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DOMINATION, UNIQUENESS AND REPRESENTATION
THEOREMS FOR HARMONIC FUNCTIONS
IN HALF-SPACES

D. H. ARMITAGE

We shall use results of the author [1] on half-space Poisson integrals and a
recent measure-theoretic result of Watson [11]* to deduce theorems of the types
described in the title.

Let D denote the Euclidean half-space R"X(0, +<0), where n=1, and let
0D denote the Euclidean boundary of D. Arbitrary points of D and 9D are denoted
by M=(X,x) and P=(T,0), respectively, where X, T€R" and x€(0, +<). We
write |X| and |M| for the Euclidean norms of X and M. The origins of R" and
R"+1 are denoted by 0* and 0, respectively.

If u is a signed measure on 9D such that

(1) S A+IP)"1d|ul(P) =+,
oD

then the Poisson integral 7, of p is defined in D by the equation

(M) =2(5,40) 7 [x|M—P|7""du(P)
oD

where s,,, is the surface area of the unit sphere in R"*1. The condition (1) is nec-
essary and sufficient for 7, to be harmonic in D (see Flett [6; Theorem 6]), and
we shall say that p is of class & if (1) is satisfied. If, further, 4 is non-negative, we
write ueF *.

We shall be concerned with a class of harmonic functions in D which can be
characterized in various ways; recall the following:

Lemma A. Let u be harmonic in D. The following are equivalent:
(i) u is the difference of two non-negative harmonic functions in D,
(ii) there exists a unique measure pEF and a unique real number ¢ such that

@ u(M) = I,(M)+ex (MeD),

*1 amgrateful to Dr. Watson for a pre-print of his paper.
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(iii) u* has a harmonic majorant in D,
(iv) the function

X~ [XP+G+1)2) - D2t (X, x)dX
Rn

is bounded on (0, + o).
If u=0 in D, the measure i and the constant ¢ occurring in (2) are non-negative.

The assertion in the last paragraph of the lemma and the equivalence of (i)
and (ii) are easy consequences of the Poisson integral representation theorem for
non-negative harmonic functions in D, due to Tsuji for n=1 (see, for example,
[10, p. 149]) and to Dinghas [5] in the general case (see also Kuran [7]). The equiv-
alence of (i) and (iii) is obvious, and the equivalence of (iii) and (iv) follows, since
u* is subharmonic in D, from a result of Kuran [8].

If u is harmonic in D and satisfies the equivalent conditions in Lemma A,
we shall say that u is of class #. If u is non-negative and harmonic in D, we write
ucH't.

For each point P of 9D and each positive number r, we write

o(P,r) = {MeD: [M—P|=r}
and

©(P,r) = {Q€dD: |Q—P| <},

and we denote surface-area measure on o¢(P,r) by s.
Recall that if u€s#, then for each P¢9D the half-spherical “mean”, given by

M@, P, r)=r1""""? f xu(M)ds(M) (r=0),

a(P,r)

is real-valued and continuous on (0, +<0). (See [2] for references and for further
properties of the mean.) In [I, Lemma I, Theorem 1] we proved the following
results which are essential for the proofs in the present paper.

Lemma B. If vé#*+ and P=(T,0)€0D, then the following are equivalent:

1
() [ t"=2v(c(P, ) dt =+,
0
e L
(i) lim y=t (T, y) =+,

(iii) H{)l’_l]_ M, P, r)=+oo.
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Theorem A. Suppose that uc# and veF+. If P=(T,0)€0D and one of
the conditions (i), (ii) and (iii) in Lemma B is satisfied, then

o RGr) M, P
hrn-goln{lf v(e(P,p) hrn—}c}-?f M, P, 1)

LMY L(Ty)
= liminf 7775 = ISP 7 T

lim sup £ (z(, r)),

= limsu AU P —_
= P oyP v(t(P, 1)’

r—o+- M, P, 1)

The measure-theoretic result we require was proved by Watson [11, Theorem 1]
and depends on a theorem of Besicovitch [3, Theorem 3].

Theorem B. Let u and v be measures on dD such that v(t(P,r))=0 for each
P in 0D and each positive r. If
. u(z(P, 1)
llﬂgﬂp v(t(P, 1)

is greater than — oo for all P in D and is non-negative for v-almost all P in 0D, then
U is non-negative.

1. An extension of Theorem A. In order to make Theorem A applicable to
functions of class #, we require the following result which is analogous to Theo-
rem A but which concerns behaviour “near infinity”.

Lemma 1. Suppose that u, ve# and that

(3 w(M) = I,(M)+cx (MED)
and
4 v(M) = I,(M)+dx (MeD),

where w,veF and c, d are real constants. If ¢ and d are not both zero, then

u(Oy) . M, 0,r) ¢
) mE - e o d

where c|d is understood to be +oo (resp. —eo) if d=0<c (resp. =c).
By [1, Lemma 4],
L,(0%, y) = 2n+2) (5,40 7"y f 121" IR (e (0, D) dr.
Also, by [1, Lemma 2], ’

[ A0 2l (x(0, D) di <+,
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Hence, if ¢=0, then there exists a positive number A such that when y=>1

oo

f r(y2+12) =2 (1 (0, t))dtl
0

A 3
=[O+ R (20, D) di+ [ (147D ] (2(0, 1) di
0 4

1
=5 Al (0, )y~ +e.
It follows that as y— 4o

u(0*,y) = I,(0%, y)+cy = (c+o(1)) y.

Using this and the corresponding result for v, we find that the first limit in (5) exists
when ¢ and d are not both zero and has the stated value.

Since #(I,, 0,r)~0 as r— -+ by [, Lemma 2(iii)] and similarly for 7,
the corresponding result for the second limit in (5) follows easily from the observa-
tion that .#(x, 0, +) is a positive constant on (0, + o).

2. Domination and uniqueness theorems

Theorem 1. Suppose that uc#, veE#+ and
6) lirglJr M@, P, 1) =+ o0
for each P in 0D. If

Jor each P in 0D and if there exists a real number A such that

lim su M(u, P, 1) _
rotl @, Pr)

Jor v-almost all P in 0D, where v is the measure occurring in the Poisson integral
representation of v, and if

thenu=Av in D.

In proving this theorem, we may suppose that 4 =0, for otherwise we could
work with u—Av. Suppose that u and v have the representations (3) and (4). Since
M (x, P, +) is constant on (0, + <o), equation (6) implies that
@) lim #(I,, P,¥) =+ (P€OD)

r—-0-+
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and that

lim sup = lim sup Ay, P, 1)

r-0+ ﬂ(l], P, r) r—-0+ .ﬂ(]v, P, 7‘) (PEBD)

Hence, by Theorem A,

. w(z(P, 1))
hF-l»ng v(z(P, 1))

is greater than —eo for all P in @D and is non-negative for v-almost all P in dD.

By (7) and Lemma B

1
[ 1772y (c(P, 1)) dt =+ (PEAD)
0

and therefore v(z(P, r))=0 for each P in dD and each positive r. Hence Theo-
rem B is applicable, and we find that u is non-negative. Hence 7,=0 in D, and it
remains to prove that ¢=0. If ¢=0, there is nothing to prove, and if ¢=0, then,
since d=0, the required result follows from Lemma 1.

In Theorem 1 all the hypotheses on the behaviour of mean values can be replaced
by hypotheses concerning behaviour along normals to dD. Thus, modifying the
proof of Theorem 1 in obvious ways, we obtain the following.

Theorem 2. Suppose that ucH#, ve#+ and

1i1%1+ Yy~ w(T, y) =+ oo
y—
for each T in R". If

uy)
y>o+ v(T, y)

for each T in R" and if there exists a real number A such that

: u(T,y) _
hgr_l)ggp o(T,y) — A

Sfor v-almost all (T, 0) in 0D, where v is the measure occurring in the Poisson integral
representation of v, and if

. u(0*, y) _
P ) =

then u=Av in D.

In fact, all our results with hypotheses on mean values have counterparts with
hypotheses on behaviour along normals. Because of the penultimate inequality
in Theorem A, the mean value hypotheses secem better, and henceforth we give
our results only in their “mean value” form and take for granted the corresponding
“normal” form.
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We next consider a special case of Theorem 1. In order to state it in its simplest
form, we need the following lemma. The n-dimensional Lebesgue measure on 0D
is denoted by 4.

Lemma 2. If u€s#, then
lim A (u, 0, r)

For oo
exists and is finite and
lim r.d(u, P, r)
r—>0+

exists and is finite for J-almost all P in dD.

The first result in the lemma follows by taking v(M)=x (M€D) in Lemma 1.
The second result follows by taking v=1 in Theorem A and observing that
r~"u(c(P,r)) has a finite limit as r—~0+ for Z-almost all P in dD.

Theorem 3. Suppose that uc#. If
rlj{g rd(u, P, r)

is non-negative for i-almost all P in D and is not equal to —o> for any P in 0D

and if
lim A#(u, 0, r) =0,

F>oco

then u=0 in D.

This is obtained by taking v(M)=1+x (McD) and A=0 in Theorem 1. The
corresponding result for the unit disc (with hypotheses on the radial limits) is due to
Bruckner, Lohwater and Ryan [4; Theorem 2].

We come now to the uniqueness results. These are applications of Theorem 1.

Theorem 4. Suppose that u€# and veEH *. Suppose also that (6) holds for
each P in 0D. If
.. ol (u, P,V
i it =P~ T
for each P in 0D,
A, Por)
®) ]lrn—?olff (v, P, 6 -
for v-almost all P in @D, where v is the measure occurring in the Poisson integral
representation of v, and

/ 0 p
©) lim inf 220 010

e M0, 0,7) 0,

then u=0 in D.

By applying Theorem 1 with —u replacing u and with 4=0, we obtain
u=0 in D. Hence we can replace the lower limits in (8) and (9) by limits. Another
application of Theorem 1 now shows that #=0 in D, and the result is proved.
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If we take v(M)=1+x (M<D) in Theorem 4, then, in view of Lemma 2 we
obtain the following.

Theorem 5. Suppose that u€#. If lim,.o, rdl(u, P,r) is zero for A-almost
all P in @D and is not equal to =+ for any P in 0D and if M (u, O,r)~>0 as r—eco,
then u=0 in D.

Alternatively, Theorem 5 can be proved by applying Theorem 3 to v and —u.

The corresponding result for the unit disc (with hypotheses on the radial limits)
is due to Lohwater [9; Corollary].

In fact, we can weaken the hypotheses in Theorem 5. For this, we need the
following lemmas.

Lemma 3. Let E be a set of A-measure O in 0D. Then there exists a positive
harmonic function v in D such that

(10) i, re P, 1) = fim o) =+ =
€

for each P in E.
Lemma 4. For each P in D and each positive number r

(11) ML, P, F) = 2,17t

and
'ﬂ(x, P’ V) = (271+2)_1Sn+1,

where x, is the volume of the unit ball in R".

The results in Lemma 4 can be proved by direct calculation. For an aid to the
calculation entailed in proving (11), see [7; p. 285].

In proving Lemma 3, we note first that it is enough to produce a positive har-
monic function v in D which satisfies the second equation in (10) for each P in E,
for we always have, by Lemma 4,

llglolilfn%(v, P,ry=rd(,P,r) hl{ln_}lr}fv(M)

MecD

= », lim inf v (M).
M~—~P
MeD

Let (Q,) be a sequence of relatively open subsets of 9D such that Q,DFE and
(Q,)<2~™ for each m. For each m, let v,, be the Poisson integral in D of the
characteristic function of @, and let v=2>7"_, v, in D. By well known properties
of Poisson integrals, each v, is harmonic and positive in D and v,,(M)—~1 as M—~P

for each P in Q,,. It follows that v satisfies the second equation in (10) for each P
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in E and that v is either positive and harmonic in D or identically equal to +<
in D. The latter alternative is excluded since

1 co co oo
E Sn+1 2 vm(@*a 1) = Zl(gm) = 2 27"=1
m=1 m=1 m=1

Hence v has the required properties.
Our improvement of Theorem 5 will be obtained as a corollary of the following
result.

Theorem 6. Suppose that ucs and that there exist real numbers A and B

such that
liminfr.Z (u, P, ) = Ax,
>0+

for all P in OD\E, where A(E)=0, and
lminf #(u, 0,r) = B2n+2)71s,41.

Let v be a positive harmonic function in D. If

M, P, 1) _
(12) IIEEOIEf @, P, 5=

for each P in E, then u(M)=A+Bx for each M in D.

Notice first that (12) will continue to hold if v is increased by the addition of
another function which is positive and harmonic in D. Hence, by Lemma 3, we
may suppose that r.#(v, P,r)—~ -+ as r—~0+ for each P in E. Further, by
adding the function 1+4x to v, we may suppose also that .#(v, P,r)—> + as
r—~0+ for each P in 9D and that

liminf A (v, 0, r) = 0

(see Lemma 4). Also, we may suppose that 4=B=0, since, by Lemma 4, we could
replace u throughout by the function M ~—u(M)—A—Bx. It follows from the
hypotheses and the properties of v that

lim inf = Py = ©

for each P in 9D and that

.. M, 0,r) _
llilliglfm =0.

The result now follows from Theorem 1.
Corollary. Suppose that uc #. Suppose also that rM (u, P, r)—~0 as r—~0+
for each P in ODN\E, where A(E)=O0, and that M (u, 0,r)~0 as r—-oo. If there

exists a positive harmonic function v in D such that M (u, P, r)| M (v, P,r)~0 as
r—~0+ for each P in E, then u=0 in D.
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The Corollary follows by applying Theorem 6 to » and —u. It follows from
Lemma 3 that this Corollary is stronger than Theorem 5.

3. A representation theorem. Here we use Theorem 6 to obtain a representation
theorem for functions of class #. An analogous result for the unit disc was proved
by Bruckner, Lohwater and Ryan [4, Theorem 3].

Theorem 7. Suppose that ucH#. If
(13) rl-l»Igl+ rM(u, P, r)

is non-negative for A-almost all P in @D and is equal to — o only for a countable set
{P1, Py, ...} of pointsin D and if

limsup A (u, O, r) = k,
then
uM) =1,,(M)—1,,(M)+Q2n+2)(s,+1) ‘kx (MEeD),
where Uy, L€ F*+ and

po=—(n+1) 3 lim sup ("~ (u, P, P},
=

0; being the unit Dirac measure concentrated at P;.

We have stated the result for the case where the countable exceptional set is
infinite. It is trivial to modify the statement and proof to cover the case where the
countable exceptional set is finite or empty.

Since u€#’, we can write u(M)=1I,(M)+cx for each M in D, where ucF
and c is a real number. Suppose that ¢>0 and for each positive integer j put
a;=p~({P;})+€277. Let

w=u+ 3ol
=]

in D. Since

j=1

So; [A+IP)"1d6,(P)= [(L+]P)~"" du=(P)+e 32 <+oo,
j oD oD j=1
weA . Let w(M)=I (M)+c'x for each M in D, where n€# and ¢’ is a real
number.

Now let E be the set of points of dD at which the limit (13) fails to exist or is
negative. By Lemma 2, A(E)=0. Since w=u in D, we have

(14) liminf r.d(w, P, 1) =0 (PEOD\ E).

r—~0+

n({P;) = n({PH+a; =0

Since
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for each positive integer j, we have, by [I, Theorem 2, Corollary]

lim r*1(1,, P;, r)=0.

r—>0+
Hence

(15) vl (w, Py, r) ~+oo (r—=0+; j=1,2,..).

By Lemma 3, there exists a positive harmonic function v in D such that r.# (v, P, r)—~
+c as r—0+ foreach Pin E. If PEEN{P,, P, ...}, then

lim sup rdl(w, P, r) = lim sup rdl(u, P, r) =—oo,

so that

. AM(w, Py1) _
(16) lnrllg}rlp AP 0 (PEENYPyL, Py, ... }).

By Lemmas 1 (with v=0, d=1) and 4,
17 MW, 0, 1) ~ (2n+2) s, 1" (1 >o0).
From (14), (15), (16), (17) and Theorem 6, we find that w(M)=c'x for each M
in D. Hence, letting ¢—~0+, we obtain
u(M)+ Z]' u (P I, (M)—c’x=0 (MED).
j=
Hence
(18) (M) = L, (M)~ 3 5= (PN I, (M)+ex  (MED)
j=1

for some €7 +.
From [1; Theorem 2, Corollary] it follows that

YA, Py ) ~ (n+ D TP (G =1,2, 0.
Hence, by Lemma 4,
19) p({P;h) = (n+1) lil& LA (U, P ).
Since r.# (u, P;, r)—~—o= for each j, the limit in (19) is non-positive. Hence n({P;}
in (19) can be replaced by —u~({P;}), and it follows from (18) that

w(M) = I, (M) +(n+1) 3 lim {7 =L, Py 0} I (M) +ex (MED).
j=17" +

Finally, by Lemmas 1 (with v=0, d=1) and 4
/Z(l/l, (99 V) g (2/’1 +2)_lsn+lc:

so that ¢=(2n+2)(s,,.1) 'k, as required.
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