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MEASURES OF NONCOMPACTNESS FOR ELEMENTS
OF C*-ALGEBRAS

KARI YLINEN

1. Introduction and notation

For Banach spaces E and F,let L(E, F) denote the Banach space ofbounded
linear operators from E to F (and let Z(E) stand for L(E, Z')). Several measures

of noncompactness for T!L(E, F) have been considered in the literature. The

ball measure of noncompactness, llTll* of 7 is deflned by

llrll q: 0lr(BE) B (*u, r), x1,( F,

(see e.g. [3], [5], [6], [1]). Here Bu: {x€tl lxl = 1} and B(x1,, r): {x€Flllx-xoll=r}.
Another measure of noncompactness, ll7ll., is defined in [6, p.7] to be the greatest

Iower bound of those numbers 4=0 for which there exists a subspace McE
with finite codimension and such that lTxll=rt1lxll whenever ;c€M. These two
measures are equivalent seminorms on L(E, F) 16, p. 7]. In case .F has what [6]
calls the compact approximation property (which is weaker than the metric approxi-
mation property), they are equivalent to the seminorm T*llTllo,

llTllr: inf {llr-KllIK(L(E, F) is a compact operator}

[6, pp. 7, ll-12} Let H be a complex Hilbert space, and T<L(H). We show that

llTll^:ll7ll. (Theorem l); the same technique yields the equation i)Tllr:llTll*
proved in [0, p. 340]. Motivated by these results we define below for an element of
an arbitrary C*-algebra a measure of noncompactness modelled on ll 7ll.; speci-

alizing in L(H) we thus return to any one of the three measures discussed above.

Let A be a C*-algebra. Following Vala [9] we call an element u(A compact
if the mapping xåuxu is a compact operator on l. We denote by C(A) the set

of the compact elements of l. As the compact elements of the C*-algebra L(H)
are the same as the compact operators on the Hilbert space ä [8], the following
definition generalizes that of llTll* for T€L(H).

Definition.lf u(A, we denote k(u):int {lla-xlllxcc(A)} and call k(u)
the (quotient) measure of noncompactness of u.

nc t-l
k:1

inf {, = ,ano)

koskenoj
Typewritten text
doi:10.5186/aasfm.1981.0627



132 Kanr YTTNBN

Even a measure of weak noncompactness has a simple connection with the
present situation. Following the notation of [] we write

yy(T): inf {r > 017(BJ cW*rBr, W c F weakly compact}

for each T€L(E,,F) (see Example 3.2 (b) in [1, p. l2)).In Theorem 2 we show that
k(u):yw(Lu):y*(R) for all u(A, where Z, (resp. A,) is the image of z under
the left (resp. right) regular representation of A.

2. The equality of measures of noncompactness

The two theorems mentioned above are based on the following observation.

Lemma. Let A be a C*-algebra and I a closed tv,o-sided ideal of A. Denote

e@):inf {llx-ylllycl} for x(A. Let p: A*R be a seminorm such thqt p(x)=
q(x) and p(xy)=p(x)p(y) for all x,!(A, and {x€Alp(.x):O}:1. Then p:q.

Proof. Let.B denote the quotient algebra AII and n: A-AII the quotient
map. Equipped with the involution n(x)*n(x)*:z(x*) and the quotient norm
n(x)*lln(x)ll:q@), ,B is a C*-algebra (see [4], Proposition 1.8.2). From our
assumptions it follows that by setting llz(x),:p(x) for x(A rve get a well-
defined norm ll.llr on B satisfying llul)r=ltui and llaullr<llallrlluli, for all u,u€8.
Thus Corollary4.8.4 in [7] (or the proof of Proposition 1.8.1 in [a) shows that
for any u:n(x), x(A, we get lla*llrllrrir=, u'tl,:llu*llllull, and since llu*llr=
lja*ll and llullr=llull, we must have p(x):iull':liall:q(x).

Theorem 1. If H is a complex Hilbert space and T€L(H), then )lTlln:
llrll*:llrllt.

Proof. Both ll .ll, and ll .ll- are submultiplicative seminorms on the C*-
algebra L(H), they are majorized by ll.llyr and vanish precisely on the ideal of the
compact operators on ä (see [6, pp. 7, 9]). Thus the preceding Lemma implies the
assertion.

Theorem 2. LetAbeaC*-algebraand u€A. Define L,: A*A by Lux:ux
and Ru: A-A by Rux:xu. Then k(u):"1r,.(L,,):i'ru(Rr).

Proof. Define p(x):y*(L,) for x€A. From Proposition 3.7 in [1, p. 14]

itfollows thatp is a seminorm on A, and applying (l) in [1, p. 17] we get p(xy):
yil.(L,Ly)=y*(L)y*(Lr):p(x)p(y). Theorem 3.1 in [2] states that an element
x of A belongs to C(A) if and only if L, is a weakly compact operator. Since

{T€L(A)ly*(7):0} is the set of the weakly compact operators T: A*A (see

Lemma linB,p.259l orTheorem 3.ll in [1, p. 16]), ittherefore follows that p(x):g
if and only if xeC(A). Furthermore, p(x)<inf {llf--flllT€L(A) weakly com-
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pact)= inf {llL*-Lrllly«@)}:ft(x) (see Corollary 3.9 or the proof of Theorem 3.8

in [], and 1.3.5 in [4]). From the Lemma it now follows that k:p, since C(l) is

a closed two-sided ideal in,4 (see Theorem3.l0 in [1], p. 26D. A similar argument
shows that k(x):y*(R ) for all x€A.
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