MEASURES OF NONCOMPACTNESS FOR ELEMENTS OF C*-ALGEBRAS

KARI YLINEN

1. Introduction and notation

For Banach spaces E and F, let L(E, F) denote the Banach space of bounded linear operators from E to F (and let L(E) stand for L(E, E)). Several measures of noncompactness for $T \in L(E, F)$ have been considered in the literature. The ball measure of noncompactness, $||T||_q$, of T is defined by

$$||T||_q = \inf\left\{r > 0|T(B_E) \subset \bigcup_{k=1}^n B(x_k, r), x_k \in F, n \in \mathbb{N}\right\}$$

(see e.g. [3], [5], [6], [1]). Here $B_E = \{x \in E \mid ||x|| \le 1\}$ and $B(x_k, r) = \{x \in F \mid ||x - x_k|| < r\}$. Another measure of noncompactness, $||T||_m$, is defined in [6, p. 7] to be the greatest lower bound of those numbers $\eta > 0$ for which there exists a subspace $M \subset E$ with finite codimension and such that $||Tx|| \le \eta ||x||$ whenever $x \in M$. These two measures are equivalent seminorms on L(E, F) [6, p. 7]. In case F has what [6] calls the compact approximation property (which is weaker than the metric approximation property), they are equivalent to the seminorm $T \mapsto ||T||_{\mathcal{K}}$,

 $||T||_{\mathscr{K}} = \inf \{ ||T - K|| | K \in L(E, F) \text{ is a compact operator} \}$

[6, pp. 7, 11—12]. Let *H* be a complex Hilbert space, and $T \in L(H)$. We show that $||T||_m = ||T||_{\mathscr{X}}$ (Theorem 1); the same technique yields the equation $||T||_q = ||T||_{\mathscr{X}}$ proved in [10, p. 340]. Motivated by these results we define below for an element of an arbitrary C^* -algebra a measure of noncompactness modelled on $||T||_{\mathscr{X}}$; specializing in L(H) we thus return to any one of the three measures discussed above.

Let A be a C^{*}-algebra. Following Vala [9] we call an element $u \in A$ compact if the mapping $x \mapsto uxu$ is a compact operator on A. We denote by C(A) the set of the compact elements of A. As the compact elements of the C^{*}-algebra L(H)are the same as the compact operators on the Hilbert space H [8], the following definition generalizes that of $||T||_{\mathscr{K}}$ for $T \in L(H)$.

Definition. If $u \in A$, we denote $k(u) = \inf \{ ||u-x|| | x \in C(A) \}$ and call k(u) the (quotient) measure of noncompactness of u.

Even a measure of weak noncompactness has a simple connection with the present situation. Following the notation of [1] we write

 $\gamma_{\mathscr{W}}(T) = \inf \{ r > 0 | T(B_E) \subset W + rB_F, \ W \subset F \text{ weakly compact} \}$

for each $T \in L(E, F)$ (see Example 3.2 (b) in [1, p. 12]). In Theorem 2 we show that $k(u) = \gamma_{\mathscr{W}}(L_u) = \gamma_{\mathscr{W}}(R_u)$ for all $u \in A$, where L_u (resp. R_u) is the image of u under the left (resp. right) regular representation of A.

2. The equality of measures of noncompactness

The two theorems mentioned above are based on the following observation.

Lemma. Let A be a C*-algebra and I a closed two-sided ideal of A. Denote $q(x) = \inf \{ ||x-y|| | y \in I \}$ for $x \in A$. Let $p: A \to R$ be a seminorm such that $p(x) \leq q(x)$ and $p(xy) \leq p(x)p(y)$ for all $x, y \in A$, and $\{x \in A | p(x) = 0\} = I$. Then p = q.

Proof. Let B denote the quotient algebra A/I and $\pi: A \to A/I$ the quotient map. Equipped with the involution $\pi(x) \mapsto \pi(x)^* = \pi(x^*)$ and the quotient norm $\pi(x) \mapsto ||\pi(x)|| = q(x)$, B is a C*-algebra (see [4], Proposition 1.8.2). From our assumptions it follows that by setting $||\pi(x)||_1 = p(x)$ for $x \in A$ we get a welldefined norm $|| \cdot ||_1$ on B satisfying $||u||_1 \le ||u||$ and $||uv||_1 \le ||u||_1 ||v||_1$ for all $u, v \in B$. Thus Corollary 4.8.4 in [7] (or the proof of Proposition 1.8.1 in [4]) shows that for any $u = \pi(x)$, $x \in A$, we get $||u^*||_1 ||u||_1 \ge ||u||^2 = ||u^*|| ||u||$, and since $||u^*||_1 \le ||u^*||$ and $||u||_1 \le ||u||_1 = ||$

Theorem 1. If H is a complex Hilbert space and $T \in L(H)$, then $||T||_q = ||T||_{\mathcal{K}}$.

Proof. Both $\|\cdot\|_q$ and $\|\cdot\|_m$ are submultiplicative seminorms on the C^* -algebra L(H), they are majorized by $\|\cdot\|_{\mathscr{K}}$ and vanish precisely on the ideal of the compact operators on H (see [6, pp. 7, 9]). Thus the preceding Lemma implies the assertion.

Theorem 2. Let A be a C*-algebra and $u \in A$. Define $L_u: A \to A$ by $L_u x = ux$ and $R_u: A \to A$ by $R_u x = xu$. Then $k(u) = \gamma_{\#}(L_u) = \gamma_{\#}(R_u)$.

Proof. Define $p(x) = \gamma_{\psi}(L_x)$ for $x \in A$. From Proposition 3.7 in [1, p. 14] it follows that p is a seminorm on A, and applying (1) in [1, p. 17] we get $p(xy) = \gamma_{\psi}(L_xL_y) \leq \gamma_{\psi}(L_x)\gamma_{\psi}(L_y) = p(x)p(y)$. Theorem 3.1 in [12] states that an element x of A belongs to C(A) if and only if L_x is a weakly compact operator. Since $\{T \in L(A) | \gamma_{\psi}(T) = 0\}$ is the set of the weakly compact operators $T: A \rightarrow A$ (see Lemma 1 in [2, p. 259] or Theorem 3.11 in [1, p. 16]), it therefore follows that p(x) = 0 if and only if $x \in C(A)$. Furthermore, $p(x) \leq \inf \{||L_x - T||| T \in L(A) | weakly com-$

pact} $\leq \inf \{ \|L_x - L_y\| | y \in C(A) \} = k(x) \text{ (see Corollary 3.9 or the proof of Theorem 3.8 in [1], and 1.3.5 in [4]). From the Lemma it now follows that <math>k = p$, since C(A) is a closed two-sided ideal in A (see Theorem 3.10 in [11, p. 26]). A similar argument shows that $k(x) = \gamma_{w}(R_x)$ for all $x \in A$.

References

- ASTALA, K.: On measures of noncompactness and ideal variations in Banach spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 29, 1980, 1–42.
- [2] DE BLASI, FR. S.: On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. R. S. Roumanie 21 (69), 1977, 259-262.
- [3] DARBO, G.: Punti uniti in transformazioni a codominio non compatto. Rend. Sem. Mat. Univ. Padova 24, 1955, 84—92.
- [4] DIXMIER, J.: Les C*-algèbres et leurs représentations. 2ième éd. Cahiers scientifiques, Fas. XXIX, Gauthier-Villars & C^{ie}, Éditeur-Imprimeur, Paris, 1969.
- [5] GOL'DENŠTEĬN, L. S., and A. S. MARKUS: On the measure of non-compactness of bounded sets and of linear operators. - Studies in Algebra and Math. Anal., Izdat. "Karta Moldovenjaske", Kishinev, 1965, 45—54 (Russian).
- [6] LEBOW, A., and M. SCHECHTER: Semigroups of operators and measures of non compactness. -J. Functional Analysis 7, 1971, 1—26.
- [7] RICKART, C. E.: General theory of Banach algebras. O. Van Nostrand Company, Inc., Princeton, New Jersey—Toronto—London—New York, 1960.
- [8] VALA, K.: On compact sets of compact operators. Ann. Acad. Sci. Fenn. Ser. A I 351, 1964, 1-9.
- [9] VALA, K.: Sur les éléments compacts d'une algèbre normée. Ann. Acad. Sci. Fenn. Ser. A I 407, 1967, 1—8.
- [10] WEBB, J. R. L.: On seminorms of operators. J. London Math. Soc. (2) 7, 1971, 337-342.
- [11] YLINEN, K.: Compact and finite-dimensional elements of normed algebras. Ann. Acad. Sci. Fenn. Ser. A I 428, 1968, 1-37.
- [12] YLINEN, K.: Weakly completely continuous elements of C*-algebras. Proc. Amer. Math. Soc. 52, 1975, 323–326.

University of Turku Department of Mathematics SF-20500 Turku 50 Finland

Received 27 October 1980