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Introeduction

N. L. Alling and N. Greenleaf showed in 1969 ([1]) that the analytic counterpart
of a real algebraic function field in one variable is a compact Klein surface, i.e.,
a compact surface, which may be non-orientable and may have boundary, endowed
with a dianalytic structure. This observation leads us to study moduli spaces of
Klein surfaces.

Since the Riemann sphere has a unique analytic structure, all Klein surfaces
of genus O have a unique dianalytic structure. Hence the case g=0 is trivial.
The special case of Klein surfaces of genus 1 can be handled with explicit methods.
N. L. Alling has obtained good results that fully characterize the moduli spaces
of Klein surfaces of genus 1 (cf. [2] and the forthcoming book on elliptic curves
by Alling). Here we study only the general case g=1.

In his paper “On the moduli of closed Riemann surfaces with symmetries”
C. J. Earle studied Teichmiiller spaces of symmetric Riemann surfaces. In a special
case those Teichmiiller spaces are exactly the same as Teichmiiller spaces of Klein
surfaces as defined in [6]. In order to study moduli spaces of symmetric Riemann
surfaces Earle defined certain mod n relative Teichmiiller spaces. In the case of
Klein surfaces, however, one can proceed directly and define a real analytic structure
on the moduli space X(Z) of Klein surfaces of a given topological type. In this
paper that is done in Section 5.

For the considerations in Section 5 we need auxiliary results concerning quo-
tients of complex manifolds with a real structure. Following A. Andreotti and
P. Holm we say that an antiholomorphic involution of a complex manifold A is
a real structure on A4 ([3]). In Section 1 we show that if a group G of holomorphic
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automorphisms of a complex manifold A acts properly discontinuously on 4,
the quotient mod G of a real analytic subset B of A4 is a real analytic subset
- of A/G provided that the group G keeps B fixed (as a set). Using that result
we can easily study the quotient of the real part of a complex manifold with a real
structure (Theorem 2).

In Section 6 we consider the subspace of the moduli space X(Z,) of Riemann
surfaces of genus g(=1) which consists of points corresponding to Riemann
surfaces that have antiholomorphic involutions. This is the same as the subspace
of the moduli space of complex curves of genus g whose points can be defined
by real polynomials. In the main theorem of this work (Theorem 5) we show that
this is a real analytic subspace which is contained in the quasiregular real part
of the moduli space X(Z.) (it has a natural real structure) and that if g=2, its
irreducible components correspond to Klein surfaces of a given topological type.
If the genus is at least 4, we can show that the above subspace coincides with the
quasiregular real part of the moduli space X(Z,).

The author wishes to dedicate this paper to the memory of Aldo Andreotti
whose help was essential for its completion. The mathematical community is much
poorer for the absence of a man whose ideas influenced it so broadly and deeply.
The author feels even greater loss, that of a friend and mentor.

I am also grateful to Clifford Earle who corrected a mistake and made many
other useful remarks.

1. Quotients of real analytic subsets of a complex manifold

Let A be a fixed connected complex manifold, and let BC 4 be a real analytic
subset. Consider a group G of holomorphic automorphisms of 4. Assume that
it acts properly discontinuously on A4 and that each of its elements maps B onto
itself.

The quotient 4/G=X is an irreducible normal complex space. Let pr: A-X
be the projection.

Theorem 1. The projection of the set B, pr(B)=B|G, is a real analytic
subset of X.

Proof. Let acA, and let G,={gcG|g(a)=a}. By the discontinuity of G, G,
is always a finite group. Let G,={ld, g;, g5, ..., &}, Where Id denotes the iden-
tity mapping of A4.

We can find an open neighborhood U of the point @ such that

(1) for every g€G, g(U)=U, and for every geG\G, g(U)nU =0.

(To find U satisfying (1), take ¥ small enough and put U={J,c; g(V).)



Quotients of complex manifolds and moduli spaces of Klein surfaces 115

Restricting U, if necessary, we can find real analytic functions f;: U—R,
i=1,2, ..., k, for which BnU={pcU|f(p)=0,i=1,2,...,k}. Then A, h(p)=
>%_f{p)% is a real analytic function whose zero-locus in U is exactly BnU.
Define yet another function /A°, with the same property, setting

7 (p) = h(p) (g1 () (g2 () ... h(g.(p))-

Then #%: U—>R is real analytic, and hScg=h% fecr all g€G,. It follows that
h® induces a real aralytic furcticn h: pr(U)—R, for which

pr (BnU) = {pcpr (U)[h(p) = 0}.

By condition (1), pr(BnU)=pr (B)npr(U). Hence pr(B)npr(U) is a real
analytic subset of pr(U). Consequently, pr(B) is a real analytic subset of X.
The theorem is proved.

Using condition (1) in the same manner as in the previous proof we get im-
mediately:

Proposition 1. If the germ (B, a) of the set B at a point a€B is irreducible,
then also (pr (B), pr (a)) is irreducible.

2. Real structures on A

Let 6: A—~A be an antiholomorphic involution, i.e., ¢% is the identity map-
ping of A. Assume that ¢ commutes with G, i.e., for every g€G there is an
g’€G such that cog=g'co. Then ¢ induces an antiholcmorphic involution
1: X—>X of the quotient space X=4/G for which prooc=topr.

Adopting the terminology used by Andreotti and Holm ([3]) we call ¢ and
t real structures on A and X, respectively. Since prooc=topr, pr: 4-X is
a real holomorphic mapping ([3], 1.2).

The fixed-point set of o, 4,, is called the real part of A. Likewise, X,=
{peX|t(p)=p} is the real part of X.

If A, is not empty, it is a real analytic submanifold of 4 by Proposition
(1.3) in [3], and

dimRA‘, = dlch

This means that A is a faithful complexification of A, (cf. [3], 1.5).
Let FC A be the set of fixed points of non-identity elements of G. The set
F is clearly closed.

Lemma 1. The intersection A,NF is nowhere dense in A,, ie., A, is the
closure of A\ F.

Proof. Let p€A,nF. Let us assume that there exists an open set UCA,
p€ U, such that A,n UCF, and let us show that this is not possible.
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Let G,={Id, g1, g2, ..., &, be the stabilizer of the point p. Restricting U,
if necessary, we find, by the discontinuity of G, that A,n U is the fixed-point
set of non-identity elements of G,. A topological argument then shows that some
non-identity element of G,, say g, must fix a whole non-empty open subset of
A,nF. But since A is a faithful complexification of A,, it follows, by Corollary
(7.6) in [3], that g must keep an open set of 4 point-wise fixed. Using analytic
continuation we deduce then that g is the identity mapping of A4. This is a con-
tradiction which proves the lemma.

3. Quotients of real parts

Consider the quotient space X=A4/G. Let pr: 4—X again denote the pro-
jection. If each element of G maps the real part 4, of 4 onto itself, we can apply
Theorem 1 and deduce that pr(4,) is a real analytic subset of X. In general,
however, the elements of G do not map A, onto itself. If such is the case, con-
sider the set B=|J,c; g(4,). Each element of G maps B onto itself, and
pr (4,)=pr (B).

Let us prove that B is a real analytic subset of A. Since the mappings g€G
are holomorphic automorphisms of A4, each set g(A4,) is a real analytic subset
of A. Hence it suffices to show that each point p€A4 has an open neighborhood
U such that g(4,)nU=0 for at most a finite number of different sets g(4,).

In order to find such an U, let V' be an open neighborhood of the point
p, and assume that the closure V of V is compact. If none of the sets g(4,)
intersect ¥, we have nothing to show. If that is not the case, assume that
go(4,)nV#0. The mapping f=gyoo0g, "' is an antiholomorphic involution of
A, and A;=gy(4,). The set U=V Up(V) is an open neighborhood of the point
D, and the closure of U iscompact. Since G is properly discontinuous, g(U)n U=0
for only a finite number of mappings g¢<G.

Assume that g(4,)n U#0. Then gooog 'offlcG and gogog=lof(U)n
U#0. Hence there can be only a finite number of different elements of the form
gooog™l, where g€G is such that g(4,)n U=0.

Assume that gocogy'=g,000g;'. Then (g;'og,)co=0c(g;'cg,). Hence
the mapping g;'og, maps A, onto itself. It follows that g,(4,)=g,(4,), since
g:=8,0(g;'og,). Consequently, only a finite number of different sets g(4,),
g€G, intersect U. Hence B is a real analytic subset of A.

Now we can use Theorem 1 and deduce that pr (4,)=pr (B) is a real analytic
subset of X.

The projection pr(4,) of A, is the closure of its regular part. To prove
this note first that the singular set S of the normal complex space X=A4/G is
contained in the image pr (F) of the fixed-point set of G. Since the projection
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mapping is continuous, it follows, from Lemma 1, that

@ pr(4)C pr(4,\F),

where the bar denotes the closure.
Since the elements of G map F onto itself and AN F onto itself, we have

pr (A;N\F)=pr (4,)\pr (F). Hence

pr(4,) C pr(4,)\pr (F) C pr (4,)\.S.

On the other hand, it is clear that pr(4,) is contained in the real part X,
of X; here t is the involution of X induced by o. Using then Corollary (5.3)
in [3], we deduce that pr(4,) is contained in the quasiregular real part X, of X
Recall that the quasiregular real part X, of X consists of those points p of X,
for which

dimg (X;, p) = dim¢ (X, p),

and that Corollary (5.3) in [3] simply states that X,=X\.S.
Note that using (2), the properties of the projection and the above cited Corollary
(5.3) of [3], we get
dimg (pr (4,), p) = dimc (X, p)
for all péepr(4,).

Theorem 2. The image pr(A,) of the real part of A under the projection
pr: A~X=A|G is a real analytic subset of X. Furthermore, pr(A,) is contained
in the quasiregular real part X, of X, and if A, is connected, pr(A,) is irreducible.

Proof. The only point that is not proved yet is that A, being connected,
pr (4,) is irreducible. To prove this assume that pr(4,)=W;uUW,, where W,
and W, are real analytic subsets of X. Since the mapping pr: 4—X is holo-
morphic, the preimages pr~!(W;) and pr~!(W,) are real analytic subsets of A.
Hence also A,npr=!(W;), i=1, 2, are real analytic subsets of A, and

A, = (A, 0pr 1 (W))u (4, npr=t(Wy)).

Since A, is a connected real analytic submanifold of A, 4, is irreducible
Hence either A,cpr= (W;) or A,Cpr—!(W,). It follows that either pr (4,)=W,;
or pr(4,)=W,. Consequently, pr(4,) is irreducible. The proof is complete.

4. Teichmiiller spaces and moduli spaces of Klein surfaces

Theorem 2 has an interesting application in the theory of Klein surfaces. In
order to understand that let us first recall some definitions and known results.
A possibly non-orientable topological surface Z together with a dianalytic
structure X is called a Klein surface (cf. [2]). We allow Z to have boundary,
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but we assume that Z is connected. For a notational convenience the Klein sur-
face (Z, X) will be denoted only by X where no confusion is possible.

The Klein surface X is classical if it is orientable and does not have boundary,
i.e., if it is a Riemann surface. Otherwise X is called non-classical.

Let us now fix the topological surface Z; all Klein surfaces that we shall con-
sider below will be just Z with some dianalytic structure. We shall assume that
Klein surfaces (Z, X) are non-classical and compact. Let us also assume that
the algebraic genus g of Klein surfaces (Z, X) is at least 2.

We can construct a triple (Z,, n, 6) with the following properties:

(i) Z, is a compact oriented surface without boundary,

(ii) o: Z,~Z, is an orientation reversing involution, and

(ili) =#: Z,—~Z is a double covering map that satisfies noo=n.

Note that n: Z.—~Z is not a covering in the topological sense since it is a fold-
ing along 0Z (cf. [2], p. 37).

For each dianalytic structure X of Z we can find a unique analytic structure
X. of Z, which agrees with the orientation of Z, and for which o: X.~X, is
an antiholomorphic involution and #: X,—~X is a dianalytic mapping (cf. [2],
Proposition 1.6.2). The Riemann surface X, is called the complex double of X.

Let K(Z) be the set of dianalytic structures on Z. Denote by Hom (Z)
the group of homeomorphic self-mappings of Z, and let Hom,(Z) be the sub-
group of Hom (Z) that consists of mappings homotopic to the identity mapping
of Z. The quotient I'(Z)=Hom (Z)/Hom,(Z) is called the modular group of
Z (or the mapping class group of Z).

The group Hom (Z) acts on K(Z) in the following way: if hA€¢Hom (Z)
and X€K(Z), then h*(X) is the dianalytic structure of Z for which the mapping
h: X—h*(X) is dianalytic.

The Teichmiiller space of Z, T(Z), is the quotient

T(Z) = K(Z)/Hom, (Z),
and the moduli space of Z, X(Z), is
X(Z) = K(Z)/Hom (Z).
By definitions,
X(Z)=T(2)|T(Z).

The classical definitions for Teichmiiller and moduli spaces of Z_., which is
orientable and does not have boundary, are slightly different. Let Hom* (Z,)
be the group of orientation preserving homeomorphic self-mappings of Z_., while
Homg (Z,)=Hom* (Z,)nHom, (Z,), and I't (Z)=Hom™ (Z,)/Homg (Z,). Note
that, in our case, Homy" (Z,)=Hom, (Z.). Consider the set K+ (Z,) of the analytic
structures of Z, which agree with the orientation of Z.. The group Hom (Z,)
still acts in K*(Z,); if h¢Hom (Z.) is an orientation reversing mapping, define
h*(Y) as the analytic structure of Z, for which the mapping h: Y—-h"(Y) is
antiholomorphic, Y€K+ (Z,.). Note that if h, gcHom (Z,), (hog)*=h*og*.
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Now we can define the Teichmiiller space, T(Z.), and the moduli space,
X(Z,)), of Z. in the usual manner:

T(Z) = K*(Z)/Hom¢ (Z,), X(Z)=K*(Z)Hom*(Z,).

By definitions,
X(Z) =T(Z)IT*(Z)).

The mapping n: Z.~Z induces a mapping =n*: K(Z)~K*(Z,), n*(X)=X,.
It is easy to see that setting =*([X])=[X_], for [X]€T(Z), we obtain a well-defined
mapping #n*: T(Z)—~T(Z.). Let us recall the following result ([6], Theorem 5.1).

Theorem. Tke mapping n*: T(Z)—~T(Z.) is one-to-one, and if o* is the
self-mapping of T(Z,) induced by the involution o of Z,, then n*(T(Z)) is the
fixed-point set T(Z),« of o*.

There is a natural way to define a complex structure on 7°(Z,). Since we have
assumed that the genus g of Z is at least 2, the same applies to the genus of Z..
Hence T(Z,) with that complex structure isa 3g—3-dimensional complex manifold.

Royden has proved that the modular group I'*(Z,) is the full group of holo-
morphic automorphisms of 7T(Z,). By means of that result it is not difficult to
show that the extended modular group I'(Z.)=Hom (Z.)/Homg (Z.) is the full
group of holomorphic or antiholomorphic automorphisms of T(Z,) (cf. [6], 5.10,
page 35). Especially the mapping ¢*: T(Z,)—~T(Z,) is an antiholomorphic in-
volution.

By Fricke’s theorem, I'*(Z.) acts properly discontinuously on 7(Z.). Hence
X(Z)=T(Z,)/T+(Z,) is an irreducible normal complex space.

Since ¢* is an antiholomorphic involution, its fixed-point set T(Z.),. is a
real analytic submanifold of T(Z,.). Hence we can endow 7(Z) with a real analytic
structure requiring n*: T(Z)—~T(Z.) to be real analytic. Then the modular group
I'(Z) consists of real analytic automorphisms of 7(Z). T(Z) with this structure
is a 3g—3-dimensional real analytic manifold. Recall that by classical methods
we can show that T(Z) is simply connected ([6], page 29).

5. The real analytic structure of X(Z2)

Unfortunately, the natural mapping #n': X(Z)—-X(Z,), n"((X])=[X.], is gen-
erally not one-to-one. Hence we cannot employ the above method to define a real
analytic structure on X(Z). Let us consider a covering space of X(Z,).

Define Homt (Z,, 0)={h¢Hom* (Z,)|hoo=00h}, and let I*(Z,0)=
Hom* (Z,, 6)/Homg (Z,,6). I't(Z., o) is the relative modular group of Z., and
Homt (Z,, 6) is just the group of orientation preserving liftings of homeomorphic
self-mappings of Z, i.e., the group of those mappings #: Z,~Z, for which there
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exists a mapping Z—Z such that the diagram

zZ,-s 2z,
Z—Z7
commutes.

The relative modular group I'* (Z., o) acts properly discontinuously on 7(Z,),
and the relative moduli space, X(Z,, 6)=T(Z.)]I'*(Z., o), is an irreducible normal
complex space.

Consider now the mapping n’: X(Z)—~X(Z., o), n'((X])=[X.]. The diagram

T(Z2)-=~ T(Z,)
¥ }
X(Z)T—) X(an O')

commutes, and 7’ defines a homeomorphism of X(Z) onto its image in X(Z., o).
Let us identify X(Z) with n'(X(Z))cX(Z,., o). The involution ¢: Z,~Z, in-
duces real structures ¢’: X(Z,, 0)~X(Z.,0) and ¢: X(Z,)—>X(Z,). It is clear
that X(Z)c X(Z., o) is the image of the real part 7(Z,),. of T(Z, under the
projection T'(Z)—~X(Z,,c). Now we can apply Theorem 2, getting immediately:

Theorem 3. The moduli space X(Z) is an irreducible real analytic space.
It is contained in the quasiregular real part X(Z., a).. of the relative moduli space
X(Z., o).

Theorem 4. The image of X(Z) under the projection X(Z,, c)—X(Z,) is
an irreducible real analytic subspace of X(Z.). It is contained in the quasiregular
real part, X(Z,),., of X(Z,).

g

Note that by Proposition 1 X(Z)C X(Z,, o) is locally irreducible.

The projection X(Z., 0)—~X(Z,) is not one-to-one, but if two different points
[X ], [Y ]eX(Z)c X(Z,, o) are mapped onto one point in X(Z,), then — as one
can easily check — the Riemann surfaces X, and Y, have non-trivial holomorphic
self-mappings. Hence that one point lies, in general, in the singular part of X(Z,).
Using Lemma 1 we can show that the image of X(Z) in X(Z,) is the closure of
its regular part. Hence, if we study the image of X(Z) in X(Z,) instead of X(Z)
itself, we do not lose too many points. This motivates the considerations in the
following section.
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6. The moduli space of Klein surfaces of given genus

Denote by INV (Z,) the set of orientation reversing involutions of Z.. Each
{€INV (Z,) induces an antianalytic involution (* of T7(Z.. The fixed-point
set of {*, T(Z,)x, can be identified with the Teichmiiller space 7(Z./().

Assume that {; and {, are homotopic involutions. Then

0= (Golitoly)” = ((oly ) ol =,

since (;0{;'¢Hom, (Z,). Hence homotopic involutions of Z, induce the same
involution of the Teichmiiller space 7(Z,).
Let
T(R, g) = {pcT(Z)I*(p) = p for some (€INV(Z)}.

The set T(R, g) is the union of the Teichmiiller spaces of all non-classical Klein
surfaces of genus g (=the genus of Z,). If T(Z,) is interpreted as the Teichmiiller
space of complex algebraic curves, then T(R, g) is the subspace of T(Z.) whose
points can be defined by real polynomials. Note that T(R, g) is a closed subset
of T(Z,). This follows from the fact that the extended moduli group Hom (Z,)/
Hom, (Z,) acts properly discontinuously on 7(Z.).

The image of T(R, g) under the projection T(Z.,)—~X(Z,) is called the moduli
space of non-classical Klein surfaces of genus g. We will denote it by X(R, g).

Let ¢, and {, be orientation reversing involutions of Z.. They induce in-
volutions {; and {;, of X(Z,). Since {107 '¢Hom* (Z,), we have

(1= (Golatoly) = (Goli ) oly =05

Hence all mappings of INV (Z,) induce the same involution of the moduli space.
Let o be the involution of Z,. that was previously fixed in Section 4. Then we
get, using Theorem 4 many times, the following result:

Lemma 2. The moduli space X(R, g) is contained in the quasiregular real part
X(Z,),. of the moduli space X(Z,).

In the case g=2 we can find out explicitly what the irreducible components
of X(R,g) are. To that end we need the following simple result.

Lemma 3. Assume that g=2 and that the point [X1€T(Z,) is not fixed by
any non-identity element of the moduli group I'*(Z.). Then the Riemann surface
X does not have any other holomorphic self-mappings than the identity mapping.

Proof. Let [X]€T(Z,) be a point which is not fixed by any non-identity map-
ping of the modular group. Assume that there exists a gcHom™* (Z,) such that
g: X—X is holomorphic. If g is not the identity mapping, it is not even homo-
topic to the identity mapping. Let us assume that such is the case, and let us show
that this is not possible.
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Since g: X—X is holomorphic, the mapping g*: T(Z.)—~T(Z,) keeps the
point [X] fixed. Since [X] is not fixed by any non-identity mapping of the modular
group, g* must be the identity mapping of 7(Z,).

Let [Y]€T(Z,) be an arbitrary point. Since g* is the identity mapping of
T(Z,),[Y]=[g"(Y)], and we can find a holomorphic mapping A4: g*(¥Y)—~Y which
belongs to the group Homg (Z.). Then the mapping hog is a holomorphic
self-mapping of the Riemann surface Y. Since g¢Hom; (Z) and h€¢Homj (Z,),
the composed mapping hog is not homotopic to the identity mapping. Hence
the Riemann surface Y has non-trivial holomorphic self-mappings. But a generic
compact Riemann surface of genus =2 does not have any non-trivial holomorphic
self-mappings. Hence we have reached a contradiction, since Y€K+(Z, was
arbitrary. This proves the lemma.

Let us now consider irreducible components of X (R, g). Assume {; and {,
are such involutions of Z. that the intersection of the images of 7(Z ) and
T(Z,)¢* in X(Z.) contains a non-empty open subset of X(R, g). Then, by Lemma 1,
we can find points [X]€T(Z.);x and [Y]€T(Z.): which are mapped onto the
same point in X(Z,) and which are not fixed by any non-identity element of the
moduli group I't(Z,). We may assume that {;: X—X and (,: Y—Y are anti-
holomorphic.

Since the Riemann surfaces X and Y correspond to the same point in the
modular space X(Z,), we can find a holomorphic mapping g: X—Y. The mapping
{;'og™'ol,0g is then a holomorphic self-mapping of the Riemann surface X.
Since [X]€T(Z.) is not fixed by any non-identity element of the modular group,
X does not have non-trivial holomorphic self-mappings. Hence {(;'og™'o{,0g
is the identity mapping, i.e.,

goly={,0g.

It follows that the mapping g: X—7Y induces a dianalytic homeomorphism be-
tween the Klein surfaces X/{; and Y/{,. Consequently, X/{; and Y/{, are of
the same topological type.

On the other hand, it is easy to see that if two involutions {; and {, are such
that the corresponding Klein surfaces are of the same topological type, the images
in X(Z.) of the fixed-point sets T(Z.);z and T(Z.);; -coincide.

These considerations in conjunction with Theorem 4 yield the following result:

Theorem 5. The moduli space X(R,g) of non-classical Klein surfaces of
genus g, g=1, is areal analytic subset of X(Z,), and is contained in the quasiregular
real part X(Z,),. of X(Z,). If g=2, the irreducible components of X(R,g) corre-
spond to Klein surfaces of a given topological type, and X(R, g) has exactly

2[g/2]1+[(g+D/2]+2

irreducible components.
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Proof. The only point that we have not proved yet is the formula for the number
of irreducible components of X(R,g). But that is the same as the number of
different topological types of non-classical Klein surfaces of genus g. Hence a
computation that R. Zarrow has done ([7], Lemma in Chapter 2) gives the above
result.

In the case g=3 it turns out that X(R, g) coincides with the quasiregular
real part of X(Z.). In order to prove that let us first show that X(R, g) is a closed
subset of X(Z)).

To that end assume that p,, ps, ... is a sequence in X (R, g) which converges
to a point py€X(Z.). It suffices to show that p,€X(R,g).

We can choose a point po€T(Z,) lying over p,€X(Z,) and a sequence
D1y Pes ..-€T(Z,) converging to j, such that each p; belongs to T (R, g) and lies
over the point p; in X(R, g). Hence every point j; is fixed by some involution
{¥ of T(Z,). Since the extended modular group Hom (Z)/Homy (Z,) acts prop-
erly discontinuously on 7(Z,), it follows that also f, must be fixed by some
involution (*. Hence p,¢X(R,g), and X(R,g) is closed.

Let S denote the singular set of the complex space X(Z,). As we have pre-
viously noted, the quasiregular real part X (Z,).. is the closure of X(Z),\S.
Hence if we can show that X(Z),\SCX(R,g), we have in fact proved that
X (Zc);.=X (R, g). To prove the above inclusion choose a point [Y]€X(Z,),\S.
Since [Y]4S, and since the genus of Y is =3, the Riemann surface Y does
not have non-trivial holomorphic self-mappings. This follows from Theorem 1 in [5].

On the other hand, since [Y] is a fixed point of the involution ¢ of A(Z,),
we can find a holomorphic mapping g: ¢*(Y)~ Y. Recall that by definition ¢"([Y])=
[6*(Y)], where ¢*(Y) is the analytic structure of Z. for which the mapping
¢: Y—0*(Y) is antiholomorphic. Then goo is an antiholomorphic self-mapping
of the Riemann surface Y. Since Y does not have holomorphic self-mappings
other than the identity mapping, goo is an involution. It follows that [Y]€ X(R, ).
This proves the inclusion X(Z.),\SCX(R,g). On the grounds of the previous
remark, we have now proved the following theorem:

Theorem 6. The moduli space of non-classical Klein surfaces of genus g, g=>=3
is the quasiregular real part of the moduli space of Riemann surfaces of genus g.

Remark 1. An example of Earle ([4], Theorem 2, p. 125) shows that the in-
volution ¢': X(Z.)—~X(Z,) actually has fixed points that do not belong to X(R, g),
but Theorem 6 shows that the dimension of the set of such points is, in general,
lower than the dimension of X(R, g).

Remark 2. It is not clear whether the statement of Theorem 6 holds in the
case g=2 or g=3, because for those genera there exist hyperelliptic Riemann
surfaces that have non-trivial holomorphic automorphisms but do not sit in the
singular part of the moduli space.
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Question. Is ¢": X(Z,)~X(Z,) the only antiholomorphic automorphism
of the moduli space X(Z,)?

Another question. Is the moduli space X(R, g) connected?
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