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A QUASICONFORMAL GROUP NOT ISOMORPHIC
TO A MOBIUS GROUP

PEKKA TUKIA

1. Introduction. We describe here an open (n—1)-cell in R", n=3, which can
be used to construct counterexamples to several natural conjectures in quasicon-
formal mapping theory. The most important of these provides a negative answer
to a question raised by F. W. Gehring and B. P. Palka in [6, p. 197]. Their ques-
tion, slightly simplified, is whether every uniformly quasiconformal group on R"
is of the form fGf~! where fis a quasiconformal homeomorphism of R" and G is a
group of Mobius transformations on R". Our Example 1 shows that this is not
always the case. We present our examples in Section 5.

The (n—1)-cell S to be exhibited is of the form JX R"~2 where JC R? is a locally
non-rectifiable arc such that Ju{e} is a quasicircle, i.e. Ju{=}=g(S?) for some
quasiconformal homeomorphism of R2. Thus the pathology of S derives from the
fact that it is highly anisotropic. In some directions it is rectifiable, in other directions
it is not. This precludes the possibility that .S is the image of an (n— 1)-plane under
a quasiconformal self-mapping of R" (cf. Theorem 5).

Nevertheless, there is a group G, of homeomorphisms of R" which acts transi-
tively on S and which is uniformly Lipschitz (and hence uniformly quasiconformal).
One can show that, if / is a homeomorphism of R” such that 2Gyh~* is a group of
Moébius transformations, then /(S) is necessarily an (n—1)-plane. In view of the
preceding remark, such a map cannot be quasiconfcrmal, although there are non-
quasiconformal % for which AG,A~" is a Mdbius group. Furthermore, there is a
uniformly quasiconformal group G;> G, acting transitively on the complementary
domains of S such that G, is not isomorphic as a topological group to any group
of Mébius transformations on some R™, m=0.

In contrast, every uniformly quasiconformal group on R? is a quasiconformal
conjugate of some Mdbius group [8, 10]. This is due to the fact that, although for
each countable quasiconformal group G on R" one can find a G-invariant conformal
structure on R”, it is only for R? that such a structure can always be realized
as a pull-back of the standard conformal structure of R2.

I wish to acknowledge that it was S. Rickman who first discovered that S {e}
is not a quasiconformal sphere (for n=3). The proof of this fact which we present
here (slightly generalized) is due to J. Viisila. I wish to thank them for giving
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me this example and this proof. I am also indebted for the referee for his detailed
report.
Throughout this paper n=3 is a fixed integer.

2. Some definitiors. Let X and Y be metric spaces. Then an embedding f: X—Y
is said to be bilipschitz (or L-bilipschitz) if, for some L=1,

6 |x—=yl/L = 1/(x)—fW] = LIx—yl

for all x, y€X, where the notation |a—b| is used for the distance between points
a and b. Tt is said to be quasisymmctric (or H-quasisymmetric) if there is H=1
such that

@ |f(@)—f(0)] = H|f(b)—f(x)]

for all a,b,xcX satisfying |a—x|=|p—x|. (Cf. [12], where the terminology
weakly quasisymmetric was used for an embedding satisfying (2).)

Let UCR", U#R", be open and connected. Then the quasihyperbolic metric
g of U is defined by the metric density o(x)=1/d(x.0U) (where d(x,0U) is the
euclidean distance of x from the boundary 90U of U), cf. [6, Section 2]. If U=H"=
{(x1, ..., x,)ER": x,>0} is the n-dimensional hyperbolic space, then the quasihyper-
bolic metric of H" is just the hyperbolic metric p of H". If UCR?® and oU u{=}
consists of more than three points, then U has a unique Riemannian structure of
constant curvature —1 such that the conformal structure of U in this metric is
the same as the conformal structure as a subset of R® = the complex plane. The
metric of U dcfined by this structure is the hyperbolic metric p of U. If U is simply
connected there is the following relation between the metrics ¢ and and p of U
@ 4 )2 = p(x.1) = 2q(x. )
for all x,ycU, cf. Ahlfors [1, p. 79].

If X is a metric space and G is a group of homeomorphisms of X, we say that
X is a Lipschitz group on X if there is L=1 such that every g€G is L-bilipschitz.
If UcR"=R"U{e} is open, if G is a group of homeomorphisms of U and if there
is K=1 such that every g€G is K-quasiconformal, G is a quasiconformal group
(cn U). If every g€G is a Mobius transformation. G is a M¢bius group. These
groups are also torological groups in the topology of uniform convergence on
compact subsets.

We say that a k-manifold MCR" is quasiconformally locally flat if for every
x€M there is a neighbourhood U of x in R" and a quasiconformal embedding
f: U~R" such that f(M)cR*. A set X<R" is a k-quasisphere if X=£(S*) for
some quasiconformal f: R"—R".

We let 7=[0, 1] be the unit interval. In a metric space X, B(x,r) is the closed
ball with center x and radius r. If X=RF we also write B*(x,r) for B(x,r).
The unit sphere of R¥ is S*'=0B*(x, 1) where 04 is the boundary of a set A.
The euclidean distances of a point x or a set B from 4 are d(x, A) and d(B, A);
similar notations are used for other metrics.
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Figure 1

3. Construction of the groups. We first define the arc J mentioned in the Intro-
duction. Consider the arcs Jg, J/, ... as in Figure 1. These converge to a well-
known non-rectifiable quasiconformal arc J’. Observe that J’/3 is a subarc of J’
and likewise J’ is a subarc of 3J’. Thus if we set

J= U3 oET)

we obtain an (open) arc J with the property that Ju{ee} is a quasicircle.

There is a natural map f: R—J, defined as follows. Each arc J, consists of
4% segments J;;, i=1,...,4", of equal length. Let these be in order on J; with
0€J/,. Let I;=[(i—1)47%,i47* and let f: I-J] be the map such that f; (/)=

J, and that f{|I,; is affine. Then the maps f, converge to a map f’: I-J’ such
that f/(4'x)=3'f"(x) if i=0 and O=x=4'x=1. We define f by

flE4x) ==31f"(x)

if x€[0, 1] and i=0. Then fis a homeomorphism R-J and there is M =1 such
that if a=log 3/log 4 (1/x=the Hausdorff dimension of J),

“ x—y[IM = 1) =f)] = Mx—yl*

for all x, y€R. To see the validity of (4), observe first that if x and y are the end-
points of some interval I,=[(i—1)4~%, i4=*, i, k€ Z, then (4) is true with M=1.
If x, y are arbitrary, we can compare | f(x)—f(y)| to some distances |f(x")—f(»")
where x” and )" are the endpoints of a suitable interval 7;;. In this manner we find
M =1 satisfying (4) for all x, y€R.

It is a consequence of (4) that f'is quasisymmetric. It satisfies (2) in the euclidean
metric with H=M?2. Then, by [l1], we can extend f to a quasiconformal homeo-
morphism F” of R2 It follows that for some M’'=1

(5) WM = d(F'(u,v),J) = M’ |]"

for all u, v€ R. This can be seen with the aid of (4), since quasiconformal maps of
R? are quasisymmetric (by [14, 2.4] or by a normal family argument). Indeed, if F’
is H-quasisymmetric, then d(F'(u, v), J)=|F'(u, v) —f)|=H| flu+v)—f(w)|=
HM|v|*. On the other hand, let y=f(x)€J be a point such that d(F'(u,v),J)=
|F'(u, v)—y|. Then |(u,v)—x|=|(u, v)—u| and thus d(F'(u,v), J)=|F"(u, v)—y|=
|F'(u, v)—fW)|/H=| f(u+v)—f(w)|/H*=|v|"/MH?. Thus (5) is true with M’=MH?2.
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We will require that F’ be chosen in such a way that the map F”’ is bilipschitz
in the quasihyperbolic metric when restricted to a component C of R®™ R. Thus
we require that

(6) q(x, »/L = q(F'(x), F'(¥)) = Lq(x, y)

for some L=1 whenever x, y€C, where the notation ¢ is used for the quasihyper-
bolic metric in both C and F’(C). This follows since in [11] F’ was constructed as
a composition F’|C=gh where g: C—F’(C) is conformal and A: C—~C is the
Beurling—Ahlfors extension of a quasisymmetric map of the real line. Now by
[1, p. 73], & is bilipschitz in the hyperbolic metric p=g of C and the map g is an
isometry in the hyperbolic metrics of C and F’(C). Since the metrics ¢ and p of
F’(C) are bilipschitz equivalent by (3), (6) follows.

Let now G, be the group consisting of all translations of R? parallel to the real
axis, that is, every g€G, is of the form x—x+a for some acR. Let G; be the
group generated by G, and by the maps g;: R>—~R?, g} (x)=4ix, for /=0. Let
Gy=F'GyF’~' and G]=F'G;F’~'. Then we have

Lemma 1. (a) The group G is a Lipschitz group of R* in the euclidean metric.

(b) The group Gy is a quasiconformal group of R* such that if the action of G
is restricted to a component C’ of R*\J, then G} is a Lipschiiz group in the quasi-
hyperbolic metric of C’.

Proof of (a). We first show that there is L,=1 such that if g€G,, if x¢ RA\J
and if g is differentiable at x, then the differential Dg(x) of g at x satisfies

(7 1/L, = I(Dg(x)) = |Dg(x)| = L,

where [(4)=inf,,_; |4 w)], |A|=sup,_, |A(u)| for a linear map A4 of R2 Let
C, be the component of R*™\ R such that x€ F'(Cy). Now g=F'g’F’~1 for some
g’€G,. Here g’ is an isometry in the quasihyperbolic metric ¢g=p of C,. Then (6)
implies that g is L2-bilipschitz in the quasihyperbolic metric ¢ of F’(C,). Observe
that x and g(x) are in a set 4,=F'(RX{v}) for some v=0. Thus, by (5), 1/M"2=
d(g(x), J)/d(x, J)=M". Tt follows that (7) is true with L,=L2M"2.

Now the map g is quasiconformal. Thus g and g=* are ACL and a.e. differen-
tiable. Since we now know that (7) is true a.e. outside J and hence a.e. in R?, g must
be L,-bilipschitz.

Case (b) is obvious by (6) and by the quasiconformality of F’.

We now define maps h, and g, of R" for a¢R" and A=0 by

h,(2) = z+a,
g—i(xa y) = (4x, A%y)

if z€R", (x, y)ER*X R"2, with a=log 3/log4 asin (4). Next we define the groups
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G, and G, of affine maps of R" by
Gy = {h,: a=(a,,0,a,...,a,), a;¢R} and
G, = the group generated by G, and the maps g,, A= 0.

Then every g€G; is of the form g(x,y)=0x+a, A*y+b), (x,»)ER*XR""2, for
some A=>0, a=(a’,0)€ R? and bER"2
Let then F=F’Xid: R"—>R" and set

(8) ha = Fh—anl’ g, = FglF_la
G, = FG,F, G, = FG,F1

Finally we observe the following commutativity relations between the maps /7,
and g,:
® hio= g:h,gzt for a=(a;,0,..,0), but

hl“b:glhbgzl fOr b=(05 03 b33 -°'5bn)
which are immediate consequences of the definitions. We have

Theorem 2. (a) The group G, is a Lipschitz group of R" in the euclidean metric
acting transitively on S=JX R"~2.

(b) The group G, is a quasiconformal group of R" acting transitively on S and
on each component of R'™\S. If the action of Gy is restricted to a component C of
R™ S, then G, is a Lipschitz group of C in the quasihyperbolic metric.

Proof. Case (a) is obvious by Lemma 1 (a) and by the definition of G,.

We then prove (b). Let C be as indicated. Obviously G, acts transitively on S
and C. We show that G, is a Lipschitz group of C in the quasihyperbolic metric.
By (9), every g€G; can be represented in the form g=h,g; for some A=0 and
a=(ay, 0, as, ...,a,)ER". Thus it suffices to show that the maps #,/C and g,;|C
are uniformly bilipschitz in the quasihyperbolic metric. For the maps A, C this
is clear by case (a) since, by (5), d(x, S)/M’'=d(h,(x), S)=M’d(x, S) for all
x€C and a=(a,0,ag, ..., a,)ER".

We consider next the maps g;. Let x€C, x=(x', y)ER*X R""2. Then g,(x)=
(g7(x), 2*y") where g/(x)=F'(7F'~'(x"). Let dy=d(x,S)=d(x’,J) and d,=
d(g,(x), S)=d(g;(x),J). Let x'=F'(u,v), u,v€ER. Then, by (5), [v|*/M'=d,=
wl*M’ and [l|*/M’ =d,=|iv|*M’. Thus

(10) Jrd M2 =dy = 2*d, M

Now C=C’XR"'"? for a component C’ of R™\J. By Lemma 1 (b), g is
L-bilipschitz in the quasihyperbolic metric of C” for some L not depending on A.
Thus, in view of (10), if g7 is differentiable at x,

(11) JHLM” = [(Dg}(x)) = |Dgj(x)| = J*LM ™.
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Let /}: R""*>R""* be the map y~—A"y. Then [(Dh}(y))=|Dh;(y)|=4" Since
(X, ) =(g; (x), B{(y")), this fact and (11) imply

(12) JHLM” = 1(Dg, (%)) = |Dg, (x)] = A*LM ",

Now g;|/C is in any case locally bilipschitz by (8) and Lemma 1 (b). Then (12)
and (10) imply that g,|C is L’-bilipschitz in the quasihyperbolic metric for some
L’ not depending on A.

It follows that G, is also a quasiconformal group of C and hence of R™S,
since C was an arbitrary component of R™\S. Now the n-measure of S is zero
and it is easy to verify that every g€G, is ACL. Then the analytic definition of
quasiconformality ([15, 34.6]) implies that G; is a quasiconformal group of R".

4. Products of arcs. Now we prove that S is not quasiconformally locally
flat. In the following two lemmas we have generalized an argument originally due
to J. Viisila.

We fix now a metric arc 4, i.e. A is a metric space homeomorphic to a closed
interval. The distance of two points x, y€A is denoted by [x—y|.

Lemma 3. Let I(A)€(0, =] be the length of A. Let M, $=0. Then there is a
subdivision of A into subarcs Ay, ..., A, by successive points X, ..., X.EA such
that, setting A;=|x;—Xx;_4|, we have

(@ At...+2,=min(M,I1(4)—-1/M),
b)) 12=1/2;=2, i,j=r, and
© 4=, i=r.

Proof. In any case there is a subdivision A,, ..., 4, for which (a) is true.
Set a=(1/2) min (0, Ay, ..., 4,). Then 2;=20. We subdivide each A; as follows.
Let y, be the last point on 4; (from x;_,) which is on B(x;_y,®). If |y;—x;|<2a
we stop. Otherwise, let y, be the last point of 4; on B(y;, ®). Continuing in this
manner we get a new subdivision (x;_;=)y, 1y, ..., )y =x;) of A; such that each
distance |y;—y;_1/=uo except possibly the last one for which a=|y,—y,_,|<20.
The new subdivision again'satisfies (a), as well as (b) and (c).

Lemma 4. Let A be a non-rectifiable metric arc and let k=1. Then AXI*=
AX[0, 11 cannot be embedded into R*+1 by a quasisymmetric map when the metric
of AXI* is given by

(13) [Ge, 1) = p)] = (x =X 24 [y =y )V,
Proof. Let h: AXI*-~ R+l be H-quasisymmetric. We show that this leads

to a contradiction. Set I,={a}XI* for acA. Then every h|I, is also H-quasi-
symmetric and, since 7, is isometric to 7%, there is by [12, 2.15 and 2.1] a map
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7’1 (0, «)—>(0, =) such that
(14) |h(x)—h(z)| = n"(@Ih () —h(2)|
whenever x, y, z€1, for some a€A and |x—z|=¢|y—z|

Choose now M=0 and let 6=1/2. Choose the subdivision 4, ..., 4, of
A by points X, ..., X, asin Lemma 2. Setting A=max Z;, we have MR=L=A=1)2
for all i. Next we subdivide I by points p,=0, yy, ..., ;=1 into intervals B;=
[¥;-1,»;] of equal length p=1/s such that i=u=2.=1. If v=(>ji, .., Jx), Ji=S$,
we set B,=B; X...XB, . Let z;=(yj-1+yp/2and z,=(z;, ..., z;)(z, is the center
of B)).

Set now Q;,=int 4;XB,. Choose z;€A, such that |z/ —x|=1/2=[x;—X;_4]/2
and set z,=(z},z). Then, if z€0Q, |z—z,|=min (42, ,/2)=2,/2=4/4. Let
a,=(x;,z,). Then |ay—z,l=|x;—z{|=2/2 and thus |z—z,[=]a;,—z;] for all
z€00Q;,. Hence |h(z)—h(zy)|=|h(z;)—h(ay)l/H. Cheose now ylfvé[zj],yjl] such
that |y, —z; |=2/2=|z,—ayl  and et bL=(X, Vi Vi - Vi) b=
(Xis Vs Vi < ¥;) and b;’vz(x,.,yjl_l, Figs oo V) Then

(15) |h(2)=h(z)| = [h(z)—h(a)l/H = |h(bi,) = h(a,)|/H*

for all z€dQ; and for all i, v. Since |b],—a;|=(4/wlby—ay|=|by—ayl/4 and
since |a;,— by =10, —byl/2, (14) implies

(16) Ih(bi)—h(ay)l = 0" A/HIh(by) —h(ay)l =n'(14n"(1/2) Biy

where B, =|h(b])—h(by)|. It follows by (15) and (16) that for every z€dQ,
lh(z)—h(zi)| =Py where c=n(1/2)n’(1/4)/H? = a constant. Then #(Q;)>D
int B*1(h(z,), cB;,) implying that the (k+1)-measure m(h(Q;,)) satisfies

(17) m(h(Qw)) = ¢’ B

for a constant ¢’.
Set now p=inf {|h(x,0,y)—h(x, 1, )|: x€A, yeI*7'}=>0. Then for every i
and v'=(j,, ....J,) we have B=3"_, Bi;. Now the Hdlder inequality and (17)

imply that g*+1=s* 3. Bt =s* 3, m(h (Qijv))/c’. Summing over i and v/, we get now

TR = gk ST (h(Q,v))/C =5 r11(h(A><I’~))/c

l v

Thus r/s=c¢” = a constant depending only on / but not on M. On the other hand,
|/s=pu=)=J;. Thus r/s=>;2;=M. This is a contradiction since we can choose
M=c".

Remark. In the above proof we have used only the following properties of
the product metric (13): |(x, »)—(x’, )| =min (x—x"], [y—=y'D,| (x, =", =
|x—x’| and |(x,)—(x,»")|=|y—)]. Since these are also true for several other
natural product metrics, Lemma 4 is valid for such metrics, as well.
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Then we have, as first observed by S. Rickman (if n=3),

Theorem 5. The (n—1)-cell S=JXR'"2CR" is not quasiconformally
locally flat.

Proof. If x¢€S, if Uis a neighbourhood of x in R* and if h: U~ R"is a quasi-
conformal embedding, then, by [14, 2.4], there is a smaller neighbourhood V of x
such that h|V is quasisymmetric. Since n=3, Lemma 4 implies that A(VnS)
cannot be contained in an (n—1)-plane of R". The theorem follows.

5. The examples. Before presenting the examples mentioned in the Introduc-
tion, we prove the following

Lemma 6. Let m=1 and k=2. Let G be a Mébius group on R™ which is
isomorphic to R* as a topological group. Then there is acR™ such that every g€G
fixes a. If o is fixed by every g€G, there is a k-plane VT R™ such that, restricted
to V, G acts as the group of translations of V.

Proof. If g€G is elliptic, then the subgroup generated by g is contained in
a compact group. Thus {g'},_, contains elements arbitrarily near the identity.
We conclude that no g€G can be elliptic. Thus every gc€G\ {id} fixes exactly
one or two points of R™. It is then easy to see that g, g’¢ G\ {id} can commute
only if they have the same set of fixed points. We conclude that such a point a¢R”
exists, as claimed. If there is also another point b fixed by every g€G, then onc
sees easily that either G is isomorphic to R or that G contains elliptic elements.
Both cases are impossible.

We have shown that every g€G\ {id} fixes exactly one point, the point a,
and hence g is parabolic. We assume now that a=<-. Then R™ is G-invariant and
we can regard G as a group of R". If gcG\ {id}, g is of the form

(18) g(x) = B(x—xp)+a+x,

x€R", for some a, x,€ R" and for some orthogonal map f of R™ such that f(a)=a.

To conclude the proof of the lemma, we apply the Bieberbach theorems. Let
I'cG be a discrete group such that G/I' is a k-torus, i.e. homeomorphic to (S1)*.
Then the Bieberbach theorems imply that I' has a normal subgroup I'* of finite
index for which there is a I'*-invariant subplane V= R™ such that V/I'* is com-
pact (Wolf [16, 3.2.8]). Choose z€V. Since both Gz/T* and V/I'* are compact
and VnGzo>I™*z, there is M =0 such that

(19) dx,VY=M and d(y,Gz)=M

for every x€Gz and ycV.

Let now g€I' be arbitrary. Since g(Gz)=Gz, (19) implies that g(¥) must
be parallel to ¥ and that d(V,g(V))=2M. If V=g(V), then (18) implies that
for some power g* of g, d(V,g"(V))=2M. Thus V is I-invariant. Since V/I
is compact, [16, 3.2.9] implies that g|}" is a translation. Since obviously every g€G
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is contained in such a discrete subgroup I', we can conclude that g|V is a trans-
lation for every g€G. Now G is isomorphic to R* and V/I' is compact. Con-
sequently 7 must be a k-plane such that G, restricted to V, is the group of trans-
lations of V.

In the following examples the groups G,, G,, G,, G,, the non-quasiconformal
homeomorphism F=F'Xid of K", and the (n—1)-cell S=JXR""2 are as in
Section 3.

Example 1. Quasiconformal groups. Our first example answers the question
poscd by Gehring and Palka [6, p. 197].

The group G, is a Lipschitz group of R" such that for no quasiconformal homeo-
morphism h of R" is the conjugation hGoh™ a M 6bius group (although Gy,=F Gy F
is a group of translations of R").

The group Gy is a quasiconformal group of R" which is not isomorphic as a top-
ological group to any Mébius group on any R™, m=0 (although G,=F 1G,F isa
non-uniformly quasiconformal group of affine maps of R").

To see the validity of these claims, suppose first that G'=hG a1 is a Mdbius
group, where 4 is a homeomorphism of R". Since G is clearly isomorphic as a top-
ological group to R"™', Lemma 6 implies that the orbits G’z are (n—1)-planes
of R". Thus, in particular, #(S) is an (n—1)-plane. By Theorem 5, S is not quasi-
conformally locally flat and, hence, /# cannot be quasiconformal.

Next let G be a Mdbius group on some R™ and assume that there is an iso-
morphism of topological groups ¢: G;—~G. By Lemma 6 we can suppose that
@ (Gy) is a Mobius group of R™. Lemma 6 also implies that there is an (n—1)-
plane V' R™ such that ¢(G,), restricted to V, is the group of translations of V.

Fix now A=>0, 221 and let g; be as in (8). Let g=¢(g,). Since G, is a nor-
mal subgroup of G;, ghg~1€p(G,) for every h€p(G,). Hence g must fix . We
let A€ (G,y), c=u—v for some u,v€V, be the map for which A.|V is the trans-
lation x+>x+c. The map g|R" is a euclidean similarity of R". Thus, given A.€ ¢ (G,),
gh.g~'=h/, with
(20) le’] = 27 |c]
for some A">0 depending only on g but not on c.

Now an isomorphism (R¥, +)—(R¥, +) of topological groups is necessarily
a linear map. Then (20) combined with (9) gives a contradiction.

Example 2. Quasiconformal reflections. It is well-known that quasicircles in
R? can be characterized by the fact that they are topological circles which admit
quasiconformal reflections. That is, if C is such a circle, there is a quasiconformal
map r of R? interchanging the components of R®™\C with ror=id and r|C=id.
We have by Theorem 5:
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The sphere Su{e} admits a quasiconformal reflection but is not the image of
the (n—1)-sphere S"~1 under a quasiconformal map of R" although it is of this form
for a homeomorphism of R".

Indeed, such a reflection can be obtained as a product r|R"=ry,Xid, r(eo)=-cc,
where r, is a quasiconformal reflection of J in R? which is bilipschitz in the euclidean
metric. There are always such reflections, cf. Ahlfors [1, p. 80]. Then r|R" is even
bilipschitz in the euclidean metric which implies that r is bilipschitz in the spherical
metric. The last observation is due to J. Viisila.

Example 3. Quasiconformal homogeneity. In R* one can characterize quasi-
circles by quasiconformal homogeneity [2, 3, 4]; in addition J. Sarvas (unpublished)
has shown that if a Jordan domain DcC R? is homogeneous with respect to a family
of uniformly quasiconformal homeomorphisms of R? then 9D is a quasicircle.
It would appear that in R" such characterizations fail since we have the following
homogeneity properties for S and its complementary demains:

The group G, is a Lipschitz group of R" acting transitively on the non-quasicon-
Sormally flat (n—1)-cell S.

The group G, is a quasiconformal group of K" acting transitively on S and its
complementary domains, which are homeomorphic to the open n-ball but not by a
quasiconformal homeomorphism. In addition, restricted to a complementary domain
of S, Gy is a Lipsclitz group in the quasihyperbolic metric.

These claims follow by Theorems 2 and 5. We must only verify that, if Cis a
complementary domain of S, then C is not quasiconformally equivalent with the
open n-ball B of R", although it is clearly homeomorphic to it. Indeed, if f were
such a quasiconformal homeomorphism, we could first extend f to CuSuU{e}
and then, by the reflection of the preceding example, to the whole R”. Then Theorem 5
gives a contradiction.

Observe that the complementary domains of S are uniform domains (cf. Mar-
tio—Sarvas [7, 2.12]) which follows easily from [7, 2.33] and the fact that DX R*C R"
is uniform, whenever D R"~* is unbounded and uniform. Thus the complementary
domains of S are also examples of uniform Jordan domains in R" not quasicon-
formally equivalent to the open n-ball. In fact, the question of the existence of
such domains was the original motivation for the construction of S by S. Rickman.

However, I do not know whether S=SuU{e} is quasiconformally homogene-
ous. It is not Lipschitz homogeneous (in the spherical metric) since < has arbitrarily
small neighbourhoods U such that every pair x, y€ U can be joined by a rectifiable
path in U. This is not true of other points of S. In view of this fact I am inclined
to think that § is not quasiconformally homegeneous. Nor do I know other examples
of quasiconformally homogeneous spheres in R" which are not quasispheres. This
is due to the fact that in order to apply our method, S"~* would have to be the product
of a 1-manifold and an (rn— 1)-manifold, which is not the case.
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To get an example of a Lipschitz homogeneous compact manifold in R?, we
can take a torus which is homeomorphic to S*X.S*. Indeed, we can embed a torus
T in R3 in such a way that, although not locally quasiconformally flat, there is a
Lipschitz group on R3 (in the spherical metric) which acts transitively on 7. In this
case, if V is the xz-plane, VnT consists of two nonrectifiable quasicircles C; and
C,, symmetric with respect to the z-axis. The torus 7 is the trajectory of these circ'es
as we turn ¥ round the z-axis. The quasicircles C; and C, are constructed like the
arc J in Section 3. Details are as above. Observe that the homeomorphism F’ of
R? such that F’(R)=J can be constructed in such a way that F’=id outside a
suitable neighbourhood of R in R? by the LIP annulus theorem, cf. e.g. [13, 3.4].

Now there is a homeomorphism # of R?® such that if G is the group described
above, then AGh~1=G’XG” where G’ is the group of rotations of R® fixing the
z-axis and G” is the group of rotations fixing S. It is a group of isometries of R®
in the spherical metric.

Observe that now G is isomorphic to S1X S' as a topological group. Thus
it contains a one-generator subgroup G which is dense in G. Then G is an example
of a one-generator Lipschitz group which cannot be conjugated by a quasiconformal
map into a Mo6bius group.

For a discussion of quasiconformally homogeneous domains of R" sce [6]

Example 4. Quasisymmetric manifolds. A quasisymmetric manifold is a metric
space which is an n-manifold such that every x€M has a neighbourhood which
can be embedded in R" by a quasisymmetric mapping. Since the map F’'~1|J: J—-R
is quasisymmetric by [14, 2.4], we have by Theorem 5:

There are quasisymmetric manifolds M,(=J) and M,(=R""2) such that
M X M,(=S) is not a quasisymmetric manifold in the product metric given by (13).

We remark that this remains true even if one replaces our definition of a quasi-
symmetric mapping by the stronger definition of [12, 1.1]. This definition is in the
present context more appropriate since one now gets immediately an atlas whose
maps are quasisymmetric. This is not clear if one uses the definition in the present

paper.

Example 5. Quasiconformal spheres. The (n—1)-cell S is also a counter-
example to Conjecture 3 in my paper [9, p. 71] where I attempted to characterize
quasiconformal k-spheres in R” by means of a condition resembling the characteriza-
tion of quasiconformal homeomorphisms of R" by means of compact families of
mappings, ([5, Theorem 18]). This characterization generalizes to quasisymmetric
embeddings [12, 3.21]. In the present conjecture compact families of mappings are
replaced by compact families whose elements are subsets of R". However, it is easy
to see that if in Conjecture 3 C=3S, then every set Xccl#, is of the form g(R")
for some homeomorphism of R", thus disproving the conjecture.
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