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Dedicated to the memory of Aldo Andreotti

Introduction

N. L. Alling and N. Greenleaf showed in 1969 ([]) that the analytic counterpart
of a real algebraic function field in one variable is a compact Klein surface, i.e.,
a compact surface, which may be non-orientable and may have boundary, endowed
with a dianalytic structure. This observation leads us to study moduli spaces of
Klein surfaces.

Since the Riemann sphere has a unique analytic structure, all Klein surfaces

of genus 0 have a unique dianalytic structure. Hence the case g:0 is trivial.
The special case of Klein surfaces of genus 1 can be handled with explicit methods.
N. L. Alling has obtained good results that fully characterize the moduli spaces

of Klein surfaces of genus I (cf. [2] and the forthcoming book on elliptic curves
by Alling). Here we study only the general case g>1.

In his paper "On the moduli of closed Riemann surfaces with symmetries"
C. J. Earle studied Teichmtiller spaces of symmetric Riemann surfaces. In a special

case those Teichmtiller spaces are exactly the same as Teichmtiller spaces of Klein
surfaces as defined in [6]. In order to study moduli spaces of symmetric Riemann
surfaces Earle defined certain mod n relative Teichmriller spaces. In the case of
Klein surfaces, however, one can proceed directly and define a real analytic structure
on the moduli space X(Z) of Klein surfaces of a given topological type. In this
paper that is done in Section 5.

For the considerations in Section 5 we need auxiliary results concerning quo-
tients of complex manifolds with a real structure. Following A. Andreotti and
P. Holm we say that an antiholomorphic involution of a complex manifold I is

a real structure on A (t3l). In Section I we show that if a group G of holomorphic

. Tht. ts an expanded version of the lectures given at Columbia University in New York
and at the University of Rochester in September 1979.
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automorphisms of a complex manifold ,4 acts properly discontinuously on l,
the quotient mod G of a real analytic subset B of A is a real analytic subset

of AIG provided that the group G keeps .B fixed (as a set). Using that result
we can easily study the quotient of the real part of a complex manifold with a real
structure (Theorem 2).

fn Section 6 we consider the subspace of the moduli space X(2") of Riemann
surfaces of genus g(=1) which consists of points corresponding to Riemann
surfaces that have antiholomorphic involutions. This is the same as the subspace

of the moduli space of complex curves of genus g whose points can be defined
by real polynomials. In the main theorem of this work (Theorem 5) we show that
this is a real analytic subspace which is contained in the quasiregular real part
of the moduli space X(2") (it has a natural real structure) and that if g>2, its
irreducible components correspond to Klein surfaces of a given topological type.
If the genus is at least 4, we can show that the above subspace coincides with the
quasiregular real part of the moduli space X(2").

The author wishes to dedicate this paper to the memory of Aldo Andreotti
whose help was essential for its completion. The mathematical community is much
poorer for the absence of a man whose ideas influenced it so broadly and deeply.
The author feels even greater loss, that of a friend and mentor.

I am also grateful to Clifford Earle who corrected a mistake and made many
other useful remarks.

L. Quotients of real analytic subsets of a complex manifold

Let A be a flxed connected complex manifold, and let Bc A be

subset. Consider a group G of holomorphic automorphisms of A.
it acts properly discontinuously on A and that each of its elements

itself.
The quotient AIG-X is an irreducible normal complex space.

be the projection.

a real analytic
Assume that

maps B onto

Let pr: A* f,

Theorem l. The projection of the set B,pr(B):P16, is a real analytic
subset of X.

Proof. Let aQA, and,let Go:{S€GlSk):a}. By the discontinuity of G,Go
is always a finite group. Let Go:{Id,gr, g2,...,g,}, where Id denotes the iden-
tity mapping of A.

We can flnd an open neighborhood U of the point a such that

(1) for every g€G, E(U): U, and for every g€6)fc, S(U)nU :0.

(fo flnd U satisfying (1), take V small enough and put U- Ur. G,gV).)
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Restricting U, if necessary, we can find real analytic functions fi: U*R,
i:1,2, ...,k, for which BaU:{le U17,101:O,i:1,2, ...,k}. Then rt, fi61:
Z!:rfr(p)', is a real analytic function whose zero-locus in [/ is exactly BoU.
Define yet another function rtG, with the same property, setting

rto (p) : il @) rtG,@)) fr (s,@)) .. il(s,@)).

Then hG: U*R is real aralytic, and kccg:rto fcr all g€G". It follows that
frG induces a real aralytic furcticn h: pr (U)-R, for which

pr (Bn U) : {p(pr (U)lh(p) : 0}.

By condition (1), pr (Bn U):pr (B)npr (t/). Hence pr (.8)npr (t/) is a real

analytic subset of pr (U). Consequently, pr (B) is a real analytic subset of X.
The theorem is proved.

Using condition (l) in the same manner as in the previous proof we get im-
mediately:

Propositionl. If the germ (B,a) of the set B at apoint aCB isirreducible,
then also (pr (B), pr (a)) is irreducible.

2. Real structures on I

Let o: A-A be an antiholomorphic involution, i.e., o2 is the identity map-
ping of l. Assume lhal o commutes with G, i.e., for every g(G there is an

g'QG such that oog:g'co. Then a induces an antiholomorphic involution
r: X*X of the quotient space X:AIG for which proo:ropr.

Adopting the terminology used by Andreotti and Holm ([3]) we call o and

r real structures on A and X, respectively. Since proo:?opr, pr: A*X is

a real holomorphic mapping ([3], 1.2).

The fixed-point set of o,Ao, is called the real part of l. Likewise, X,:
beXlr(p):p\ is the real part of X.

If l, is not empty, it is a real analytic submanifold of A by Proposition
(1.3) in [3], and

dimPA,: dimcA.

This means that A is a faithful complexification of A, (cf. [3], 1.5).

Let FcA be the set of flxed points of non-identity elements of G. The set

F is clearly closed.

Lemma 1. The intersection A"aF is nowhere dense in Ao, i.e., A" is the

closure of A,\F.

Proof. l-et p(A"aF. Let us assume that there exists an open set UcA,
p€U, suchthat AonUcF, and let us show that this is not possible.
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Let Go:tld,gr, g2,...,g,) b" the stabilizer of the point p. Restricting (J,

if necessary, we flnd, by the discontinuity of G, that A"nU is the fixed-point
set of non-identity elements of G, A topological argument then shows that some
non-identity element of Go, say g, must fix a whole non-empty open subset of
AooF. But since A is a faithful complexification of Ao, it follows, by Corollary
(7.6) in [3], that g must keep an open set of ,4 point-wise fixed. Using analytic
continuation we deduce then that g is the identity mapping of l. This is a con-
tradiction which proves the lemma.

3. Quotients of real parts

Consider the quotient space X:AIG. Let pr: A-X again denote the pro-
jection. If each element of G maps the real part A" of I onto itself, we can apply
Theorem I and deduce that V (A,) is a real analytic subset of X. In general,
however, the elements of G do not map Ao onlo itself. If such is the case, con-
sider the set B:Usee C(A"). Each element of G maps B onto itself, and
pr (A,):pr (B).

Let us prove that .B is a real analytic subset of l. Since the mappings g(G
are holomorphic automorphisms of A, each set g(1") is a real analytic subset

of ,4. Hence it suffices to show that each point p€A has an open neighborhood
U such that g(A,)nU*0 for at most a flnite number of different sets g(1").

In order to flnd such an U, let V be an open neighborhood of the point
p, and assume that the closure V of V is compact. If none of the sets g(1,)
intersect V, we have nothing to show. If that is not the case, assume that
go(A,)aVlA. The mapping P:goooogo 1 is an antiholomorphic involution of
A, and Ap:go(A"). The set U:VvB() is an open neighborhood of the point
p, andthe closure of U is compact. Since G is properly discontinuous, g(U)a U*A
for only a finite number of mappings g€G.

Assume that g(A,)nU#0. Then gooog-roBQG and gooog-roB(U)a
UlL. Hence there can be only a finite number of different elements of the form
gooog-t, where g€G is such that g(A,)aU*O.

Assume that grooogrl-grooog;t. Then (g, logr)oo:oo(g, logr). Hence
the mapping gilo5o maps Ao onto itself. It follows that gr(,A,):gr(1,), since

Sr:gzo(S;'ogJ. Consequently, only a finite number of different sets g(.,4o),

g€G, intersect U. Hence ,B is a real analytic subset of A.
Now we can use Theorem I and deduce that pr (A,):pr (^B) is a real analytic

subset of X.
The projection pr (A") of

this note flrst that the singular
contained in the image pr (r')

Ao is the closure of its regular part. To prove
set ,S of the nornal complex space X- AIG is

of the fixed-point set of G. Since the projection
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mapping is continuous, it follows, from Lemma l, that

(2) pr (A)c pr(1,\F),
where the bar denotes the closure.

Since the elements of G map F onto itself and l\.F onto itself, we have
pr (l\f):pr (,4")\pr (.F). Hence

pr (A") c pr 1,e;pr 1n) c pr (,fiS.
On the other hand, it is clear that pr (1,) is contained in the real parl X,

of X; here r is the involution of X induced'by o. Using then Corollary (5.3)

in [3], we deduce that pr (,4,) is contained in the quasiregular real part t" of X
Recall that the quasiregular real part t, of X consists of those points p of X,
for which

dima (X,, P) : dims(X, P),

and that Corollary (5.3) in [3] simply states that &:X\T.
Note that using (2), the properties of the projection and the above cited Corollary

(5.3) of [3], we get
dima (pr (A.), p) : dims (X, p)

for all p(pr (A").

Theorem 2. The image pr(A") of the real part of A under the projection
pr: AtX:AlG is a real analytic subset of X. Furthermore, pr(A,) is contained
in the quasiregular real part *" of X, and if A. is connected, pr (A.) is irreducible.

Proof. The only point that is not proved yet is that A" being connected,
pr(A") is irreducible. To prove this assume that pr (A,):WrvWr, where Wr
and W, are real analytic subsets of X. Since the mapping pr: ,4*X is holo-
morphic, the preimages pr-1 (Wr) and pr-t (Wr) are real analytic subsets of l.
Hence also Aonpr-l (W), i:1,2, are real analytic subsets of A, and

A" : (A" apr-L (Wr))v(A"apr-t (Wr)).

Since ,4o is a connected real analytic submanifold of A, Ao is irreducible
Hence either A"cpr-'(Wr) or Aocpr-r (Wz). It follows that either pr (A,):W,
or pr (A,):Wr. Consequently, pr (A") is irreducible. The proof is complete.

4. Teichmiiller spaces and moduli spaces of Klein surfaces

Theorem 2 has an interesting application in the theory of Klein surfaces. In
order to understand that let us first recall some definitions and known results.

A possibly non-orientable topological surface Z together with a dianalytic
structure X is called a Klein surface (cf. t2l). We allow Z to have boundary,

tt7
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but we assume that Z is connected. For a notational convenience the Klein sur-

face (2, X) will be denoted only by X where no confusion is possible.

The Klein surface X is classical if it is orientable and does not have boundary,
i.e., if it is a Riemann surface. Otherwise X is called non-classical.

Let us now fix the topological surface Z; all Klein surfaces that we shall con-

sider below will be just Z with some dianalytic structure. We shall assume that
Klein surfaces (2, X) are non-classical and compact. Let us also assume that
the algebraic genus g of Klein surfaces (2, X) is at least 2.

We can construct a triple (2",n, o) with the following properties:
(i) Z" is a compact oriented surface without boundary,
(ii) o: Z"*/," is an orientation reversing involution, and
(iii) z: Z"*Z is a double covering map that satisfies nao:nt.
Note that ft: Z.*/, is not a covering in the topological sense since it is a fold-

ing along 0Z (cf .l2l, p. 37).

For each dianalytic structure X of Z we can find a unique analytic structure
X" of Z" which agrees with the orientation of Z" and for which o: X"-X" is

arr antiholomorphic involution and n: X"*y is a dianalytic mapping (cf. [2],
Proposition 1.6.2). The Riemann surface X" is called the complex double of X.

Let K(Z) be the set of dianalytic structures on Z. Denote by Hom(Z)
the group of homeomorphic self-mappings of Z, and let Homo (Z) be the sub-
group of Hom (Z) that consists of mappings homotopic to the identity mapping
of Z. The quotient f (Z):Hom(Z)lHomo(Z) is called the modular group of
Z (or the mapping class group of Z).

The group Hom(Z) acts on K(Z) in the following way: if h(Hom(Z)
and X(K(Z), then h*(X) is the dianalytic structure of Z for which the mapping
h: Xth*(X) is dianalytic.

The Teichmilller space of Z, T(Z), is the quotient

T(Z): K(Z)lHomo(Z),

and the moduli space of Z, X(Z), is

x(z): K(z)lHom(z).
By definitions,

x(z): r(z)lr(z)'
The classical definitions for Teichmriller and moduli spaces of 2", which is

orientable and does not have boundary, are slightly different. Let Hom+ (2")
be the group of orientation preserving homeomorphic self-mappings of 2", while
Homo+ (Z"):Hom+ (2")alHomo(2,), and f + (Z,):Hom+ (2,)lHomo+ (2"). Note
that, in our case, HomoF (Z"):Homs (2.). Consider the set K* (2") of the analytic
structures of Z" which agree with the orientation of 2". The group Hom(Z")
still acts in K+(2"); if h€Hom(Z") is an orientation reversing mapping, define
h*(Y) as the analytic structure of Z" for which the mapping h: Y-h*(Y) is

antiholomorphic, I€K+(2"). Note that if å,g€Hom (Z), (hog)*:h*og*.
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Now we can define the Teichmriller space, T(Z), and the moduli space,

X(Z), of Z" in the usual manner:

T(2") : K+ (Z)lHom[ (Z), X(Z) : K+ (Z,)lHom+ (Z)-

By definitions,
x(z): r(z)lr+Q).

The mapping n: Z,*/ induces a mapping n*: K(Z)*y+(2"), n*1X1:y".
It is easy to see that setting n*(lXl):lX"l, for [X]€I(Z), we obtain a well-defined

mapping n*: T(Z)*l(2"\ Let us recall the following result ([6], Theorem 5.1)'

Theorem. The mapping rE*: T(Z)*T(2") is one-to-ane, and if o* is the

self-mapping of T(2") induced by the inuolution o of 2", then n*(T(Z)) is tne

fixed-point set T\Z),* of o*.

There is a natural way to define a complex structure on T(Z). Since we have

assumed that the genus g of Z is at least 2, the same applies to the genus of 2".
Hence T(2") withthat complex structure is a 3g-3-dimensional complex manifold.

Royden has proved that the modular group ,l-+ (2") is the full group of holo-
morphic automorphisms of T(2"). By means of that result it is not difficult to
show that the extended modular grotp f (Z"):Hom (Z")lHom{ (2") is the full
group of holomorphic or antiholomorphic automorphisms of T(2") (cf- [6], 5.10,

page 35). Especially the mapping o*: T(2")-T(2") is an antiholomorphic in-
volution.

By Fricke's theorem, f *(2") acts properly discontinuously on T(2"). Hence

X(Z):T(Z)lr+(2") is an irreducible normal complex space.

Since o* is an antiholomorphic involution, its fixed-poirft set T(2")"* is a
real analytic submanifold of T(2"). Hence we can endow T(Z) with a real analytic
structure requiring n*: T(Z)t7(2") to be real analytic. Then the modular group

l-(Z) consists of real analytic automorphisms of T(Z). f(Z) with this structure
is a 3g-3-dimensional real analytic manifold. Recall that by classical methods

we can show that T(Z) is simply connected (16), page 29).

5. The real analytic structure of X(Z)

Unfortunately, the natural mapping n'i X(Z)*X(Z"),n'(lXl):[X"], is gen-

erally not one-to-one. Hence we cannot employ the above method to define a real

analytic structure on X(Z). Let us consider a covering space of X(Z).
Define Hom+ (2", o):{ft€Hom+ (2")lhoo:ooh}, and let f + (2", o):

Hom+ (2",o)lHomt (2",o). f+(2",o) istherelatiue modular group of 2", and

Hom+ (2", o) is just the group of orientation preserving liftings of homeomorphic
self-mappings of Z, i.e., the group of those mappings å: Z"*2" for which there



t20 Mrr,q. SrppÄrÄ

exists a mapping Z * Z such that the diagram

Z"!* z"

"l l"++
z+z

commutes.
The relative modular group.l'+ (2", o) acts properly discontinuously on T(Z),

and the relatiue moduli space, X(2", o):T(2")lf + (2", o), is an irreducible normal
complex space.

Consider now the mapping f i X(Z)-X(Z",o), n'(lX)):[X). The diagram

T(Z)-!* T(2")
t+

X(Z)-* X(2",o)

commutes, and n' defines a homeomorphism of X(Z) onto its image in X(2",o).
Let us identify X(Z) with n'(X(Z))cX(2",o). The involution o: Z"-2" in-
duces real structures o': X{2",o)*X(Z",o) and o': X(2")*f,(/"). k is clear
that X(Z)cX(Z",o) is the image of the real part T(2"),* of T(2") under the
projection T(2.)-y17", a). Now we can apply Theorem 2, getting immediately:

Theorem 3. The moduli space X(Z) is an irreducible real analytic space.

It is contained in the quasiregular real part X(2", o))* of the relatiue moduli space

X(2", o).

Theorem 4. The iruage of X(Z) under the projection X(2., o)*X(Z.) is
an irreducible real analytic subspace of X(2"). It is contained in the quasiregular
real part, X(2");., of X(2").

Note that by Proposition 1 X(Z)cX(2", o) is locally irreducible.
The projection X(2,, o)-X(2") is not one-to-one, but if two different points

[XÅ,1Y"]€X(Z)cX(2", o) are mapped onto one point in X(2"), then - as one

can easily check - the Riemann surfaces X" and Y" have non-trivial holomorphic
self-mappings. Hence that one point lies, in general, in the singular parl of X(2").
Using Lemma 1we can shorv that the image of X(Z) in X(2") is the closure of
its regular part. Hence, if we study the image of X(Z) in X(2") instead of X(Z)
itself, we do not lose too many points. This motivates the considerations in the
following section.



Quotients of complex manifolds and rnoduli spaces of Klein surfaces

6. The moduli space of Klein surfaces of given genus

Denote by INV (2") the set of orientation reversing involutions of 2". Each
(€INV (.Z") induces an antianalytic involution (+ of T(2"). The fixed-point

set of (*, T(Z")e*, can be identifled with the Teichmiiller space T(Z"l().
Assume that h and (, are homotopic involutions. Then

CI : ((, oCi'o(r)*: ((, o(11)*o (ä : Ct,

since (ro(;l€Homo+ (2"). Hence homotopic involutions of Z" induce the same

involution of the Teichmtiller space T(2").
Let

T(R,g): {p(T(Z)le*(p): p for some ((INV(Z)}.

The set T(R, d is the union of the Teichmiiller spaces of all non-classical Klein
surfaces of genus g (:the genus of Z"). lf T(Z) is interpreted as the Teichmtiller

space of complex algebraic curves, then I(ft, g) is the subspace of T(2") whose

points can be defined by real polynomials. Note that T(R,g) is a closed subset

of T(2"). This follows from the fact that the extended moduli groap Hom(Z")l
Homo+ (Z) acts properly discontinuously on T(2").

The image of 7(,R,g) under the projection T(2")-y(2") is called the moduli

space of non-classical Klein surfaces of genus g. We will denote it by X(R,g).
Let (, and (2 be orientation reversing involutions of 2". They induce in-

volutions (, and (i of X(2"). Since (ro(z 1(Hom* (Z), we have

(]: ((r"$'o(r)' : (h"$r)' o(i: (i.

Hence all mappings of INV (Z) induce the same involution of the moduli space.

Let o be the involution of Z" that was previously fixed in Section 4. Then we

get, using Theorem 4 many times, the following result:

Lemma 2. The moduli space X(R, g) is contained in the quasiregular teal part

X(2"):. of the moduli space X(2").

In the case g>2 we can find out explicitly what the irreducible components

of X(R, g) are. To that end we need the following simple result.

Lemma 3. Assume that g>2 and that the point lXl(T(Z") is not fixed by

any non-identity element of the moduli group l*(2"). Then the Riemann sttrface

X does not haue any other holomorphic self-mappings than the identity mapping.

Proof. Let lXl<T(Z) be a point which is not fixed by any non-identity map-

ping of the modular group. Assume that there exists a g€Hom+ (Z) such that
g; X*X is holomorphic. If g is not the identity mapping, it is not even homo-

topic to the identity mapping. Let us assume that such is the case, and let us show

that this is not possible.

t2l
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Since g: X-X is holomorphic, the mappirg g*, T(2")*7(.Z") keeps the
point ffi flxed. Since [X] is not fixed by any non-identity mapping of the modular
group, g* must be the identity mapping of T(2").

T(Z), [f]:[g*(n], and we can find a holomorphic mapping h: g*(9* I which
belongs to the group Hom{ (2"). Then the mapping hog is a holomorphic
self-mapping of the Riemann surface I. Since g(Homf, (Z) and h(Hom{ (2"),
the composed mapping hog is not homotopic to the identity mapping. Hence
the Riemann surface I has non-trivial holomorphic self-mappings. But a generic
compact Riemann surface of genus >2 does not have any non-trivial holomorphic
self-mappings. Hence we have reached a contradiction, since YQK+ (2") was
arbitrary. This proves the lemma.

Let us now consider irreducible components of X(R,g). Assume (, and (z
are such involutions of Z" that the intersection of the images of T(Z")gi and
T(Z")e. in X(2") contains a non-empty open subset of X(R, g). Then, by Lemma l,
we can Hnd points lxl€T(Z")<i and [I]( T(2")$ which are mapped onto the
same point in X(2") and which are not fixed by any non-identity element of the
moduli group l-+(2"). We may assume that (r: X*X and (z: Y-Y are anti-
holomorphic.

Since the Riemann surfaces X and, I correspond to the same point in the
modular space X(2"), we can find a holomorphic mapping g; X* I. The mapping
e2log-lo(rog is then a holomorphic self-mapping of the Riemann surface X.
Since [X]( T(2") is not fixed by any non-identity element of the modular group,
X does not have non-trivial holomorphic self-mappings. Hence (ltog-ro(rog
is the identity mapping, i.e.,

ga(t:609.

It follows that the mapping gi X- Y induces a dianalytic homeomorphism be-
tween the Klein surfaces Xl$ and Yl$. Consequently, XIG and Ylg are of
the same topological type.

On the other hand, it is easy to see that if two involutions (, and (2 are such

that the corresponding Klein surfaces are of the same topological type, the images
in X(2,) of the fixed-point sets I(.2")61 and T(2")$ coincide.

These considerations in conjunction with Theorem 4 yield the following result:

Theorem 5. The moduli space X(R, g) of non-classicql Klein surfaces of
genus g, g>1, is a real analytic subset of X(2"), and is contairrcd in the quasiregular
realpart X(2");.of X(2"). If g>-2, theirreduciblecomponents of X(R,g) corre-
spond to Klein surfoces of a giuen topological type, and X(R, d has exactly

irreducible components.

2lsl2)+ [(g +t)12]+2
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proof. The only point that we have not proved yet is the formula for the number

of irreducible components of X(R, g). But that is the same as the number of
different topological types of non-classical Klein surfaces of genus g. Hence a

computation that R. Zarrow has done ([7], Lemma in Chapter 2) gives the above

result.
In the case g>3 it turns out that X(R, d coincides with the quasiregular

real part of X(Z). In order to prove that let us first show that X(R, d is a closed

subset ot X(Z).
To that end assume that pr,Pz, ... is a sequence in X(R,g) which converges

to a point po(X(Z). It suffices to show that poQX(R, g).

We can choose a point fro€T(Z") lying over poQX(Z") and a sequence

Fr, frr, ...<T(2") converging to fo such that each l; belongs to T(R,g) and lies

over the point pi in X(R,g). Hence every point l, is fixed by some involution

$ of T(Z). Since the extended modular group Hom (Z")lHom{ (Z) acts prop-

erly discontinuously on T(2"), it follows that also f6 must be flxed by some

involution (*. Hence po(.X(R,g), and X(R, d is closed.

Let S denote the singular set of the complex space X(2"). As we have pre-

viously noted, the quasiregular real part X(Z)). is the closure of X(Z")".\S'
Hence if we can show that X(z");.\.Sc X(R, g), we have in fact proved that

X(Z):.:X(R,C). To prove the above inclusion choose a point [y]€X(2"),.\S.
Since [Iz] ( ,S, and since the genus of Iz is >3, the Riemann surface Y does

not have non-trivial holomorphic self-mappings. This follows from Theorem I in [5].

On the other hand, since [Y] is a fixed point of the involution o' of ,{(2"),
we can find a holomorphic mapping g: o* (Y1* r' Recall that by definition o'([Y]):
[o*(Y)], where o*(Y) is the analytic structure of Z" for which the mapping

o: yto*(Y) is antiholomorphic. Then goo is an antiholomorphic self-mapping

of the Riemann surface Y. Since I does not have holomorphic self-mappings

other than the identity mapping, goo is an involution. It follows that [I](x(R, s).
This proves the inclusion x(/")".\sc x(R, d. on the grounds of the previous

remark, we have now proved the following theorem:

Theorem 6. The moduli space of non-classical Klein surfaces of genus 8, 8>3
is the quasiregular real part of the moduli space of Riemann surfoces of genus g.

Remark l. An example of Earle ([4], Theorem 2, p. 125) shows that the in-

volution o': X(Z")*f,(Z) actually has fixed points that do not belong to X(R, g),

but Theorem 6 shows that the dimension of the set of such points is, in general,

lower than the dimension of X(R, g).

Remark 2. It is not clear whether the statement of Theorem 6 holds in the

c21se g:) ot g:3, because for those genera there exist hyperelliptic Riemann

surfaces that have non-trivial holomorphic automorphisms but do not sit in the

singular part of the moduli space.
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Question. Is o': X(2")*y175 the only antiholomorphic automorphism
of the moduli space X(2")?

Another question. Is the moduli space X(R,d connected?
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