
Annales Academire Scientiarum Fennicre
Series A. I. Mathematica
Volumen 6,1981 ,95-ll1

OId THE EXTREMALITY OF AFFII{E MAPPINGS
WITH SMALL DILATATION

STEPHEN AGARD

1. Introduction. fn a paper [] of 1975, Ahlfors introduced a new dilatation
for quasiconformal mappings in space. This dilatation is apparently due to Clifford
Earle, and has a number of theoretically desirable properties, but (perhaps) suffers

lrom computational awkwardness. In his paper, Ahlfors notes that a crucial test
for the dilatation would be whether the affine mapping is extremal for "the classical

rectangular box problem of Grötzsch".
In this paper I will present an affirmative answer to this Question for the special

case of three dimensional mappings with smail dilatation. I believe that the method
promises to extend to higher dimensions, but that the three dimensional presenta-
tion is desirable for clarity of exposition. There is precedent for special treatment
of dimension three, e.g. l2l, and indeed the pioneering work of Gehring and Väisälä
([4], [5], [7]) was all carried out in this context.

Because the Earle-Ahlfors dilatation is somewhat difficult to explain, I shall
defer its introduction until Section 5, where the main result will be proved. In
the flnal Section 6, I will prove as an application of the method, that the dilatation,
if small, is not increased under uniform convergence. This result and its proof are

somewhat similar to the results of Biihlmann [3] for the more usual dilatations.
Biihlmann's article is also confined to the case of three dimensions.

The essential feature of the present method is the flnding of a convex function
with various special additional properties, which are summarized in Section 4.

Once this function is in hand, the applications follow by Jensen's inequality and
the usual length-area estimates common in the field. The method cannot overcome
the requirement for small dilatations, but may prove valuable at some later time
for the more general case.

2. Notation and preliminaries. Some of the time I will be working with the
vector space structure of the Euclidean space .R', and then I will usually think
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of points as column vectors, using letters like u, a. The usual norm will be llall :
(2")'t'. The symbol S will be used to identify the sphere {u: llull:1).

However, I prefer to use traditional notation as far as possible. For example,

.R3+ will denote the first octant, that is

{p:(*,y,2): xr-0, ! >0, z>0}.

For any real p>-0, and p:(x, y, z)(R}+, I shall denote the point (xP, yf , rq)by pP.

As regards functions, C2 will mean twice continuously differentiable, and

M will mean monotone. I will use the relation p=q to mean that each coordinate
of 4 is not less than the corresponding coordinate of p, so that monotonicity
will have the usual formal appearance l

f(p) =f(q) whenever p = q.

I shall consider extensively the hyperboloid

H : {q : ((,4, Oe nr*: (qC : l),

which bounds the convex set ä+:{(x,y,z): xyz>l}. We note that the map

p+pp always maps ä+ onto itself, and also ä onto itself.

For q:(1,4,O(H, I will denote by ä(a) the matrix

A point q€H will be termed a representatiue of the matrix A€GLy(3, R)*) if
there exists an orthogonal matrix U(SO(3,i?) with

UT AT A(T-dffi:ak)'
In particular, then, q2 is a representative of ä(q).

An important notion for q(H will be a set which I denote by S(q), defined

as follows: if p:(x,y,z)€RB+, then p€S(q) if and only if there exists an ortho-
gonal matrix V(SO(3,,R) with (x,r',2) the respective diagonal entries of the

matrix
Vr ö(q)V.

The motivation for considering this set is that if ,4 is any matrix in G,Lo (3, R)
whose representative is Q, and whose columns are respectively ar, az, ar€Rs,

then

(2.r) ,^:(W,o"r,-W,#;)
belongsto S(q). Evidently S@)e H+.

[åil]

*) GLr(3, R) will be those matrices in GI(3, R) with positive determinant.
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We have the important map T: H+*R, defined for p:(x,y,z)€H+ by
T(p):x+y+2. This is motivated by the fact that the trace of a matrix is invariant
under orthogonal conjugation. Therefore, if p(S(q1, we must have T(p):71q1.

We have the inner and outer dilatations Kr, Ko deflned for any matrix
A(GL,(3,Ä) by

I ^ llAull2 llAullz
KIry: InlGt%,7 ' KoLA): t'Pd;Fä'

and functions M,m: H+-R, defined for p:(x,y,z) by

M(p) : max {x, y, z}, m(p) : min {x, y, z}.

The connections here are that if q(H is a representative of a matrix A(GL,(3, R),
and if p€S(q), then

I

EA: 
m(q) = m(P) = M(p) = M(q): Ko[A].

The following lemma is a consequence of the preceding considerations:

Lemma 2.1. For Q(H, the set S(q) is a subset of the conuex hull of the per-
mutations of q, which is in turn a subset of the plane x-l!*z:T(q).

Proof. Since the result depends only on the permutations of q, we may sup-
pose that Q:(4,U, O, with €=,1={ In this case then, ^9(q) is evidently a subset

of the intersection of the plane 
-- , -. , - _ i
^-,-) 

-,-- - s*ry*(
with the cube

{(x,y,z): C = x = (, C =t' = (, I = z = (}.

The r,'ertices of this intersection are precisely the permutations of 4. tr

3. Convexity. A set E in R" is convex if it contains the entire line segment con-
necting any pair of its points. A real valued function E defined in a convex set

.8, is said to be convex if, for x,y(E,0=).<1, we have

E Q.x + (t - t") y) = )"E @) * (r - ).) E (il.

For q€Cz, it suffices that for each x(E, the second differential

E"(x): RnXR' - R

be positive semidefinite. This form may be identified with the rnatrix whose (i, 7)
entry is 02qf0xi0xi, and the requirement then is that for all r.r€S, we have

(8"(x); Lt, u) - > S*./ z-l A.,-fr uilt i > o.
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Some functions are not convex, but may be made convex by composition with
a suitable nondecreasing function of a real variable. Thus, suppose g=r!(Cz,

and a(CznM. What are the requirements that E:q.or! be convex?

Routine calculation shows that

D<o . .. AA

a;:a'Q!) an

# 
^- 

: a' (li * *-!L 
*'' QtD X #,

or, in the language of differentials,

(E'@);u) : a'(,tt(x))(,1,'@); r),

(E'@) ; u, u) : u' ('! (x)) (11t " (x) ; u , t'\7

+ u" (lt (x)) (!t' (x) ; u'''.\lt' (x) : t').

Consequently, if a function a of a real variable, belonging lo M nC2, and deflned

on the interval (0, sup r/] has the property that

(3.1) -a,','(:) -- 
(lt-"lx); u'u=)

a'lc) (rlr'@); ")'
whenever O-.rlt(x):s and u€S, then it is apparent that aor! is convex. The

behavior at c:O will not be a problem, because that is the absolute minimum.
For a function r!(x,1,) defined in R2, we adopt the temporary notation

Yt{/ for the vector (-0tl0y,0rltl0x), which is perpendicular to the gradient

Vrl. The following result is probably well known, but is in any case provable by
elementary calculus:

Theorem. Let r! be of class C2 in DeR'2, andlet p be apoint in D. Sup-

pose the number
E : E,y(p) : (1 " @) ;Y t rl, (p),Y, t (il'l

is positiue. Then as u rqnges oter S, the ratio

(V" (P): u' u')-iIP\tl
has a finite minimum, giuen by

ntq(d:*:!J, r!_r(p)

We shall study extensively the specific function rL: R'+ *Å, defined by

(3.2) rl,@,y) - Iog'x+logxlogy*log2y.
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Accordingly, we

As a rnatrix, ,lr" (p)

and therefore,

set a-lag x2 y, {3

Y,t,b) -(+,+),
has the form

- log !2x, and calculate

:(-+,+)

for p-(x, y)

1

rr@) - #lQ - u.) p, - 2t§ + (2 - §) r=l

1 _- .: 
o ,rl2(§ 

* e)' - 6r§ - a{} (e * P)1,

det {t " (p)

Ytrktp)

_ 12-v")(2-fi)-1) ,,r- i'-

3-2(y.*§)+ap.)'))r- I'-

3-2(x*0)+afi
2(p*y.)r-1x{t-aB@+§)

In fact, the mapping (.r, .r')*(2. B) is a univalent transformation of l?2t

onto R2, but it is advisable to move on further, via the transformation (t, B1'*
((, 4), where

:: t-l§, q: $.

Because (u, fi) are real roots of the equation 0:t2-(t{q, the image domain is
precisely {(Lri: *-4n=0}. The composed mapping F: (x,y)*((,q) is uni-
valent in {*=y}, and in general F(.x,y):F(y,x).

The expression E,1,(f) has the same sign as

anci assuming tr,t,{p)=0,

(3.3) ,rr,1, (O)

and the ratio ms(,1) becornes

(3.4) mr(x,.),) :

Finally, define (-(Qi by

2e'-6ry-€rt,

3 -2( rryffi (((,ry):F(*,1')).

the expression

( -(1 r'+s,i) ,

2-u
ox"

1

x)) +l
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and deflne ro by the expression

(3.s) "u, \-27ry'+-??!!+ls( 9.!t)-/.|,:
o-a -r (9 * 64 - 5O(9 + 5q - 4O' t' 3 V q

Lemma 3.1. As defined by (3.5), the number ro is finite, and for qny r>ro,
the function

e,: axp{, y"rt]l

is conuex in the conuex domain ,o:{(x,y): r!(x,y)=ll3).

Proof. We shall employ the previous remarks, by showing that for 0-c<113,
the expression E4,@) is positive on the entire level curve {rl,@,y):r}. Then it
will remain to show that for the function dr(c):exp [r 1 c], we have

l::f'-:-cti?) ? .- r-- ..\
2c - --4@ - rrl{'('Y' J'l

whenever rlt(x, y):c. The first equality is a routine calculation. For the inequality,
in view of (3.4), we are to show

(3.6) 
={; = J:l:1-2c - 2i'z-6n-lrt

whenever
,: rlr(x,l') : log'x*iog xlogyllogz y

1.": jt?,-x|+§'z)

I ._": rt;r_31).
In view of this constraint, the relation (3.6) reduces to showing

(3.7) r-!]i 
=3:21!'1 .2c 6c-(rl '

whenever we have the four conditions

, =- ,0, €'=- 4rl, €2 _ 3rt : 3c, O = . = {.
When all else is established, the convexity of the domain D will follow as

the closure of the increasing union of the convex sub-level sets

D": {@, y): E,o(x, -y) = exp {rrfr}\: {r!(x, y) = c\
as c/113.

Turning to the details, it seems at first best to fix c, and use ( as the para-

meter for the parabola
P": {((,4): (-3c : 3rt}.
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The constraint C'= rt

to the interval
has the effect of limiting the range for the parameter (

r,: l-zl/i, 2l/:r7.

The quantity (ry becomes ((3-3c()f3, and has its maximum value 6cy'i
at C:2y'k, which maximum reaches 6c for the first time when {k:1, hence
c:113. Therefore, for 0<c< lf 3, Ep(x, y) is indeed positive whenevenlr(x, y):c.

We shall then turn to the problem of minimizing

s,(o: 3-2(*rt
(€ 1".

6c - (rt
One readily calculates

d o (F\: h"(-()

d( oct>t 3(6c-(fiz'
where

h,(O : l2c( - 36c *9q * 3qz * 6(2 - 413.

This is evidently a fourth degree polynomial in (. However, we do not wish tcr

express it as such.

Values for ( of special interest will be the endpoints of the interval 1., and
tvro reievant roots of /r", rvhich I shall denote by 1r, h(1", (r4to. Denoting the
corresponding ry values by qr,4o, the points (ti,4) may be shown, by elimination
of the parameter c, to lie on the intersection of P" with the hyperbola

. R:{((,,1): nr+t5q-4(r1-2(:A}.

One routinely shows that both h,(-21,:c) ana h"(2li) are positive, and
therefore the serious contenders for the minimum are -2/k and (0. Since the
value g.(-21/k):(3+l3r)i6c is comforrably larger than (l -rl)12, whenever
r>0, this poses no problem.

In order to study the inequality (3.7) at (Eo, ryo) it becomes far more efficient
totake 40 asparameterforboth (o and c, throughtherelations (to,ry)(p"aR.
Dropping the subscript from 40, we find easily that the explicit formulae are

and finally, our task is to show that for 0<ry<.1, (zro, we have

3(t4_I__W

( -(1 ," s4))"'l

(o:-q+( | 0=Q=1,

c-Irr-, 
I

vt$ry -4(+e) 2c
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not more than
3-2tn*4 3+34-2C8"\;il: 6t-1011 

: 
/t@tr-s(+»'

Since 0<4<1, the factor of llq may be cancelled from the inequality, and

after some algebraic manipulation, our task is to prove

^ .r - -2742*224(-115(-84arr.tc=@
or

- (-27 tt',+22/t( + l5( - \aD | 6r=W'
This of course is guaranteed, since ro is the supremum of the right hand quotient

4(4). However, it remains to verify that ro is finite, and for this we must examine

the behavior of qQi as zi\O and as q/1.
For the case of 4\0, and in view of (:(15,112|tz(t+O(D),we see that

lrg^ a(,r) : sl5 
= -.

On the other hand, as 4/1, we see that (*J, and it is necessary to urite q:l-e,
and flnd that

7(:3-4eio(*),

s+64-s(: lt+o(e"),

- 27 4'1 -l 22tt, + I 5( - 8a/l : 4, -f O (tz).,4

and finally
2913

Irm q\fi - 33 = -. -'r

We have one final result for this section, r,l'hich is a consequence of the convexity
of the domains D. and the eariier Lemtna 2.1. Here, iy' is still defined by (3.2),

and we make the permanent definition for c1:{i,q,;\aH.

(3. 1 1) v (q) :] ttos' i * log: 4 + 1o-e2 i).

Corollary 3.2. For qQH,O=Y lq)=-113, and for p:(x, l', z)(S(ct), we haue

rl, (x, S,) = V (q).

Proof. Lemma 2.1 tells us that S(4) lies in the convex hull :{ of the per-

mutations {q'\ of q. Let n be projection on the (x, y)-plane. The six (or three)
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projections {"(q')\ lie on the level curve {t:r:Y(q)}, which bounds the set

.D", andtherefore
n(p)<n(s (q)) e r(tr) Q D",

hence
,1, @, v) : ,1, ("(p)) = c : Y (q). tr

4.Aspecialfunction.We shall now extend the function Y: H-R to a new

function which we will call iP: H+*R, and defined for p:(x,y,z)(H+ by

9 @) : max {,! (x, y), {t (y, z), r! (2, x)}.

Th,r formula is an extension, because if p(H, then a1l three competitors coincide

with Y(p).
Let us now set up the subdomain E=H+, defined by

E : {(x, y, z)(H+: (x, y)(D, (y, z)(D, (2, x)CD}.

,f iq convex, as the intersection of the three convex cylinders exemplified by

{(x,y.z): lx,y)CD} with ä+. Moreover, by Corollary 3.2 we have the basic
property

(4.1) r?(fl 
= V(q) whenever p(.S(q) and qCEaH,

and from the definition, the obvious:

(4.2) 9 (*, y, z) = it (x, :').

We define the functions iD,: E-R by

a,@):, p{r1/91p1}.

Direct consequences of (4.1) and (4.2) are the properties

(4.3) iD,(d = a,(q) whenever p(s(q),

(4.4) @,(x, y, z) = E,(x, y),

and we also note that for any B>-0,

(4.5) Ö,(pP) : iDp,(p) : O!(p).

Since it is evident that for p:(x, y, z)(8,

Q,(p) : max {E,(x, y), E,(y, z), E,(2, x)\,

and the competing functions are convex, it follows that @, is conuex in d whenever

r>rn. This being so, it now foilows lhat iD, is monotone. For, indeed, the relation
(4.4) shows that for (x, y, z)€8, we have

Q,(x,y,z)-E,lx,y) ^(" " I )_ *rL^,', *y).

But a convex function of one variable (z) which assumes its minimum at the left
endpoint (tl@D) of its interval of definition is necessarily monotone. From the
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relation P:(og'z Q,)lrz it follows that E itself is monotone, and in turn that
@, is monotone for all r>0.

5. Applications to extremal problems. The Earle-Ahlfors dilatation for a matrix
A(GLI(3,R) is defined by setting s:1/312, and

(s.o) KErAt: @"(q): *r{(+ *t i' }: *o{[+0og,(+los, n+tos,61)'t'1

whenever q:(t,q,0e -FI is a representative of l.
Apparently, [], the motivation for the choice s:yllZ is to have, whenever

rr>1

Kul6(!,1,1)l: !.
This is a useful mnemonic convention. We also note that by this convention, the
requirement oGaH (i.e. Y(q)=1/3) corresponds ro

ril
K,LAI =.*p i:i : t ,.

It is a routine consequence of the definitions and of (4.1) that

(5.1) pQ6 whenever q(6 a H and f'l,€ Si41.

For a quasiconformal mapping f of a domain G into R3, we have at almost
every tt(G, the total differential

f'(u): R3 * RB

which is a linear map with the property

f(u + h) : f(Lt) + 1. f ' (u) ; h) + o (|l ft ll),

and nonzero Jacobian "Iy(u), which is defined as the Lebesgue derivative of the

measure function E*Y(.f (E)). Here, Z is Lebes-sue measure in R3.

Now suppose {er, er,er} are orthogonal unit vectors in .R3, and let (ur, ur, us)

be coordinates of UQG in the sense that

u: Z uiei,

and let {ui,ri,ei} be appropriately oriented orthogonal unit vectors in RB such
that one may write

.f(u) : ) fr(ur, ur, ur1ej.

If a matrix Df (u) is defined by having entry (.r, i) equal to \f,l\u1 (the i-th
column will be known as |if), then as is well known, f'Qr) has matrix Df (u)
rvith respect to the bases {e,\, {e';}, and Jy@):det Df (u). The quantity K6lDf (u)l
is invariant with respect to orthogonal changes of coordinates, and we denote it
by Ky@).
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The entries of Df are Borel functions, and Kt is Borel measurable because

of the relations
Ky@): suP @"(Pr(u)),

where pr: (x a , yu , zu) are the diagonal entries of

Ur Dfr (u) Df(u)u

- 
Jit\u) -'

and [/ ranges over a countable dense subset of ^SO(3,,R). It is natural to set

Ks[/]:ess supse c Kt(u).
When E is a measurable set in G, with V(E)<.*, we shall denote by fus

the normalized integral
lr

VT1 ! stu) dv(u)'

Jensen's inequality will assure us that if R:R(a) is a measurable vector valueC

functrorr with values in E, and if r=ro, then

(s.2) *,({o)= fo,on.
'We shall apply this inequality to the case

(53) R:Ar(u) :(B#,ry, 
""!',t')''',

where we assume that Xrlfl=|i. Because of (5.3) and (2.1), we see that

R(u)arsqS(a) for each representative q of Df (u), and therefore by (5.1), we are

assured that R(u)(8.
To obtain an upper bound for the right side of (5.2), we recall (4.5), (4.3),

and (5.0) to find:

(5.4) @"(R(u»: or"(n(u)nt\=o, _(q)

*l,"tol: Kr(u)u,7

hence setting t:sr:r11512, we come to

(s.5) f o,"n= f rj.
EE

On the other side, we shall employ the monotone property. First, horvever,

we note that by Hölder's inequality,

f ra,tr ={{W}" {{ r,}''',



106 SrrpnsN Acanp

and since

ll/ ,,41= f tta,nr

we have

llf,o,fll't' 
= .f n,.ltnJffa-' ,

When the left side is taken as the i-th component of a point p:pr(E), and pro-
uided p(8, then we have by the monotone property of iD,,

(s.5) a,@) = *,({ ^)
Now let x:(1r,Cz,<B)€R3+, and let Q@) be the set of quasiconformal

mappings f: Rz*R3, with the properties:

i) K,lfl = li(s.7)
11) f(u*e1):f(u)*h4 (i : 1,2,3; u(RB).

This class includes the linear mapping fi with matrix Ao:ö(x) if we assume,

as we do, that KrlAol=1/Z. We take for E the unit cube Co:

6:o : {u€R3: 0= urS 1, i : 1,2,3}.

Theorem 5.1. For each t4sro, the ffine mapping fo is mean t-extremal
ouer Co for K, in the class Q(x), tt'hich is to say that

I oj= I uj,: KulAol,
co co

fo, all f(Q@).

The proof is immediate
integrals can be replaced by

{ a,r -
co

r,vhen we note that since C0 has volume l, the average

ordinary integrals. Furthermore, by Fubini's theorem,

11

I I ftl, u2, Lt ) -/(o , Ltz, Lts) cltrrdu,
011

{ { 
(e ,,0, o) cltt, dttr: ((r, o, o)

{ t, - v(/(c,)) : (r C,$.
co

and at the same time,

Therefore, in this case,

or, more generally,
Pt : $t'l(€re ,(r)'t',

ptt' - q?l((r|re)'t' (j : 1,2,3).
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Hence, p4,aCH^E is a representative for ,40. Therefore, using (4.5), and reason-

ing as in (5.a) with l:sr, and using (5.6), (5'2), and (5.5), we find

KulAof' : Q'"(pnt') : Q L,(pnt') 
: iD,(p)

=o,[ [n'l = [o,"a= !x;. n' (.'j ) ,o co

Corollary 5.2. In the class Qo(x) with only property (5'7) (iD, the ffine
mapping f, is extremalfor Ku.

Proof. Fix f(Qo@) and r sufficiently large. If K, does not satisfy condi-

tion (5'7) (i)' then 
Kil.f)= ri =- ru[fo].

Otherwise, we have f€Q(x), and

Kulfl'= I ol=- Kel-[u]'. I
co

We are now ready for the fcrmulation of the Grötzsch rectangular box problem'

Corollary 5.3. Assume that x:((r, (2, (B)(rR3+, with KBIö@))<|/2. Sup-

pose a quasiconformal mapping w:f (u) maps the unit cube Co onto the rectangular

box
Ro : {w: 0 < u,; a (i, i : 1,2,3\,

in sucli a manner that the face-correspondence is as follows:

{rr, : g1- 
{u.', : 0}l

i,, : ,l * i':: (,ii (i : t 
' 
2' 3)'

Let fo be the affine ntapping w-ith this property. Then Kolfl=Kulfol.

Proof. We may, by repeated reflections in the faces of Co and i?0, extend

f to a quasiconformal mapping of 2Co onto 2Ro, with the property that the

map g: u*(112)f (2u) has an extension belonging to the class Qo(x). Therefore

by Coroliary 5.2,
Krl.fl : Kuld = Kullol. u

6. Convergent sequences. Turning to a different situation, we have the following

result for convergent sequences. In the hypothesis it is only necessary to assume

that fo is non-constant, but for simplicity, we state it as follows:

Theorem 6.1. Suppose that fo, -f,(n:1,2,3, ...) are quasiconformal mappings

of a domain GqR3. Suppose that Kuff,]<y'i, and suppose that f,,-fs unformly

on compact subsets of G. Then

Kulfol = lim inf KrlJ',]
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and, more precisely,for almost euery u(G,

(6.1) Kn(u) < lim*sjrp Kr_@).

Proof. Fix I sufficiently large. Since the first conclusion follows from the
second, we shall prove that (6.1) holds at every point ao for which

(a)fr is totally differentiable at ?.rs, with ./ro(ao)-O,
(b) the integral of the function g:li1n sup Kj, has strong Lebesgue derivat-

ive at uo.

The condition (b) means that

lim. fs:g(uo)E_(,ol { -

for a wide range of sets -E containing aro, and in particular including all cubes
of arbitrary orientation. The fact that condition (b) holds almost everywhere
follows because the integrand g is measurable and bounded. see, for example, [6].

Now fix such a point ao and choose coordinates u:(ur, ur, ur) in G, and
coordinates in f (G), such that uo:(0,0,0), and rvith respect to which f ,(uo)

has matrix ä(x), where x:(tr, tr, h)€Rr*.
Fix e>0, and take E:C" as the cube

{u: 0 < ui= e, i:1,2,3\.

The argument procedes as in Section 5 to the point just before (5.6), where p:pn,"
and l?:lRo depend on f, and C". At this point, we let n+@, and make use
of Fatou's lemma in (5.2) and (5.5) to come to

and therefore by condition (b),

(6.3) lim sup liplup *,({^,,) = lim;3rp Kl-(,,,).

f ar.f,,: I i f t,(r, uz, us)--f,(O, u z; Lt) duzdue
{. t'

As before, we have the lower estimates pu," for -fr"Ro, and in fact, as n-*t
we can show that

Pn,e * P0,".

Indeed, it only depends on the uniform convergence. For example,



and, as n+@; the quantity on the right approaches

lr"e(6.4) * { 1' ,"*, u,, uu)-fo(o, uz, uz) du,du" : 
{ 

r,r,.

Similarly, as n+@,

f ,,,: *n(rrrl - ir(t rr")): f 4^.
ce cE

This takes care of n. Now using the differentiability of fo at tlo, and for
example (6.4), it follows that as e*0,

(6.5) Ptt,', * ((r(r(r)-'/'(*, -t'r, tä) : xoCH nE'

To see this, we may by our assumption, write

fr(ur, ur, ur) : fr(0) * -t1uya1l (2Lt2arl (susas* o (llull),

where {ar, az,az\ are orthogonal unit vectors in .R3. Therefore the integrand in
the left side of (6.4) is e(rar*o(e), the integral is e3(rar*o(e3), and on taking

norms,

ll{"^ll: ('1o(r)

In like manner, we have the estimate from the differential
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f Jr,: Lv(foG,l): E,hh+o(t),
ö"

and (6.5) follows as claimed. Note that rve do not appeal to the Lebesgue differen-

tiation here. This is because the orientation of the cubes C" is not known in ad-

vance, while on the other hand, the functions 0;fo and Jro are not necessarily

bounded, and their integrals are not knorvn to possess strong derivatives.

To resume the argument, the problem now presenting itself is that we are not
absolutely sure that the quantities p,,€ or po," lie in H+. However, this is not
a serious difficulty. Indeed, let us take any sequence t-*0, and by diagonalization

and pruning, we may assume that for each m:1,2,3,.'., we have

in
in

and as ffi-+ a,

For the inclusions, one

8, the integrals are surely

lim f u.- Q,,,(8n* * 
C"rrn

Q,n n Qo(8'

need only note that since the integrands Rn are

in 6 and furthermore that I is compact. Then
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view of (6.3), we have
Q,(qJ = lim;;rp Kr,,(!t)'.

Now it follorvs from (6.5) that

,.314 -.xa,- - Jrg pa,,,n_- jrg Jg p,,,,,n= Jrg Q,,: go,

and we may finally apply the monotone property of Q, to conclude

Kro(uo)' : @,(xttn)= iD,(qr) -- lim*sJrp K..^(u)'. tr

I will conclude this note with a slight generalization of Corollary 5.2. This
particular result has an interpretation relevant to the Teichmiiller spaces of real
3-tori, which I hope to expand upon in a subsequent article.

Theorem 6.2. Fix X,Y€GL,(3,R), u'ith respectiue columns

Xt, Xl, Jfe i -!'r, )',, ]3( R3,

and assume that KulfX-t1<yt;. Then, in the class Qq, Y) of quasiconformal
mappittgs f: R3-R3 with

f(u-fx;) : f(u)-ty, (i : 1, 2,3; u(RB),

the ffine rnapping f, v,itlt matrix YX-L is extrerual for Ke.

Proof. Fix f(Q$, Y). Since /-/(0) also belongs to Qq, y) there is
no loss in generality in assuming that /(0):0. Let trr:sup {l "f @)-"fo(u)ll: a(R},
where R is the parallelepiped spanned by the columns of x. Then because of the
reproducing nature of f, it is clear that

tt - sup {iifQ)-"fr(,,)li : Lt-R'}.

Next, for each integer n) consider the map -f,,i R3---RB in which

T ^,u r-> -f@u).

One sees at once that Ku[_f,,1:Kulf] for any n, and that

sup {llf,fu)-fo(u)li : r/€R3} : 
nL_* 

0.

Therefore _f,*fo uniformly in Rt, and by Theorem 6.1,

Krlfol < lim inf Kuff,) - Knlfl. rt
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