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A QUASICONFORMAL GROUP NOT ISOMORPHIC
TO A VTÖBIUS GROUP

PEKKA TUKIA

1. Introduction. We describe here an open (r-l)-cell in R", n=3, which can
be used to construct counterexamples to several natural conjectures in quasicon-
formal mapping theory. The most important of these provides a negative answer
to a question raised by F. W. Gehring and B. P. Palka in [6, p. 197]. Their ques-
tion, slightly simplified, is whether every uniformly quasiconformal group on Ro
is of the formfGf-a where/is a quasiconformal homeomorphism of R, and G is a
group of Möbius transformations on R". our Example I shows that this is not
always the case. We present our examples in Section 5.

The (n - l)-cell 
^S 

to be exhibited is of the form,IXR'-2 where "Ic -R2 is a locally
non-rectifiable arc such that -Iu1-) is a quasicircle, i.e. ,Iu{-}:g(Sr) for some
quasiconformal homeomorphism of R2. Thus the pathology of ,s derives from the
factthat it is highly anisotropic. In some directions it is rectifiable, in other directions
it is not. This precludes the possibility that s is the image of an (n- l)-plane under
a quasiconformal self-mapping of Ä' (cf. Theorem 5).

Nevertheless, there is a group Go of homeomorphisms of R' which acts transi-
tively on ,S and which is uniformly Lipschitz (and hence uniformly quasiconformal).
One can show that, if å is a homeomorphism of R' such that hGoh-r is a group of
Möbius transformations, then å(,S) is necessarily an (n-l)-plane. In view of the
preceding remark, such a map cannot be quasiconfcrmal, although there are non-
quasiconformal h for which hGoh-l is a Möbius group. Furthermore, there is a
uniformly quasiconformal group Gr=Go acting transitively on the complementary
domains of ,S such that G, is not isomorphic as a topological group to any group
of Möbius transformations on some R', nz=O.

In contrast, every uniformly quasiconformal group on ,R2 is a quasiconformal
conjugate of some Möbius group [8, l0]. This is due to the fact that, although for
each countable quasiconformal group G on R'one can find a G-invariant conformal
structure on R', it is only for R2 that such a structure can always be realized
as a pull-back of the standard conformal structure of R2.

I wish to acknowledge that it was S. Rickman who flrst discovered that ^Su {-}
is not a quasiconformal sphere (for n:3). The proof of this fact which we present
here (slightly generalized) is due to J. väisälä. I wish to thank them for giving
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me this example and this proof. I am also indebted for the referee for his detailed

report.
Throughout this paper n>3 is a fixed integer.

2. Some definitions. Let X and Y be metric spaces. Then an embedding f: X-Y
is said tobe bilipschitz (or L-bilipschitz) if, for some I=1,
(1) lx-yllL = lf@)-f(y)l = Llx-Yl
for all x,y(X, where the notation la-bl is used for the distance between points

a and b. It is said to be quasisymmetric (or H-quasisymmetric) if there is ä>1
such that

I J @) -f(x)l = H 
I f(b)-/(x) i

for all a,b,x€X satisfying la-xl=lb-xl. (Cf. [12], where the terminology

weakly quasisymmetric was used for an embedding satisfying (2).)

Let (JcR", (JlR", be open and connected. Then the quasihyperbolic metric

q of U is defined by the metric density s(x):lld(x,0U) (where d(x,0U) is the

euclide an distance of x from the boundary 0U of U), cf . [6, Section 2]. If U: Hn:
{(rr, ..., x,)(R"i n,=0} is then-dimensional hyperbolic space, then the quasihyper-

bolic metric of ,Ff is just the hyperbolic metric p of H'. If t/c Ä2 and åIl u {-}
consists of more than three points, then t/ has a unique Riemannian structure of
constant currature -1 such that the ccnformal structure of t/ in this metric is

the same as the conformal structure as a subset of R2 : the complex plane. The

metric of t/dcfined by this structure isthe hyperbolic melric p of U.If Uis simply

connected there is the following relation between the metrics q and and p of U
q(x, y)12 = p(x, ]') = 2q(x, y)

for all x,y(U, cf. Ahlfors ll, p.791.
If f, is a metric space and G is a group of homeomorphisms of X, we say that

X is a Lipschitz group on X if there is Z > I such that every 8( G is Z-bilipschitz.

If [/cR':.R'r{-} is open, if G is a group of homeomorphisms of Uand if there

is K>l such that every g€G is K-quasiconformal, G is a quasiconformal group

(cn U). If every 8(G is a Möbius transformation, G is a Möbius group. These

groups are also topological groups in the topolo-uy of uniform convergence on

compact subsets.

We say that a k-manifold McR" is cprusicodormally locally flat if for every

x(M there is a neighbourhood t/ of x in R" and a quasiconformal embedding

f: U-R" such that f(M)cRk. A set XcR" is a k-quasisphere if X:f6\ foL^

some quasiconformal /: R'*R".
We let 1:[0, 1] be the unit interval. In a metric space X, B(x,r) is the closed

ball with center x and radius r. If X:Re, we also write -Bk(x, r) for B(x,r).
The unit sphere of Rk is Sk-l:|Bk(x, 1) where 0A is the boundary of a set l.
The euclidean distances of a point x or a set -B from A are d(x, A) and d(8, A);
similar notations are used for other metrics.
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Figure I

3. Construction of the groups. We first define the arc "I mentioned in the Intro-
duction. Consider the arcs J;,J;,,... as in Figure 1. These converge to a well-

known non-rectifiable quasiconformal arc .r'. Observe that J'l3 is a subarc of "I'
and likewise J' is a subarc of 3J'. Thus if we set

J- U
i> c

3'(J'u (- J'))

we obtain an (open) arc "I with the property lhat Jv {-} is a quasicircle.

There is a natural map f: 4*"r, defined as follows. Each arc "I/ consists of
4e segments Ji, i:1,...,4r, of equal length. Let these be in order on ,Ii with
O|JL. Let lu,:l(i-l)4-k,i4-kf and let fi: I*Ji be the map such that f;{Ik):
Ji, andthat fill* is affine. Then the mapsfo converge to a map f': I-J' sttch

that f'(4ix7:3if'lx) if i>0 and 0=.r<4i.r<1. We define/by

151

if x€ [0,
that if

(4)

f(+ 4tx1 : *3if '(x)

ll and i =0. Then/is a homeomorphism -R*./ and there is M>l such

a:1og 3llog 4 (llz:the Hausdorff dimension of "I),

lx- )'l'lM =lf@)-f(y)l = Mlx-yl"

for all x,y€R. To see the validity of (4), observe first that if x and y are the end-

points of some interval 1*,:[(i - l)4-k,i|-kf, i,k(2, then (4) is true with M:1.
If x,y are arbitrary, \ve can compare lf@)-fj)l to sorne distances lf@')-f(y)l
where x' and y' are the endpoints of a suitable interval Io,. In this manner we flnd
M:-l satisfying (a) for all .t,y(JR.

It is a consequence of (4) lhatf is quasisymmetric. It satisfies (2) in the euclidean

metric with H:M2. Then, by [l], we can extend f to a quasiconformal homeo-

morphism F' of R2. It follows that for some M'>l

(5) lul'lM' = d(F'(u,u), J') = M'1u1"

for all u,uQR. This can be seen with the aid of (4), since quasiconformal rnaps of
Rz are quasisymmetric (by U4,2.41 or by a normal family argument). Indeed, if F'
is fl-quasisymmetric, then d(F'(u, u), J)=lF'(u, u)-f(u)l=Hlf(u'lu)-fQil=
HMlul". On the other hand, let y--f(x)€J be a point such that d(F'(u,o),J):
lF'(u,u)-yl. Then l(rz, u)-xl>l(u,u)-ul arrdth:us d(F'(u,u),J):lF'(u,u)-yl>
lF'(u,u)-f(u)llH>lf(u-lo)-f(u)llHl=lul.lMHz. Thus (5) is true with M':MHz.

A
--__/ 

\---
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We will require that F' be chosen in such a way that the map f" is bilipschitz
in the quasihyperbolic metric when restricted to a component C of A2\lR. Thus
we require that

q(x, )»lL = q(F'(x), F'(y)) = Lqt*,y)

for some Z>1 wheneyer x)y€C, where the notation 4 is used for the quasihyper-
holic metric in both C and F'(C). This follows since in Ull F'was constructed as

a composition F'lC:gh where g: C*F'(C) is conformal and h: C*C is the
Beurling-Ahlfors extension of a quasisymmetric map of the real line. Now by
[, p. 731, å is bilipschitz in the hyperbolic metric p:q of C and the map g is an
isometry in the hyperbolic metrics of C and F'(C). Since the metrics q and p of
F'(C) are bilipschitz equivalent by (3), (6) follows.

Let now G[berhe group consisting of all translations of Ä2 parallel to the real
axis, that is, every S€Gi is of the form x+x+a for some a(R. Lel Gi be the
group generated by G[ and by the maps gi: R2-R2, Ci@):ix, for l.>0. Let
G'i:F'G[F'-I and Gi:F'GiF'-l. Then we have

Lemma l. (a) The group G'{ is a Lipschitz group of R2 in the euclidean ruetric.
(b) The group G'i is a quasiconformal group of R2 such that if the action of Gi

is restricted to a component C' o/ R'\"f, then Gi is a Lipschitz group in the quasi-

hyperbolic metric of C'.

Proof of (a). Wefirstshowthatthereis Zo>1 suchthatif g(G';, if x€rR2\"r
and if g is differentiable at x, then the differential Dg(x) of g at x satisfies

tlLo= l(os(r)) = lDs(x)l = Lo

where l(A):inf1,1:rlA(r)1, lll:sup,,1:rll(rz)l for a linear map A of R2. Let
Cobethecomponentof rR\R suchthat x(F'(C). Now g:F'g'F'-, forsome
C'eG;. Here g' is an isometry in the quasihyperbolic metric q:p of Co. Then (6)

implies that g is l2-bilipschitz in the quasihyperbolic metric q of F'(C). Observe
that x and g(x) are in a set A": F'(R:X{u}) for some u 10. Thus, by (5), llM'z=
d(s@),J)ld(x,J)=14'2. It follows that (7) is true with Lo:1274'2.

Now the map g is quasiconformal. Thus g and g-1 are ACL and a.e. differen-
tiable. Since we now know that (7) is true a.e. outside "I and hence a.e. in R2, g must
be Zo-bilipschitz.

Case (b) is obvious by (6) and by the quasiconformality of F'.
We now <iefine maps h"and §^of R'for a€Rn and ,1>0 by

Eo(z): z*a,

S^k, » : (),x, )'n y)

if z(R", (x, y)€rR'x,Rt-2, with or:log 3llog 4 as in (4). Next we define the groups

(7)
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Gn and G, of affine maps of R' by

Go: {hr: a: (ar,Oras, ...,ar), ai(R) and

Gr : the group generated by Go and the maps §1, )' > 0.

Then every g€G, is of the form g(x, y):()"xla,)"'y*b), (r,y)€R'zXR,-z, for
some ,t>0, a:(a',0)€Å2 and b€Rn-2.

Let then F:F'Xid: lRo*.R' and set

(8) ho: FfroF-r, gt: FEtF-r,

Go: FGoF-', Gr- FGrF-r.

Finally we observe the following commutativity relations between the maps å,
and 91:
(9) hn: gthogll for a : (at,0, ..., 0), but

hx"6: gthtgt"L for b :(0,0,bB,...,bn)

which are immediate consequences of the definitions. We have

Theorem 2. (a) The group Gois a Lipschitz group of Rn inthe euclidean metric
acting transitiuely on,S:,IXR'-2.

(b) The group G, is a quasiconformal group of R' acting transitioely on S and

on each component o/ .R'\S. If the action of G, is restricted to a component C of
,R\,S, then G1 is a Lipschitz group of C in the quasihyperbolic metric.

Proof. Case (a) is obvious by Lemma I (a) and by the definition of G0.

We then prove (b). Let C be as indicated. Obviously G, acts transitively on S

and C. We show that G, is a Lipschitz group of C in the quasihyperbolic metric.
By (9), every g€G1 can be represented in the form E:hoqt" for some ,t=0 and

a:(at,O,as,...,a,)(Rn. Thus it suffices to show that the maps h,lC and gTlC

are uniformly bilipschitz in the quasihyperbolic metric. For the maps å,lC this
is clear by case (a) since, by (5), d(x,S)lM'=d(h"(x),5)=M'd(x,S) for all
x€C and q:(ar,O,as, ...,a,)(R,.

We consider next the maps gr.. Let x€C, x:(x', y')(RzXR"-z. Then gt(x):
(si@),)"oy') where gi@):F'().F'-'(x')). Let dr:d(x, S):d(x',J) and dr:
d(s^(*), S):d(si@),.r)' Let x':F'(u,u), u,u(R. Then, by (5), lrtl'lM'=dr=
lul" M' and llul"l M' =dz=lAol' M'. Thus

( 10)
^'dll 

M '2 = dr s 1" dr.M'2.

Now C:C'xRn'z for a component C' of R'z\"I. By Lemma I (b), gf is

Z-bilipschitz in the quasihyperbolic metric of C' for some Z not depending on 2.

Thus, in view of (10), if gf is differentiable at x,

(11) 7"lLM',Z = l(Osi(r')) =lDs'i@)l= i.LM'2
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Let hi: (-z*N-z be the map y+[dy. Then l(»hi0)):lOhib)l:,1o. Since

gt"(x',y'):(Si@), hij')), this fact and (11) imply

^"lLM'2 
< l(Ds^(r)) =lDst (x)l = A"LM'2(12)

(1 3)

Now gxlC is in any case locally bilipschitz by (8) and Lemma 1 (b). Then (12)

and (10) imply that gtlC is I'-bilipschitz in the quasihyperbolic metric for some

L' not depending on ,1.

It follows that G, is also a quasiconformal group of C and hence of Å'\,S,
since C was an arbitrary component of IP\S. Now the n-measure of 

^S 
is zero

and it is easy to verify that every g(Gr is ACL. Then the analytic definition of
quasiconformality ([15, 34.6]) implies that G, is a quasiconformal group of .it'.

4. Products of arcs. Now we prove that S is not quasiconformally locally
flat. In the following two lemmas we have generalized an argument originally due

to J. Väisälä.
We fix now a metric arc A, i.e. A is a metric space homeomorphic to a closed

interval. The distance of two points x,y(A is denoted by lx-yl.

Lemma 3. Let l(A)<(0,-f be the length of A. Let M,ö>0. Then there is a
subdiuision of A into subarcs Ar, ..., A, by successiue points xo, ...,x,(A such

that, setting ).i:lxi-xi.11, we haue

(a) lr*... * A, > min(M, l(A) -ll M),

(b) ll2 = )",1)", = 2, i, j = r, and

(c) Ai= ö, i = r.

Proof. In any case there is a subdivisiofl Ar,...,A, for which (a) is true.
3s1 q:(ll2) min (ä, 1r, ...,,1). Then Ai=2a. We subdivide each ,4, as follows.
Let y, be the last point on ,4; (from x;-r) which is on ,B(x,-1, a). If lyr-x;l<2u
we stop. Otherwise, let yrbe the last point of A, on B(yr,a). Continuing in this
manner we get a new subdivision (Jr;-r:J'o,J'l ,..., yx:xi) of l, such that each

distance lyi-yi-tl:d exc€Pt possibly the last one for which a=lyo-ro-rl<2u.
The new subdivision again satisfies (a), as well as (b) and (c).

Lemma 4. Let A be a non-rectiJiable metric arc and let k>1. Then AXIb:
AX[O, l]k cannotbeembedded into Rk+7 by a quasisl:mmetric map when the metric
of AXIb is giuen by

- (lx - x'l' * ll, - y/12)1t2.

H-quasisymmetric. We show that this leads

for a(A. Then every hll, is also ä-quasi-
to Io, there is by U2, 2.15 and 2.11 a map

l@, y) - (x' , y')l

Proof. Let h: AXIk -n Rk+r be

to a contradietion. Set f o: {a}X tk
symmetric and, since Io is isometric
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q': (0, -)*(0, -) such that

(r4) lh(x)-h(z)l = 4'@)lh(Y)-h(,)l

whenever x, y, z(Io for some a€A and lx - zl> ply - zl.

Choose now M>-O and let ö:112. Choose the subdivision A1, ..., A, of

,4 bypoints xo, ...,x, asin Lemma 2. Setting ),:max )"r, we have Ä12=)"i=)"=ll2
for all i. Next we subdivide 1 by points !o:0,!t, ...,!":1 into intervals Bi:
Ui-r, lif of equal length lt:lls such that )"=p=2)"=1. If v:(.lr , ...,ix), ii€s,
we set Bu:BirX...XBiu.Letzr:(yi-r*y)12and z,:(z3r,...,Zju)(2, is the center

of .8,).

Set now Qiu:int AixB,. Choose zi€A, such lhat lzi-xrl:lil2:lxi-xt-rll2
and set 2,,:(z!,2). Then, if z(|Q,n, lr-r,nl>min(pl2,A1l2):1,12>114. Let

ain:(x;, zn). Then larn-rrnl:lxr-zil:),r12 and thus lz-z*l=lai,-ziul for all

z(\Q*. Hence lh(z)-h(z)l>lh(zi)-h(a)llH. Choose now y'rQlz1,, liJ such

that lyi,-ri,l:)"i|2:lz,n-a,,1 and let bi,:(xi,y'»,yi,,..-,yt), b,n:
(xr, !ir, !1r, ..., !1u) and bir:(xi, !ir-r, )'ir,...,./7^). Then

lh(r)-h(r)l =- lh(r,,)-h(r,,)llH = lh(bi,,)- h(a)llH'

for all z€\Qi and for all i, v. Since lbi"-a,"|:{L,lp)lby-ainl>lbin-a;"114 and

since laiu - b,,l :lb?" - b,"l 12, (14) implies

lh (bi) - h (a,")l = rt' 0 I 4)lh (b,") - h (a,")l = ry' (l I 4)rt' (l 12) §,"

where 8,,:lh(bi)-h(b)1. It follows by (15) and (16) that for every z(|Q,",

lh(z)-h(2,")l=-c§i, where g:4'Ol2)4'(ll4)lH2 : a constant' Then h(Q)=
,nt 3x+r(h(zi), c§in) implying that the (k*l)-measute m(h(Q)) satisfies

(t7)

for a constant c

Set now §:inf {lh(x,O,y)-h(x,1,y:)l: x(A, yelk-t\>O. Then for every i
and v':(.i2,...,i*) we have §=Zl=rfi;,,. Now the Hölder inequality and (17)

implythat §o*r=to Zi §lil=_'to Z, m(n19,r,,))/c'. Summingover iand,,t',wegetnow

rsk-t [Jk+ 
1 = sk z

irv
m(h(Q))lr' < sk *(h{Ax lk))lc'

Thus r/s=c" : a constant depending only on å but not onM.Ontheotherhand,
lls:p>).>),,. Thus rlsZ),Äi>M. This is a contradiction since we can choose

M=c",

Remark. In the above proof we have used only the following properties of

the product metric (13): l(x,y)-(x',/')l=min (lx-x'l,ly-y'D,l (x,1')-(x',y)l:
lx-x'l and l@,y)-(*,y)l:ly-y'1. Since these are also true for several other

natural product metrics, Lemma 4 is valid for such metrics, as well.

m(h(0,")) > c'pff'
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Then we have, as flrst observed by S. Rickman (if n:3),
Theorem 5. The

locally flat.
(n - l)-cell ,S - JX Rn-z c. R" /s not quasiconformally

Proof. If x€ S, if U is a neighbourhood of x in R" and if h: (Jt R" is a quasi-
conformal embedding, then, by U4,2.41, there is a smaller neighbourhood V of x
such that hlY is quasisymmetric. Since z>3, Lemma4 implies that h(VnS)
cannot be contained in an (n- l)-plane of R'. The theorem follows.

5. The examples. Before presenting the examples mentioned in the Introduc-
tion, we prove the following

Lemma 6. Let m>l and k>2. Let G be a Möbius group on R^ which is
isomorphic to Rk as a topological group. Then there is a€R* such that euery g(G
fixesa. If * isfi.xedbyeaery g€G, thereisak-plane VcR^ suchthat,restricted
to V, G octs as the group of translations of V.

Proof. lf 8€G is elliptic, then the subgroup generated by g is contained in
a compact group. Thus {g'},=o contains elements arbitrarily near the identity.
we conclude that no g€G can be elliptic. Thus every s€c\{id} fixes exactry
one or two points of R'. It is then easy to see that g,g'(G\{id} can commute
only if they have the same set of fixed points. we conclude that such a point a€R'
exists, as claimed. If there is also another point å fixed by every g€G, then onc
sees easily that either G is isomorphic to R or that G contains elliptic elements.
Both cases are impossible.

we have shown that every s€o\{id} fixes exactly one point, the point a,
and hence g is parabolic. we assume now that a:-. Then lR'is G-invariant and
we can regard G asa group of R'. If C€G\{id}, gis of the form

s@) - p(x-xo)* a*xo;
x(R^, for some a, xn(R* and for some orthogonal map fr of R- such that fr(a):a.

To conclude the proof of the lemma, we apply the Bieberbach theorems. Let
l-cG be a discrete group such that Gll is a ft-torus, i.e. homeomorphic to (,sl)t.
Then the Bieberbach theorems imply that l- has a normal subgroup r* of finite
index for which there is a.l-*-invariant subplane vcR^ such that vlr* is com-
pact (Wolf [16, 3.2.8]). Choose z(V. Since both Gzlf* and, Vlf* are compact
and VnGz=l*2, there is M>0 such that

(18)

( 1e) d(x,V) = M and d(y, Gz) = M
for every x€Gz and y(V.

Let now 8€i- be arbitrary. Since g(Gz):Gz, (19) implies that g(V) must
be parallel to V andthat d(V,SV))=ZA. fi V*g(V), then (18) implies that
for some power gu of g, d(V,gk(I/))=2M. Thus Z is .l--invariant. Since Vlf
is compact, 116,3.2.91implies that glv is a translation. since obviously every g(G
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is contained in such a discrete subgroup l-, we can conclude that gl Z is a trans-

lation for every g€G. Now G is isomorphic to Rk and Vlf is compact. Con-

sequently V must be a k-plane such that G, restricted to V, is the group of trans-

lations of Z.

In the following examples the groups Go, Go, Gr. Gr, the non-quasiconformal
homeomorphism F:F'Xid of Ä', and the (r-|)-cell S:JXR"-z are as in
Section 3.

Example l. Quasiconformal groups. Our first example answers the question
posed by Gehring and Palka 16, p. 1971.

The group Gn is a Lipschitz group of Ro such that for no quasiconformal homeo-

morphism h of R" is the conjugation hGoh-r a Möbius group (although Go:f -16op
is a group of translations of R").

The group G1 is a quasiconformal group of R' which is not isomorphic as a top-

ological group to any Möbius group on any R*, vn>O (although Gr:p-LG1F is a
non-uniformly quasiconform.al group of ffine maps of R").

To see the validity of these claims, suppose flrstthat G':hGoh-L is a Möbius
group, where å is a homeomorphism of Å'. Since G' is clearly isomorphic as a top-
ological group to 7q'-1, Leffirla6 implies that the orbits G'z are (r-l)-planes
of Ä'. Thus, in particular, å(,S) is an (n-l)-plane. By Theorem 5, S is not quasi-

conformally locally flat and, hence, h cannot be quasiconformal.
Next let G be a Möbius group on some R' and assume that there is an iso-

morphism of topological groups tp: Gr*Q. By Lemma 6 we can suppose that

E(Go) is a Möbius group of Ä'. Lemma6 also implies that there is an (n -1)-
plane YcR- such that e(G), restricted to V, is the group of translations of Z.

Fix now )>0, ).* 1 and let g, be as in (8). LeL g:E7rr). Since Go is a nor-
mal subgroup of Gr, ghe-l€E(Go) for every heE(Go). Hence g must fix -. We
let hieq(G)) c:u-I) for some u,uQV, be the map for which h'"lZ is the trans-
lation x*x*c. The map glÄ' is a euclidean similarity of R'. Thus, given hi(.rO(G),
ghl"g-':hi, with

(20) lc'l : ); lcl

for some ,t'>0 depending only on g but not on c.

Now an isomorphism (Ak, {)*(JRo, +) of topological groups is necessarily

a linear map. Then (20) combined with (9) gives a contradiction.

Example 2. Quasiconformal reflections. It is well-known that quasicircles in
R2 can be characterized by the fact that they are topological circles which admit
quasiconformal reflections. That is, if C is such a circle, there is a quasiconformal
map r of R2 interchanging the components of R'\C with ror:id and rlC:id.
\\/e have by Theorem 5:
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The sphere Su{-} qdmits a quasiconfarmal reflection but is not the image oJ

the (n-l)-sphere Sn-L under a quasiconformal map of R" although it is of this form
for a homeomorphism of Rn.

Indeed, such a reflection can be obtained as a product rlR':roXid, r(-):-,
where ro is a quasiconformal reflection of -I in Å2 which is bilipschitz in the euclidean

metric. There are always such reflections, cf. Ahlfors [, p. 80]. Then rlR' is even

bilipschitz in the euclidean metric which implies that r is bilipschitz in the spherical

metric. The last observation is due to J. Väisälä.

Example 3. Quasiconformal homogeneity. In .R2 one can characterize quasi-

circles by quasiconformal homogeneity 12,3,41; in addition J. Sarvas (unpublished)
has shown that if a Jordan domain DcRz is homogeneous with respect to a family
of uniformly quasiconformal homeomorphisms of R2, then åD is a quasicircle.

It would appear that in Än such characterizations fail since we have the following
homogeneity properties for ,S and its complementary dcmains:

The group G, is a Lipschitz group of Rn acting transitiuely on the non-quasicon'

formally flat (n-l)-cell S.

Tlte group G, is a quasiconformal group of R" acting transitiuely on S and its
complementary domains, which are hameomorpliic to the open n-ball but not by a
quasiconformal homeomorphism. In addition, restricted to a complementary domain

of S, G, is a Lipscl,itz group in the quasihyperbolic metric.

These claims follow by Theorems2 and 5. We must only verify that, if C is a
cornphrnentary domain of 

^§, 
then C is not quasiconformally equivalent with the

open r-ball B of R", although it is clearly homeomorphic to it. Indeed, if/were
such a quasiconformal homeomorphism, we could first extend / to CuSu{-}
and then, by the reflection of the preceding example, to the whole R'. Then Theorern 5

gives a contradiction.
Observe that the complementary domains of ,S are uniform domains (cf. Mar-

tio-sarvas U,2.l2l) which follows easily from [7, 2.33] and the fact that D X Äkc R'
is uniform, whenever DcR"-k is unbounded and uniform. Thus the complementary
domains of ,S are also examples of uniform Jordan domains in Ä' not quasicon-

formally equivalent to the open n-ball. In fact, the question of the existence of
such domains was the original motivation for the construction of S by S. Rickman.

However, I do not know whether S:,Su{-} is quasiconformally homogene-

ous. It is not Lipschitz homogeneous (in the spherical metric) since - has arbitrarily
small neighbourhoods U such that every pair x, y€U can be joined by a rectiflable
path in t/. This is not true of other points of S. In view of this fact I am inclined
to think that S is not quasiconformally homogeneous. Nor do I know other examples

of quasiconformally homogeneous spheres in R' which are not quasispheres. This
is due to the fact that in order to apply our method, S'-l would have to be the product
of a l-manifold and an (n- l)-manifold, which is not the case.



A quasiconformal group not isomorphic to a Möbius group

To get an example of a Lipschitz homogeneous compact manifold in R3, rvc

can take a torus which is homeomorphic to §1X §1. Indeed, we can embed a torus

I in R3 in such a way that, although not locally quasiconformally flat, there is a
Lipschitz group on R3 (in the spherical metric) which acts transitively on 7. In this

case, if Z is the xz-plane, ZnI consists of two nonrectifiable quasicircles Cr and

Cr, symmetric with respect to the z-axis. The torus Z is the trajectory of these circles

as we turn V round the z-axis. The quasicircles C, and C, are constructed like the

arc J in Section 3. Details are as above. Observe that the homeomorphism F' of
R2 such that F'(R):J can be constructed in such a way that F':id outside a

suitable neighbourhood of R in R2 by the LIP annulus theorem, cf. e.g. U3, 3.41.

Now there is a homeomorphism å of RB such that if G is the group described

above, then hGh-t:G'XG" where G' is the group cf rotations of RB fixing the

z-axis and G" is the group of rotations fixing 51. It is a group of isometries of RB

in the spherical metric.
Observe that now G is isomorphic to ,SlX,Sl as a topological group. -Ihus

it contains a one-generator subgroup G which is dense in G. Then G is an example

of a one-generator Lipschitz group which cannot be conjugated by a quasiconforinal

map into a Möbius group.
For a discussion of quasiconformally homogeneous domains of rR' see [6].

Example 4. Quasisymmetric manifulds. A quasisymmetric manifold is a metric

space which is an r-manifold such that every x(M has a neighbourhood which

can be embedded in Ä'by a quasisymmetric mapping. Since the map p'-rlJ: J*R
is quasisymmetric by U4, 2.41, we have by Theorem 5:

There are quasisymmetric manifulds lulr(:11 and Mz(:R"-') such that

M.XM,(: S) is not a quasisymmetric manfold in the product metric giaen by (13).

We remark that this remains true even if one replaces our definition of a quasi-

symmetric mapping by the stronger definition of ft2, l.ll. This definition is in the

prcsent context more appropriate since one now gets immediately an atlas tvhose

maps are quasisymmetric. This is not clear if one uses the definition in the present

paper.

Example 5. Quasiconformal spheres. The (n -l)-cell S is also a counter-

example to Conjecture3 in my paper 19, p.7ll where I attempted to characterize

quasiconformal ft-spheres in R' by means of a condition resembling the characteriza-

tion of quasiconformal homeomorphisms of A' by means of compact families of
mappings, ([5, Theorem 18]). This characterization generalizes to quasisymmetric

embeddings ll2, 3.211. In the present conjecture compact families of mappings are

replaced by compact families whose elements are subsets of R'. However, it is easy

to see that if in Conjecture3 C:,S, then every set X€clfi" is of the form g(-R')

for some homeomorphism of .R', thus disproving the conjecture.

Ls9



160 Pprra Turra

References

[1] Anrrons, L. V.: Lectures on quasiconformal mappings. - D. Van Nostrand Company Inc.,,
Princeton, New Jersey-Toronto-New York-London, 1966.

[2] BrnvrNs, D. K., and B. P. Par,r.l: A characteization of quasicircles. - Proc. Amer. Math.
Soc. 50, 1975, 328-331,.

[3] BnncnNrn,8., and T. Enr.a.ru.r: On topologically and quasiconformally homogeneous con-
tinua. - Ann. Acad. Sci. Fenn. Ser. A I Math. 4, 197811979,207-J:08.

[4] Enr,a.rra,l, T.: Quasiconformally homogeneous curves. - Michigan Math. J. 24, 1977,157-1.59.

[5] G*rmNc, F. W.: Rings and quasiconformal mappings in space. - Trans. Amer. Math. Soc.

103, 1962, 3s3-393.
[6] GnnnrNc, F. W., and B. P. Pnlra: Quasiconformally homogeneous domains. - J. Analyse

Math. 30, 1976, 172-199.
[7] Manrro, O., and J. Snnvns: Injectivity theorems in plane and space. - Ann. Acad. Sci. Fenn.

Ser. A I Math. 4, 197811979,383--401.

[8] Surr,IvaN, D.: On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic
motions. - Riemann surfaces and related topics: p:oceedings of the 1978 Stony
Brook conference. edited by I.Kra and B.Maskit, Annals of Mathematics Studies 97,

Princeton University Press, Princeton, New Jersey, 1981, 465-496.
[9] Turu, P,: The planar Schönflies theorem for Lipschitz maps. - Ann. Acad. Sci. Fenn. Ser.

A I Math.5, 1980, 49J2.
U0] Turlc., P.: On two-dimensional quasiconformal groups. - Ibid. 5, 1980,73-78.
[11] Turrn, P.: Extension of quasisymmetric and Lipschitz embeddings of the real line into the

plane. - Ibid. 6, 1981,89-94.
[12] TuxI.r,, P., and J, VÄrsÄr,Ä: Quasisymmetric embeddings of metric spaces. - Ibid. 5, 1980,

97-114.
[3] VÄnÄrÄ, J.: Piecewise linear approximation of lipeomorphisms. - Ibid. 3, 1977,377-383.
[14] VÄrsÄrÄ, J.: Quasisymmetric embeddings in euclidean spaces. - Trans. Amer. Math. Soc.

264, 1981, 191-204.
[15] V&sÄrÄ, J.: Lectures on z-dimensional quasiconformal mappings. - Lecture Notes in Mathe-

matics 229, Springer-Verlag, Berlin-Heidelberg-New York, 1 97 1.

[16] Worr, J. A.: Spaces ofconstant curvature. - Publish or Perish, Inc.. Berkeley, 1977.

University of Helsinki
Department of Mathematics
SF-00100 Helsinki l0
Finland

Received 24 November 1980


