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ON COLOR.FAMILIES OF GRAPI{S

ARTO SALOMAA

1. Introiluction. A mechanism for constructing families of "similar" graphs

was introduced in Il]. The mechanism is essentially identical to the one considered

in the theory of grammar forms and, at the same time, it generalizes the notion of
coloring of graphs.

More specifically, one of the major trends in language theory during recent

years has been the investigation of grammar forms. Starting from a "master gram-

mar" one defines an "interpretation" mechanism giving rise to a family of grammars

similar to the master grammar. (See [6]-[10] , ll4l, 1161, [18].) The relative position

of language classes generated by such families of similar grammars has been one

of the major concerns in grammar form theory. In particular, dense hierarchies

of language families have been constructed by purely grammatical means, t8l-t10].
Such an interpretation mechanism can be defined in exactly the same way in

a much more general set-up, for instance, for universal algebras. As far aS we can

see, the study of such a general case is of little interest only. However, the applica-

tion of this mechanism to graphs (directed or undirected) has turned out to be of
special interest. The reason for this is two-fold. (i) A classiflcation of graphs is

obtained, based on a notion that generalizes the notion ofcoloring in a natural way.

(ii) Questions concerning this classiflcation can be identified with questions con-

cerning a fragment of the theory of grammar forms.

Point (ii) provides an interesting link between language and graph theory.

When problems in one area can be transformed into problems in another area, it
is likely that also techniques and results of the former area become applicable in

the latter. Indeed, essentially graph-theoretic methods were applied in [13] to settle

a wellknown open problem concerning the maximal density of a hierarchy of lan-

guage families. It is likely that many similar "inter-disciplinary" applications can

be given.
This paper deals only with graph-theoretic aspects of color-families; intercon-

nections to the theory of grammar forms are mentioned very briefly. With the excep-

tion of a passage at the end of Section 4, considerations are restricted to undirected

graphs. A brief outline of the contents of this paper follows.

Preliminary deflnitions and results are presented in Section 2. Section 3 deals

with the density of color-families. The irrportant result due to Welzl is established
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by a construction different from the one given in [7]. In Section 4, we consider
color-families of infinite graphs. The main result is that if two graphs deflne the same
color-family of finite graphs then they define also the same color-family of inflnite
graphs. This result holds for digraph families as well and, from the point of view
of language theory, concerns languages over infinite alphabets, []. The final section
contains scattered remarks, for instance, about the "master graph" being symmetric.
Also some remarks about infinite master graphs are included.

The reader is assumed to be familiar with the basics of graph theory. For
unexplained notions, [ ] or [5] may be consulted. For the understanding of the
technical details of this paper no knowledge of language theory is required on the
part of the reader. A reader interested in the corresponding aspects of grammar
form theory is referred first to [5] and then to tlll-tl3l and [16]-[8], especially
to [8].

2. Preliminaries. The graphs we consider have neither multiple edges nor loops
(i.e., no edges from a vertex to itself). Such graphs are often referred to in the litera-
ture as "simple" graphs. Unless specified otherwise, our graphs will always be
undirected. For a graph G, we denote by V(G) (resp. å(G)) the set of vertices (resp.

edges) of G. We consider bothfnite and infinite graphs, i.e., no over-all assump-
tions are made about the cardinality of V(G), except that V(G) is assumed to be
nonempty.

Two vertices x and y in V (G) are adj acent or neighbours if there is an edge between
them. This fact is denoted by A6(x,,r') or briefly by A(x,;,) if G is understood.
It is to be emphasized that no vertex is adjacent to itself (because the graphs we
consider have no loops).

If Xis a nonempty subset of V(G), we denote by [G, Xl:Gr the subgraph of
G generated by X. Thus,

V(Gr) : Y and E(G): E(G)\X.

(We use a vertical bar to denote restrictions of relations and functions in the cus-
tomary fashion.)

For the union of two graphs, G:GtuG,, we have

V(G) : V(Gr)vV(Gr) and E(G) : E(Gr) u E(Gr).

(f1C; is the set-theoretic union, and so no multiple ed_ses will result.) Sometimes
we use the union-sign also to denote the addition of some particular edge or edges

to a given graph. Thus, we may write simply Gr:Gv(x,;'), rather than specify-
ing the second term of the union as a graph (which can of course always be done).

We now define some special graphs considered throughout this paper. For an
integer n >1 (resp. n>3), we denote by K,. (resp. C,,) the complete graph (resp.
the cycle) with n vertices. Thus, in K, there is an edge between any two distinct
vertices, and in C, there are exactly n edges such that the whole graph forms a cycle.
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Observe that Kr: g, and that K, consists of one vertex and no edges. We consider

also the graph K-, where the vertices are in one-to-one correspondence with natural
numbers, and there is an edge between any two distinct vertices.

From now on we consider in Sections 2 and 3 finite graphs only; all further
definitions and discussions involving inflnite graphs will be postponed until Sec-

tion 4.

An elementary morphism in a graph G consists of identifying two non-adjacent

vertices x and y and inserting an edge between the identified vertex 1.:y and all
vertices z adjacent to either x or y in G. A graph G' is a morphic image of a graph

G if it is obtained from G by finitely many elementary morphisms. G is also considered

to be a morphic image of itself. A graph G is minimal if none of its morphic images,

apart from G itself, is a subgraph of G.

We now introduce the most important notions of this paper.

A graph H is colorable according to a graph G, in symbols H="G, if there

is a mapping E of V(H) into V(G) such that, for all x and y in V(H),

Ar(x, y) implies A"(E@), E0)).

The mapp:ng rp is referred to as the coloring of 11 according to G.

Assume that G:K,, where n>2. Then clearly H="G if and only if ä is

n-colorable in the customary sense. Hence, the notion defined above is natural
extension of the custcmary notion of coloring of the vertices.

Every graph G defines a family I (G) of graphs, consisting of all graphs colorable
according to G. In symbols,
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(1)

(2)

s(G) - {HlH =,G}.

Families of graphs of the form (1) are referred to as color-families. (According to
the convention made above, G is a finite graph and every color-family consists of
finite graphs. Infinite graphs will be considered in this sense in Section 4.)

Clearly, every family I (G) is infinite. No graph G is universal in the sense

that every finite graph would be contained in 9(G). This follows because if G has

z vertices, then the complete graph K,*, is not in g(G). The Four-Color Theorem

tells us that every planar graph is in 9(Ko).
As an example, the reader might want to consider the cyclic graph Cu. A graph

ä is colorable according to C5 if and only if it is S-colorable in such a way that the

adjacencies in Cu are satisfied: if a vertex is colored by I then its neighbours may be

colored by 2 or 5 but not by 3 or 4, and so forth.
The reader should have no difficulties in verifying the following inclusions:

* s(G, l"l;r.lrTll;:l; ;7;:'I*.r 1,

Indeed, (2) is referred to in [11] as the basic hierarchy of color-families. This reflects
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the fact that the generating graphs in (2) are very natural ones and, consequently,
other color-families should be compared with the families (2).

Clearly, every family in the hierarchy Q) contains the family 9(Kr). The family
9(Kr) consists of all 2-colorable graphs, i.e., of all graphs having no cycles of an
odd length. On the other hand, let G be an arbitrary graph possessing a cycle of an
odd length. Then there arc m and n such that

9(Cr**r)= g(G)e g(K").

This is the best result we can get because it is a consequence of a result of Erdös,

[3], that for any m and n, there is a graph G such that 9(G) is incomparable with
each of the families

I (Cr,,-r), ..., I (Cr) : I (Kr), ..., I (K,-r).

The reader is referred to [1] for further details.
The following results from [11] and [17] are preliminary ones and also not too

difficult to deduce directly from the definitions.

Theorem l. The relation =c is transitiue. The inclusion 9(H)gg(G)
Itolds if andonly f H="G. Consequently, 9(H):g(G) if and only tf both H<"G
and G="H. The relation <" is decidable. Consequentll,, the relations

s(H) C 9(G) and s(H) : s(G)

are decidable for giuen graphs H and G.

Theorem 2. A graph H is G-colorable if and only if a morphic image H, of
H is isomorphic to a subgraph of G.

Theorem 3. For euery color-family g, there is a minimal graph G such that
9:9(G). Moreouer, if G1 and G, are non-isomorphic minimal graphs, then the

color-families 9(Gr) and 9(Gr) are different.

Theorem 3 shows that minimal graphs constitute a suitable 'onormal form" of
graphs for the representation of color-families.

Two graphs H and G are termed color equiualent if 9(H):g(G). In accord-
ance with Theorem 1 we denote this relation by H: 

"G. 
Finally, the notation H< 

"G
is used to mean that H is colorable according to G but H and G are not color equiv-
alent. Forinstance, if H and Gare cycles of an even length, flls l{:"Q:"Kz.lf G
is a cycle of an odd length and H is a cycle of a greater odd length (or a cycle of an
even length), then H<"G.

3. Density of color-families. Consider the graphs K, and Kr. Clearly, Kr<"K,
and, furthermore, there are no graphs G satisfying

K.1 <"G ="K2.
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However, the pair (Kr, Kr) constitutes the only example where one graph is a pred-

ecessor of anothergraphinthesenseof therelation <c.This resultwillbeestab-
lished in this section as the next theorem. We use the term "a nontrivial graph"

to mean a graph possessing at least one edge.

Theorem 4. Assume that G, and G, are nontriuial graphs satisfying Gr="Gr'
Then there is a graph G, such that

G1 -<.Gs ="Gr.

We shall flrst establish some lemmas. All graphs considered are assumed to be

nontrivial. Following Welzl, [7], we say that H is a weak predecessor of G if H< 
"G

and, moreover, apart from ä itself there is no morphic image H, of H satisfying

H1= 
"G.
Thus, every odd cycle Cr-*r, m>-2, is a weak predecessor of Cr.-r' The

reader is encouraged to construct weak predecessors of C, of different types.

Lemma 4.1. Assume that H-"G. Then a weak predecessor H of G may be

effectiuely obtained from H by finitely manl; elementary morphisms. Moreouer, if the

uertices x and y of H (and possibly some other uertices of H as well) haue been identified

to form a single uertex of H, and if r! is the elementary morphism of H identifying x
and y. then r!(H)=:"G.

Proof. The first assertion follows by Theorem 1. We just check through the

vertices of äwhether or not there is an elementary morphism ry'' such that rlt' (H) - "G.
If not, we choose Hr:H. Otherwise, we repeat the procedure for an arbitrarily

chosen {/'(H). (Observe that the process is nondeterministic: differently chosen

elementary morphisms may give rise to different weak predecessors.)

The second assertion is due to the following observation. Assume that ry', is

the composition of elementary morphisms applied in constructing H, ftom H.

Then ry', can also be expressed as a composition where the flrst factor is ry'. n

Lemma 4.2. Assume that a connected graph G posses§es, for euety natural

number k, a weak predecessor Hr with more than k uertices. Then G has no pred'

ecessor.

Proof. Assume the

is no graph Pr with the

(3)

We assume without loss of generality (see

minimal.
Let now k be a fixed natural number

Consider the weak predecessor äk of G (as

contraiy: G has a predecessor P. Hence, P=,G and there

property

P -"P, -rG.

Theorerns 1 and 3) that P and G are

greater than the cardinality of i/(P).
in the statement of Lemma 4.2).
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Clearly, P- "Hx contradicts (3) with Pt:H1,. Assume that

(4) Hk 5, P.

This implies, by Theorem 2, that a morphic image H| of äo is isomorphic to a sub-
graph of P. Consequently , H'o= 

"G. 
Since flo is a weak predecessor of G, this implies

that H'k:Hk But this is impossible because, by the choice of k, V(H) is of greater
cardinality than V(P). Hence, (4) cannot hold and, thus, fI* and P arc incomparable
with respect to the relatioo =".

Consider the graph HovP. Clearly,

(5) P <"Hov P.

(For if Hov P is colorable according to P, then also (4) holds, which we have shown
not to be the case.) By the definition of Hr and P,

HovP 
="G.

If H1,vP<"G, then by (5) we obtain a contradiction by choosing in(3) Pr:po11 p.
Consequently,

G <"Hov P.

Since G is connected and neither G="Hk nor G="P holds, we have a contradic-
tion. (Observe that ifa connected graph is colorable according to a union ofgraphs,
then it must be colorable according to one of the components.) Consequently, G
has no predecessor. n

Lemma 4.3. For all m>l and n>1, the odd cycle C2^a1 poss€sses a weak
predecessor DZh**\hauing at least 2n*l certices.

Proof. We first construct a graph Eii\ as follows. Consider the cycle
C(rn*r)(r^*r). Color its vertices, using 2na 1 times the sequence of colors

lr2r,.',2mIl

in the clockwise order. To obtain E:h*i, add (n -l)(2n*1) edges to cpn4t11z*+r7
as follows. Each vertex colored with 1 is connected with an edge to the next (in the
clockwise order) n -1 vertices colored with2. (The vertex colored with 2 adjacent
to the original vertex colored with 1 is not counted among these n - 1 vertices.
After all, it already is connected with an edge to the original vertex.)

The coloring given above shows that

We want to show that, in fact,

(6)

Eif"I\ 4, Cz,,+ r.

Eiil,Tt <ccznt+l.

Clearly, (6) follows if the length of the shortest odd cycle C in E!i+*t exceeds 2m*1.
This is true if C contains a vertex colored with one of the numbers 3, ...,2m{l
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because no edge added to C,n+l)(zn+ry involves such a vertex. On the other hand,

C cannot consist only of vertices colored with 1 and 2 because then the length of C
would be even. Consequently, (6) holds.

Let now DZi"*i be a weak predecessor of C2^11, obtained from E!ff+*|, by the

method of Lemma 4.1. We claim that no two vertices x and y of E!i+!, colored with
I have been identified to form a single vertex of Oi\\. For if this would be the case

then, by the second assertion in Lemma 4.1,

E' : t (Eli"**'r) <c Cz,,+',

where ry' is the elementary morphism of Eli!\ identifying x and y. However, this

is impossible because E'has a cycle of length 2m*1.
Consequently, the number of vertices in O!1+*1, is not smaller than the number

2n+1 of vertices colored with 1 in E!i{rl. n

We are now in the position to prove Theorem4. Because 9(Kr) consists of
all graphs having no odd cycles, it suffices to prove that if G is an arbitrary minimal
graph with an odd cycle, then G possesses no predecessor. Let 2mfl, m>1, be

the length of the shortest odd cycle in G.

Assume first that G is connected. By Lemma 4.2, it suffices to prove that, for
all k, G possesses a weak predecessor äo with more than /c vertices. Consider a fixed

number k and choose z in such away that 2n*1>-k.
Consider a cycle C in G of length 2m * l. Color its vertices with 1, 2, ..., 2m I l.

Then remove C from G, replacin-e it with the graph DZi,!*', defined in Lemma 4.3.

For each i such that l=i=2m* I and each vertex x colored with i in Df;\+*t, con-

struct an edge between x and every vertex in Y(G-C) that was adjacent in the

original G to the vertex colored with i in C. (Observe that because

Dtri"*1, <c Cznr+L,

we rnay speak of the coloring of D?Ti, as above.)

constructed.
It follows immediately from the construction

show that
(B) G (r) -"G.

Assume the contrary: G is colorable according to G(n). Consequently, a morphic

image G' of G appears as a subgraph in G(n). Hence,

G' ="G(n) *,G.

(and hence also of G) is a subgraph of G. The min-

G":G':G.

Therefore, G is a subgraph of G(n). The following argument shows that this

is impossible and, consequently, (8) holds. Consider any occurrence of G as a sub-
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(7)

Denote by G (n) the graph thus

that G(n)€"G. We want to

Thus, a morphic im age G" of G'

imality of G now implies that
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graph of G(n). This occurrence cannot involve two vertices x and y of Df,fflrcolored
with the same color. For the identification of x and y would lead to a morphic
image of G that is also a subgraph of G, as seen by considering the identiflcation in
the whole G(n). However, this contradicts the minimality of G.

Consequently, our occurrence of G as a subgraph of G(n) involves at most
2m*l vertices of Oi\\. On the other hand, it cannot involve less than 2m*l
such vertices because then it would have altogether less vertices than the cardin-
ality of Z(G). Hence, the occurrence of G as a subgraph of G(n) involves
exactly 2m1-l vertices of DZT|, all colored differently. But this means that the
occurrence misses at least one edge of G. This contradiction shows that (8) holds.

We now use the method of Lemma 4.1 to convert G(n) into a weak predecessor

Ho of G. (Indeed, it can be shown that Ho:6(n) but we do not need this informa-
tion here.) Exactly as in the proof of Lemma 4.3 we see that in this process no two
vertices of Oii"\ colored with 1 can be identified. Consequently, flo possesses at
Ieast 2n* l>k vertices, as required.

Assume, secondly, that G is not connected. Thus,

G : GrwGrv...vG, (t = 2),

where each G, is connected. Furthermore, because of the minimality of G, the
connected components G, are pairwise incomparable with respect to the relation S 

".Arguing indirectly, we assume that P is a predecessor of G. Hence, P<."G.
This implies that one of the connected components of G, say G, is not colorable
according to P. Consequently,

(e) P S" P v Gr u ... u Gr-r -rG.

(Indeed, if G would be colorable according to the union in (9), then also G, would
be colorable according to this union. But this cannot be the case since G, is not
colorable according to any of the components.)

If in (9) the sign =c can be replaced by the sign =", we have contradicted
the assumption that P is a predecessor of G. Hence, we may assume that

PvGru...uGr-r4"P.
Conseeuently, we obtain

( l0) P :" P v Gr u ... u Gt-1 <c Grv ... u Gt _ru Gt.

Let now n be such that 2n+7 exceeds the cardinality of Y(P). (Observe that p
need not be connected.) Construct Gr(n) from G, in the same way as G(r) in (8)
was constructed from G.

We cannot have G,(n)="P because this would imply that a morphic image of
G,(n) is a subgraph of P. By the choice of n, this can happen only in case the morphic
image in question is also a morphic image of G,. But this cannot be the case because
G, is not colorable according to P.
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Exactly as in (8) we conclude lhat G,(n)-"G,' (Observe thattheminimality
of G yields the minimality of G,.) These observations now yield the relations

(11)

The proof of Theorem 5 is based

Lemma 5.1. Assume that G /s
such that all finite subgraphs of H are

P =,Pu G,(n) ="G,

on the following "inflnity lemma".

a finite graph and that H /r qn infinite graph

in g(G). Then H itsef is in g*(G).

contradicting the assumption that P is a predecessor of C. (In fact, (10) is not needed

to obtain (l 1). However, we wanted to give a detailed analysis about situations

where the Gr(n) graphs are not needed in the non-connected case.) We have, thus,

completed the proof of Theorem 4 in all cases.

A few flnal remarks are in order. As pointed out already in the introduction
Theorem 4 is due to Welzl, [17]. Our proof avoids the "super flowers" of [17] and

is also different in other aspects. However, the crucial idea of using graphs G(n)

is due to Welzl. The proof of Theorem 4 is also constructive in the sense that it
gives an algorithm for producing the graph G3 strictly between the two given graphs

G, and Gr. This can be seen by analysing the details of the argument.

4. Color-families of infinite graphs. We now extend the notion "colorable ac-

cording to a graph G" to concern infinite graphs. The "master graph" G will still

be finite. In this way we obtain a method of characterizing families of infinite graphs.

Such a method is of interest in view of the recent vivid discussion concerning con-

structive finitary specifications of infinite graphs. Moreover, because of intercon-

nections with grammar forms referred to in the introduction, this approach is also

linked with the recent study (see, for instance, [1]) concerning languages over infinite
alphabets. We hope to return to this question in a forthcoming paper.

The reader is referred to Section 2 for our general conventions concerning

graphs.
Let G be a flnite graph. A graph ä (finite or infinite) is colorable according

to G,in symbols H="G, if there is a mapping E of V(H)inlo V(G) suchthat,for
all x and y in V(H),

Ar(x, y) implies Ar(q(r), rp(y)).

As before, we denote by 9(G) the family of finite graphs colorable according

to G. The notation g*(G) stands for the family of all graphs, finite or infinite,
colorable according to G. Also families of the latter type are referred to as color-

families.
We shall prove in this section that, as far as color equivalence is concerned, the

families 9(G) are decisive. More specifically, we shall establish the following result.

Theorem 5. For all finite graphs G and H,
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Proof. We assume without loss of generality that G is minimal. For an arbitrary
graph D, we say that D possesses the property P6, or shortly that Pn(D) holds, if
every finite subgraph of D is in I (G), i.e., is colorable according to G. By the assump-
tion, Po(ä) holds.

Consider the (disjoint) union GvH. Clearly, Po(GuII) holds.
We now add edges to G v H in such a way that the resulting graph still always

possesses the property P6. Let T be a maximal graph obtained in this fashion.
(7 need not be unique: the order in which the edges are added may affect it.) Thus,
Z satisfies the following conditions (i)-(iii):
(i) Gv H is a subgraph of T and V(T):V(Gv H).
(ii) P"(7) holds.
(iii) Whenever an edge (x, y) is missing from 7, then the graph 7u,, (x, y) does

not possess the property P6, i.e., there is a finite subgraph of 7u(x,y) not
belonging to 9(G).
We shall prove that Tbelongs to 9-(G). By (i), this implies that H isin 9*(G).
In what follows we consider the relation Ar, written briefly l. Thus, A(x, l)

means that x and y are adjacent in 7. We also use the notation NA(x,y), meaning
that x and y are not adjacent in 7.

Consider also the following binary relation :, defined on the set Z(7). By
definition, x=7 holds if and only if x and y arc not adjacent in Tbut possess the
same neighbours in 7. In other words, 16:y holds if and only if NA(x,y) holds
and there is no z such that exactly one of the relations A(x, z) and A(y,z) holds.

To prove that = is an equivalence, we first note that it clearly is both reflexive
and symmetric. To establish transitivity, assume that x:y and y=2. Then
NA(x, z) because, otherwise, we have both A(x, z) and NA(y, z), contradicting
x:y. If thereisaat suchthat A(x,u) and NA(z,er), thenwehave A(y,u), con-
tradicting y:2. A similar contradiction arises from the assumptions NA(x,u)
and A(2, er). Consequenlly, x:2. This shows that the relation : is an equiv-
alence.

Observe that intuitively x:y means that removing one of the vertices x and
y gives the same result as the elementary morphism identifying x and y. Before
continuing the proof of Lemma 5.1, we establish the following result. Apart from
the present proof, the result is useful also in many analogous situations.

Lemma 5.2. Assume that M is a minimal finite graph and P a finite graph

containing ctn occurrence of M as a subgraph. Assume further that P="M. Then

there is a coloring a of P according to M such that alM is the identity. (Here alM
denotes the restriction of u to the occurrence of M in P we are considering.)

Proof. Consider an arbitrary coloring

B: V(P) *V(M).
Then the restriction fir: §lM is a coloring of M according to M. Because of the
minimality of M, B, is a permutation of V(M).



On color-families of graphs 145

If f, is the identity permutation, there is nothing to prove. Otherwise, we let
k>l be the order of B, (i.e., Bf is the identity) and consider

o: §0.

Clearly, alilf is the identity. Because B is a coloring of P accordingto M and because

M is a subpmph of P, it can be immediately verifled that a is a coloring of P accord-
ingto M. tr

We now return to the proof of Lemma 5.1. Consider the subgraphs

Gr: [T,YtG)) and Hr: \T,V(H)].

The minimality of G implies that no two vertices of G, belong to the same equiv-
alence class according to the relation =.

We claim that, for every .x in V(Hr), there is a y in V(G) such that le:y. This
claim immediately gives a coloring of 7 according to G and, consequently, shows

the correctness of Lemma 5.1.

We shall establish our claim by an indirect arguinent. Thus, assume there
is a vertex x in V(Hr) such that no vertex y in V(Gr) satisfies x:y.

Let yr,...,yr, be all the vertices of G. that are not adjacent to x (in 7). We
observe first that there must be such vertices, i.e., k> 1. For if x is adjacent to
every vertex in V(G1), we obtain a contradiction as follows. Consider the subgraph

lT,V(Gr)u{x}1. Because I possesses the property Pc, this subgraph is colorable
according to G or, equivalently, according to Gr. By Lemma 5.2, a coloring a

can be chosen such that a is the identity on V(G). But now a(x) cannot be defined
because there are no loops in Gt. Thus, we must have k>1.

Since no vertex of G, is equivalent to x (in the sense of :), this applies also

to the vertic€s ./r,...,y0. Consequently, for each i:1,...,k, there is a vertex x;
in 7 such exactly one of the adjacencies

A(y,,*r) and A(x,x,)

holds in 7. For i:1,...,k, let z, be the one among the vertices yt and x that sat-

isfles Nl (2,, xr).

By property (iii) of the graph T, if the edge (rr, *r) is added to 7, then the result-
ing graph does not possess the property P6. Thus, for i:1,...,k, there is a finite
subgraph D, of T such that the graph

(12) D,v(2,, x,)

is not colorable according to G. Hence, z, and x, arc in V(D,).
Consider the subgraph

D : \T,Z(G) u {x} u V (Dr) v ... vV (D)|

Since D is finite, it is colorable according to G. By Lemma 5.2, D possesses a coloring
a (according to G) such that alV(G) is the identity.



146 Anro Sarouea

For i:1,...,k, the mapping alv(Dt) is a coloring of D, according to G.
This implies that we have

(13) NA(a(z),a(x)) (t=i=k)
because, otherwise, the graph (12) would possess a coloring according to G (namely,
a restricted to (12)).

Because alV(G) is the identity, there is a j, l=j=k, such that

a(x): yi.
Two cases arise.

Assume first that zr:x. By the choice of zr, wehave NA(x, x;) and A(yi, x).
On the other hand, by (13), we have NA(a(x), a(x;)) and, hence, NA(yi, o(r)).
From A(yr, x;) we infer (because a(yr):y, and s is a coloring) the relation
l(yt,a(x;)), which is a contradiction.

Assume, secondly, lhat zi:!i. This means that we have both NA(yi,x;)
and A(x,x). On the other hand, (13) gives us N,4(a(y),o(r)) and, hence,

NA(yi,ry(x;)). But now A(x,x) yields the relation A(u(x), c1x;)), from which
we obtain the contradictory relation A(),i, c(x)). This concludes the proof of
Lemma 5.1.

Lemma 5.1 is also a generalization of the old result of [2], dealing with the
customary notion of coloring. The use of the relation : introduced above simplifles
also to some extent the proof given in [5] for the result of [2].

According to Lemma 5.1, an inflnite graph H is in 9-(G) if and only if ail
finite subgraphs of H are in 9(G). Since clearly the equation 9-(C1:g*1lJ1
implies the equation 9(G):9111), we obtain now aiso Theorem 5.

We have considered in this paper only undirected graphs. Color-families can

be defin,:d for digraphs as well. (This is even more closely linked with language
theory, because undirected graphs correspond to subsets of the free commutative
monoid.)

We assume that the digraphs considered have neither loops nor multiple arrows.
On the other hand, if x and J, are two vertices of a digraph, it is possible that the
digraph has an arrow from x to y and also an arrow from y to x.

We say that a digraph ä (flnite or infinite) is colorable according to a finite
digraph G if there is a mapping

q: V(H) *v(G)

such that, whenever there is an arrow from a vertex x to a vertex y in H, then there
is also an arrow from rp(x) to q(y) in G.

The families 9(G) and g-(G) are defined in the same way as before. Most
of the results concerning graphs carry over to digraphs. However, nontrivial examples
of predecessors can be given and, as regards density in general, the situation is more
complicated for digraphs. The reader is referred to [11]-[3] for further details.

In particular, Lemma 5.1 and Theorem 5 can be extended to concern digraphs.
This will be summarized in the following theorem. We omit the proof because it
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is analogous to the proofs given above. In particular, observe that the relation :
(modifled to digraphs in an obvious fashion) will still be an equivalence.

Theorem 6. Assume that G is afinite digraph and that H is an infinite digraph

such that atl finite subdigraphs of H are in 9(G). Then also H itself is in 9*(G).
For all finite digraphs G and H,

5. Concluding remarks. We mention here briefly some topics and problems

not discussed more closely in this paper.

Very little is known about color-families of particular graphs, such as the family

9(C). Although, by Theorem l, the membership problem is always decidable,

the decision is in most cases hard. For instance, the membership in 9(Cr) is an

NP-complete problem (I. H. Sudborough, personal communication).

As regards Theorems and Lemma5.l, the consideration of subgraphs of
some bounded size is not sufficient. More specifically, one can establish the follow-

ing result. For every k>2 and eyery n, there is a minimal graph G with k vertices

and an infinite graph H such that all subgraphs of 11 with at most n vertices are

colorable according to G but .F1 itself is not colorable according to G.

In our considerations the "master graph" has always been finite, i.e., we have

considered coloring according to a flnite graph G only. The deflnitions can be extended

in an obvious fashion to the case where G is inflnite. Then there will be also "uni-
versal" graphs, for instance K-. This is an immediate consequence of the fact

that 9(K*) (resp. 9*(K-)) contains all flnite (resp. denumerably infinite) graphs.

Perhaps the most interesting area of open problems will be the study of sub-

collections of color-families. The customary notion of coloring deals only with

families 9(K), where K; is a complete graph. We have considered in this paper

families 9(G), where G is an arbitrary finite graph (or, equivalently, an arbitrary
minimal graph).

Such a natural subcollection is obtained by considering o'master graphs" G
with a transitive automorphism group. This means that the coloring according to

such a G is symmetric inthe following sense. Assumethat H="G, and that x in
V(H) and y in V(G) are arbitrary. Then there is a coloring E of H according to G

such that q(x):y.
Clearly, all graphs Cr^*rand Kihave this property, whereas the graph DZi"*i,

discussed in Lemma 4.3 does not, in general, have this property. Clearly, graphs

symmetric in this sense are k-reg:ulat for some k, whereas the converse is not true.

We hope to return in a forthcoming paper to the characterization of this subcollec-

tion of color-families.
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