- for the vector (—oy/dy, Oy/dx), which is perpendicular to the gradient
V. The following result is probably well known, but is in any case provable by
elementary calculus:

Theorem. Let  be of class C* in DS R? andlet p be a pointin D. Sup-
pose the number

E=E,(p) =W (p):V-i(p).V-y(p)

is positive. Then as u ranges over S, the ratio

W(p): u, u)
W(p):u?
has a finite minimum, given by
dety"(p)
CE(p)

We shall study extensively the specific function ¥: R** —R, defined by

m,(p) =

(3.2) Y (x, y) = log? x+log x log y+1log? y.
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Accordingly, we set a=log x%y, f=log 3x, and calculate for p=(x, y)

v = (2. L) veum =(-£.2).

v’ ox

As a matrix, y”(p) has the form

2—a 1
x> xy
1 2-8
Xy

and therefore,

E,(p) = ) 2[(2 ) f*=2af +(2—f)o?]

— (B2 =62~ (a+ )

— 2 —1
ety = 22201
_ —"(7+ﬁ)+aﬁ
N x2yp?
and assuming E,(p)=0,
(3.3) my (p) = 3-2(x+p)+af

2P0 = eh—2PGTP)

In fact, the mapping (x,1)—(2 f) is a univalent transformation of R?!
onto R? but it is advisable to move on further, via the transformation (z, 8)-—
(¢, 1), where

{=a+ph n=ap.

Because (o, §) are real roots of the equation O0=¢2—¢&¢+y, the image domain is
precisely {(&, ): &2—4y=0}. The composed mapping F: (x, y)—(&, ) is uni-
valent in {x=y}, and in general F(x, y)=F(y, x).

The expression £, (p) has the same sign as

282 —6n—<n,
and the ratio m, (p) becomes

(3.4) my(x, y) =

S (o) = Fx )

Finally, define {={() by the expression

= (Zoresn)
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and define r, by the expression
sup (=272 4220  + 150 —84n) V6
o=n=1 (94+65—>50)(9+5n—40)123 Y

Lemma 3.1. As defined by (3.5), the number r, is finite, and for any r=r,
the function

(3.5)

¢, = exp {r ¥}
is convex in the convex domain D={(x,y): ¥ (x, »)=1/3}.

Proof. We shall employ the previous remarks, by showing that for O0=c<1/3,
the expression E,(p) is positive on the entire level curve {{(x, y)=c}. Then it
will remain to show that for the function «,(c)=exp {r ¥ E}, we have

1-rVe /(o)

=— =m,(x, v
2¢ ol (c) o (% 1)

whenever ¥ (x, y)=c. The first equality is a routine calculation. For the inequality,
in view of (3.4), we are to show

1—rYc 3224y
2¢ 282 —6n—<Cn

(3.6)

lIA

whenever
c=y(x,y) =log2x+logxlogy+log?y
1
= S =+

1
= (&=
In view of this constraint, the relation (3.6) reduces to showing

l—rjc _3=24n
(3.7) 2c T 6c—<¢n

whenever we have the four conditions

1
r=r,, =4y, &-3np=3c 0<c<?.

When all else is established, the convexity of the domain D will follow as
the closure of the increasing union of the convex sub-level sets

D, ={(x, ) ¢,,(x, ) = explroV el = Y (x, ») = ¢}
as ¢ 1/3.
Turning to the details, it seems at first best to fix ¢, and use ¢ as the para-
meter for the parabola

Po={(&m): &=3c = 3nj.
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The constraint £?=4n has the effect of limiting the range for the parameter ¢
to the interval

I,=[-2V3¢, 2¥3c].

The quantity &y becomes (£3—3c¢¢}/3, and has its maximum value 6¢ J/3c
at ¢=2}3¢, which maximum reaches 6¢ for the first time when V3c=1, hence
c¢=1/3. Therefore, for 0=c<1/3, E,(x, y) is indeed positive whenever y (x, y)=c.

We shall then turn to the problem of minimizing

o 3—28+n
gr(g)__6c__gvn > §E[C

One readily calculates
d oo __ h(
d_f‘ 8 (‘:) - W,
where
h (&) = 12¢&— 36490+ 302+ 62— 4,

This is evidently a fourth degree polynomial in £. However, we do not wish to
express it as such.

Values for ¢ of special interest will be the endpoints of the interval 7, and
two relevant roots of /., which I shall denote by &, {61, &, =¢,. Denoting the
corresponding # values by ny, #,, the points (&;, n;) may be shown, by elimination
of the parameter ¢, to lie on the intersection of P, with the hyperbola

R={(n: p*+15p—4&n—2& = 0}.

One routinely shows that both /.(=2}3¢) and h.(2Y3c) are positive, and
therefore the serious contenders for the minimum are —2}3¢ and &,. Since the
value g.(—2V3c)=(3+1}3c)/6¢ is comfortably larger than (1—rYec)/2¢ whenever
r=0, this poses no problem.

In order to study the inequality (3.7) at (&,, ,) it becomes far more efficient
to take n, as parameter for both &, and ¢, through the relations (&, n,)€P.nR.
Dropping the subscript from #,, we find easily that the explicit formulae are

1/2]

{= (% ('72+5'7)) I

and finally, our task is to show that for O<y<I1,r=r,, we have

3—rye) _(1-rye)

n(Gn -4.+9)  2c
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not more than
3=2¢+n  3+43n—2(
6c—Cn n(bn—5{+9)"

Since O<n<1, the factor of 1/4 may be cancelled from the inequality, and
after some algebraic manipulation, our task is to prove

gc(éo) =

- 2TpR22E+ 15084y
3rije= O+6n—50)

or
o (272422004150 —84n) 3
COFS—ARO+6n =503V

This of course is guaranteed, since r, is the supremum of the right hand quotient
g(n). However, it remains to verify that r, is finite, and for this we must examine
the behavior of ¢(n) as n\0 and as # 71.

For the case of #\.0, and in view of (=(151/2)V2(1+ O(y)), we see that

. 5)5

lim g(n) = —g— ===
On the other hand, as 1,71, we see that {—3, and it is necessary to write y=1—¢,
and find that

(= 3—%8—}—0(82),

11
9+6n—5( = —4—8+ 0(¢e¥),

5
=272+ 220l +15{ —84n = :42 e+0(&?),
and finally

) 2913
lim ¢() = =3~ ==. O

We have one final result for this section, which is a consequence of the convexity
of the domains D, and the earlier Lemma 2.1. Here, i is still defined by (3.2),
and we make the permanent definition for ¢=(Z, n, J)£H.

1 ‘
(3.11) Y(q) 27(10g3§+10g3;]—!—10g2§).

Corollary 3.2. For qcH,0=Y¥(q)=1/3, and for p=(x,y,2)€S(q), we have

Yx,y) = ¥(g).

Proof. Lemma 2.1 tells us that S(g) lies in the convex hull " of the per-
mutations {g’} of g. Let m be projection on the (x, y)-plane. The six (or three)
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projections {n(¢’)} lie on the level curve {yy=c=¥(q)}, which bounds the set
D., and therefore

n(p)en(S(q)) & n(A) S D,
hence

Yy =y(rp)=c="¥(q). O

4. A special function. We shall now extend the function ¥: H—R to a new
function which we will call ¥: H*+—-R, and defined for p=(x,y, z)¢ Ht by

P (p) = max {i (x, y), ¥ (v, 2), ¥ (z,x)}.
The formula is an extension, because if p€ H, then all three competitors coincide
with ¥ (p).
Let us now set up the subdomain & H ™+, defined by
&= {(x,y,2)€H*: (x,y)€D, (y,2)€D, (z,x)€D}.

£ is convex, as the intersection of the three convex cylinders exemplified by
{(x,y.z): (x,y)eD} with H+. Moreover, by Corollary 3.2 we have the basic
property
4.1 P(p) = Y(g) whenever pcS(¢q) and ¢€&ENH,
and from the definition, the obvious:
(4.2) P(xy,2) = P (x0)

We define the functions @,: &§ =R by

,(p) = exp {r V E (p)}.

Direct consequences of (4.1) and (4.2) are the properties

(4.3) ®.(p) = &,(q) whenever peS(q),
4.4 P,(x,,2) = ¢.(x, ¥),

and we also note that for any =0,

(4.5) P,(p") = Py (p) = P/ (p)-

Since it is evident that for p=(x, y, 2)€&,
®,(p) = max {¢,(x, y), @,(y,2), @.(z, 1)},

and the competing functions are convex, it follows that @, is convex in & whenever
r=r,. This being so, it now follows that &, is monotone. For, indeed, the relation
(4.4) shows that for (x, y, z)€&, we have

1
d)r > Vs = r\"vs :qbr[*a 7_]~
(63 2) = 06, 0) = B 1

But a convex function of one variable (z) which assumes its minimum at the left
endpoint (1/(xy)) of its interval of definition is necessarily monotone. From the
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relation ¥ =(log? ®,)/r* it follows that ¥ itself is monotone, and in turn that
@, is monotone for all r=0.

r

5. Applications to extremal problems. The Earle—Ahlfors dilatation for a matrix
AEGLy(3, R) is defined by setting s=}3/2, and

(50 Keldl = 0,0) = oxnf(3 @) | —enp|(2 togetton+iogn) |

whenever g=(&, 5, ()€ H is a representative of A.
Apparently, [1], the motivation for the choice s=}3/2 is to have, whenever
1,

i

u
Kpld(u, 1, 1)] = i

This is a useful mnemonic convention. We also note that by this convention, the

requirement ¢€&nH (i.e. ¥Y(g)=1/3) corresponds to

Kp[A] = exp {%} = Je.

It is a routine consequence of the definitions and of (4.1) that
5.1 pE€& whenever gcENH and  p*BcS(q).

For a quasiconformal mapping f of a domain G into R3, we have at almost
every u€G, the total differential
f'(u): R® -~ R?

which is a linear map with the property

Sw+h) =)+ f(w); h)+o(|h]),

and nonzero Jacobian J (), which is defined as the Lebesgue derivative of the
measure function E—V(f(E)). Here, V is Lebesgue measure in R®.

Now suppose {e;, €,, e5} are orthogonal unit vectors in R®, and let (i, 1s, us)
be coordinates of u€G in the sense that

u= > ue,

and let {e}, e}, e;} be appropriately oriented orthogonal unit vectors in R® such
that one may write

SW) = 2 f;(uy, uy, ug)e].

If a matrix Df(u) is defined by having entry (j/,7) equal to df;/du; (the i-th
column will be known as 9, f), then as is well known, f"(u) has matrix Df (u)
with respect to the bases {e;}, {¢}}, and J,(u)=det Df (). The quantity Kp[Df (u)]
is invariant with respect to orthogonal changes of coordinates, and we denote it
by K, (u).
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The entries of Df are Borel functions, and K, is Borel measurable because
of the relations

Kf(u) = Sli/l,p ¢s(Pv(l¢)),
where py=(xy, yy, zy) are the diagonal entries of

UTDfT(u) Df (u)U
7w

and U ranges over a countable dense subset of SO(3,R). It is natural to set

K[ f1=ess sup,cq Kp(u).
When E is a measurable set in G, with V(E)<eo, we shall denote by fig
the normalized integral

S 5/ swd .

Jensen’s inequality will assure us that if R=R(u) is a measurable vector valued
function with values in &, and if r=r,, then

(5.2) @, [EfR] Ef@,oR.

We shall apply this inequality to the case

oS 1001 |183fH3]”2
Jf b Jf ) Jf b

[IA

(5.3) R=R;(u) = (

where we assume that KE[f]él";. Because of (5.3) and (2.1), we see that
R(u)*3¢ S(q) for each representative ¢ of Df(u), and therefore by (5.1), we are
assured that R(u)€é.

To obtain an upper bound for the right side of (5.2), we recall (4.5), (4.3),
and (5.0) to find:

(5.4) O (Rw) =5 (RW)'")=P5 (9)
4 4
= o7 (q) = K; ()",
hence setting t=sr=r}3/2, we come to

(5.5) fe.or= fKi
E E

On the other side, we shall employ the monotone property. First, however,
we note that by Holder’s inequality,

St ={ f '%’f” }’{ f Jf}m,
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and since

Efa,-fH = f 10:£1

WfeauslP®
=gk

When the left side is taken as the i-th component of a point p=p.(E), and pro-
vided pcé&, then we have by the monotone property of &,,

(5.6) ®.(p) = qs,[ f R).

E

we have

Now let x=(&;, &, &)ER®F, and let Q(x) be the set of quasiconformal
mappings f: R®*—R3, with the properties:

i) Kelf1=Ve
“) f(u+ez) :f(u)+éiei (l = 1: 2a 3; ”ER3)~

(5.7)

This class includes the linear mapping f;, with matrix A,=4J(x) if we assume,
as we do, that K[4j]=Ve. We take for E the unit cube C,:

={ucR: 0=u;=1,i=1,2,3}.

Theorem 5.1. For each t=sr,, the affine mapping f, is mean t-extremal
over Cy for K, in the class Q(x), which is to say that

[Ki= [K, = Kelag)
CO CO
for all f€Q(x).

The proof is immediate when we note that since C, has volume 1, the average
integrals can be replaced by ordinary integrals. Furthermore, by Fubini’s theorem,

1 1
f31f= f ff(l, Uy, t5) —f(0, us, tty) duydus
C, 0 0

1 1
= ff (él’ O’ O) d“2 d”3 = (él’ O’ O)
0 0
and at the same time,
[, =v(1(C)) = &6t
CO

Therefore, in this case,
= E3)(£, 8,89,

P = GG GG (1=1,2,3).

or, more generally,
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Hence, p*3¢ HN & is a representative for A,. Therefore, using (4.5), and reason-
ing as in (5.4) with t=sr, and using (5.6), (5.2), and (5.5), we find

Kel[Agl' = i(p"?) = @5 (p"*) = &,(p)

:é@,(fR]éf‘P,ORé fK}. O
<, C, Co

Corollary 5.2. In the class Qu(x) with only property (5.7) (ii), the affine
mapping f, is extremal for Kg.

Proof. Fix feQ,(x) and t sufficiently large. If K, does not satisfy condi-
tion (5.7) (i), then
Kilf1= Ve = Kel /o)
Otherwise, we have f€Q(x), and

K/ 1= [Ki= KA O
CO

We are now ready for the formulation of the Grétzsch rectangular box problem.

Corollary 5.3. Assume that x=(y, &y, &)ERY, with Kg[d(x)]= Ve. Sup-
pose a quasiconformal mapping w=f () maps the unit cube C, onto the rectangular

box
Ry={w:0=w,=¢,i=123},

in such a manner that the face-correspondence is as follows:
{u; = 0} — {w; = 0}
{u; =1}, =&

Let f, be the affine mapping with this property. Then Kglf1=Kg[ /ol

} (i=1273).

Proof. We may, by repeated reflections in the faces of C, and R,, extend
f to a quasiconformal mapping of 2C, onto 2R,, with the property that the
map g: 1—(1/2) f(2u) has an extension belonging to the class Q,(x). Therefore
by Corclary 5.2,
Kelf1= Kelgl = Kelfo) O

6. Convergent sequences. Turning to a different situation, we have the following
result for convergent sequences. In the hypothesis it is only necessary to assume
that f, is non-constant, but for simplicity, we state it as follows:

Theorem 6.1. Suppose that fy, f, (n=1,2,3,...) are quasiconformal mappings
of a domain GZR®. Suppose that K| fil=Ve, and suppose that f,—f, uniformly
on compact subsets of G. Then

Kilfo] = lim inf Kg[ /)
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and, more precisely, for almost every u€G,

6.1) K, (u) = limsup K, (u).

Proof. Fix t sufficiently large. Since the first conclusion follows from the
second, we shall prove that (6.1) holds at every point u, for which

(a) fy is totally differentiable at u,, with Jfo(uo)>0,

(b) the integral of the function g=Ilim sup K}n has strong Lebesgue derivat-
1wve at uy,.

The condition (b) means that

lim =
A Ef g = g(uo)

for a wide range of sets E containing u,, and in particular including all cubes
of arbitrary orientation. The fact that condition (b) holds almost everywhere
follows because the integrand g is measurable and bounded. See, for example, [6].
Now fix such a point u, and choose coordinates w=/(i;, u,, u;) in G, and
coordinates in f(G), such that u,=(0,0,0), and with respect to which f’(u,)
has matrix J(x), where x=(&;, &,, &)ER3.
Fix ¢=0, and take E=C, as the cube

{fu:0=u,=¢ i=1,2,3}.
The argument procedes as in Section 5 to the point just before (5.6), where DP=Pn e

and R=R, depend on f, and C,. At this point, we let n—<, and make use
of Fatou’s lemma in (5.2) and (5.5) to come to

n—oco

lim sup qb,(fR,,) = flim sup Ky (1 = sr),
C. c, "7

and therefore by condition (b),

(6.3) lim sup lim sup @, [ fR,,) = lim sup K}, (u).
&> h—oco CE R—>cc

As before, we have the lower estimates p, , for fct R,, and in fact, as n—oo,
we can show that
Pun,e ~ Po,c-

Indeed, it only depends on the uniform convergence. For example,

1 & &
Jor=5 [ ] 72 e 0) 1,00, v, ) duy
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and, as n—-o, the quantity on the right approaches

| L ry
(6.4) = f j Jol&, usy uz)—fo(0, uy, uy) duy duy = falfo.
0 0 C.
Similarly, as n—>eo,

fap = V() ~ 5V (1(C) = f T

This takes care of n. Now using the differentiability of f, at u,, and for
example (6.4), it follows that as &0,

(6.5) pis —~ (6168 T (E, 63, &) = X € HN 6.

To see this, we may by our assumption, write

Soluy, uy, us) :fo(O)'l‘Cfl“lal‘{’52“2024‘53”3‘13""0(”“H),

where {a,, a,, as} are orthogonal unit vectors in R® Therefore the integrand in
the left side of (6.4) is &f,a,+o(e), the integral is e3&,a,+0(e%), and on taking

norms,
fos,
C, !

In like manner, we have the estimate from the differential

= ¢ito(l).

f#o V(f,(C)) = & é:é+0(1),

and (6.5) follows as claimed. Note that we do not appeal to the Lebesgue differen-
tiation here. This is because the orientation of the cubes C, is not known in ad-
vance, while on the other hand, the functions 9;f, and J 7, are not necessarily
bounded, and their integrals are not known to possess strong derivatives.

To resume the argument, the problem now presenting itself is that we are not
absolutely sure that the quantities p, . or p, . lie in H*. However, this is not
a serious difficulty. Indeed, let us take any sequence ¢,—0, and by diagonalization
and pruning, we may assume that for each m=1,2,3, ..., we have

lim fR = q,£6

n—»oo

I’:m

and as m—co,
qm g qOEéD

For the inclusions, one need only note that since the integrands R, are in
&, the integrals are surely in & and furthermore that & is compact. Then in
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view of (6.3), we have
®,(qo) = lim sup K (uo)".

Now it follows from (6.5) that
xg/4 = hm pO, Em = hm hm pn, Em = llm qm = q()’
m-—>co m-—>oo B—>co m-—>co

and we may finally apply the monotone property of &, to conclude
Ky (uo)' = @,(x3™") = 9,(qp) = limsup K, (up)'. O

I will conclude this note with a slight generalization of Corollary 5.2. This
particular result has an interpretation relevant to the Teichmiiller spaces of real
3-tori, which T hope to expand upon in a subsequent article.

Theorem 6.2. Fix X, YEGL, (3, R), with respective columns
X1sXa, X351 V1. Vo, Va€ RS,

and assume that Kp[YX~'=Ve. Then, in the class Q(X,Y) of quasiconformal
mappings f: R*—~R® with

Slu+x) =f(w)+y, (i=1,2,3: ucR?),
the affine mapping f, with matrix YX ™' is extremal for Kg.

Proof. Fix f€Q(X,Y). Since f—f(0) also belongs to O(X,Y) there is
no loss in generality in assuming that f(0)=0. Let p=sup {|f(u)—fy(u)|: uc R},
where R is the parallelepiped spanned by the columns of X. Then because of the
reproducing nature of f, it is clear that

0= sup {|.£)—fy ()] - ucRdY,

Next, for each integer »n, consider the map f,: R®—~R3 in which
u 1f(nu)
n ’
One sees at once that Kg[f,]=K:[f] for any »n, and that

sup {[l £, ) —fo ()] : uER®) = % ~0.

Therefore f,—f, uniformly in R® and by Theorem 6.1,

Kelfol = liminf Kg[£,] = Ke[f]. O
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