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DOMINATION, UNIQUENESS AND REPRESENTATION
THEOREMS FOR HARMONIC FUNCTIONS

IN HALF.SPACES

D. H. ARMITAGE

We shall use results of the author [] on half-space Poisson integrals and a

recent measure-theoretic result of Watson[l]x to deduce theorems of the types
described in the title.

lrut D denote the Euclidean half-space ,R'X(0, a-), where n>1, and let
äD denote the Euclidean boundary of D. Arbitrary points of D and 0D are denoted
by M:(X,x) and P:(7,0), respectively, where X,T<R, and x((0,.l-). We
write lXl and lMl forthe Euclidean norms of Xand M. The origins of -R'and
R'+1 are denoted by 0* and 0, respectively.

If p is a signed measure on 0D such that

(1)

(2)

then the Poisson integral ltt of p is defined in D by the equation

Iu(M) - 2(r,*J-1

where sn*, is the surface area of the unit sphere in .R'+1. The condition (l) is nec-

essary and sufficient for I* to be harmonic in D (see Flett [6; Theorem 6]), and
we shall say that p is of class F if (l) is satisfied. ff, further, p is non-negative, we

write p€F +.

We shall be concerned with a class of harmonic functions in D which can be

characterized in various ways; recall the following:

Lemma A. Let u be harmonic in D. The following are equiualent:
(i) u is the dffirence of two non-negatiue harmonic functions in D,
(1i) there exists a unique measure p€9 and a unique real number c such that

I tt+ lPl) -n-'dlpl (P) < * -,
AD

u(M) : Iu(M)*cx (MeD),

I *lM - Pt-"-l dp(P)
AD

. I -r* grateful to Dr. Watson for a pre-print of his paper.
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(iii) Lt+ has a harmonic majorant in D,
(iv) the function

X ...--> x) dX

is bounded on (0, a-).
If u>O in D, the measure p and the constant c occurring in (2) are non-negatiue.

The assertion in the last paragraph of the lemma and the equivalence of (i)
and (ii) are easy consequences of the Poisson integral representation theorem for
non-negative harmonic functions in D, due to Tsuji for n:l (see, for example,

[10, p. 149]) and to Dinghas [5] in the general case (see also Kuran [7]). The equiv-

alence of (i) and (iii) is obvious, and the equivalence of (iii) and (iv) follows, since

u+ is subharmonic in D, from a result of Kuran [8].
If a is harmonic in D and satisfies the equivalent conditions in Lemma A,

we shall say that z is of class #. If z is non-negative and harmonic in D, we write

u€lf +.

For each point P of äD and each positive number r, we write

and

o(P,r): {MeD: lM-Pl - r}

r(P,r)- {ge\D: lQ-Pl - r},

and we denote surface-area measure on o(P, r) by s.

Recall that if u€ff, lhen for each PC|D the half-spherical 'omean", given by

-,//(tt, P, r) : r-n-z { xLt(M) ds(M) (r - 0),
o(P, r)

is real-valued and continuous on (0, *-). (See [2] for references and for further
properties of the mean.) In [, Lemma l, Theorem 1] we proved the following
results which are essential for the proofs in the present paper.

Lemma B. If ftfr+ and P:(T,O)eAO, then the following are equiualent:

J AxP*(x+ 1)') -(T + r)tz tt*(x,

(i) ! t-n-'r(r(P, /)) dt - f oo

(ii) liry y-L I"(7, y) : * -,I*0*

(iii) ,Im ,///(1",, P, r): f oo.
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Theorem A. Suppose that p(fr and v(9+. If P:(7,0)€AD and one of
the conditions (i), (ii) and (111) in Lemma B is satisfied, then

,,l}gr#å# =mprffififi
= riminf #3= rm.unffi

.. "//(1,, P, r) P(r(P, r))< nn;yvVffi < umsfptG@»

The measure-theoretic result we require was proved by Watson [1], Theorem 1]

and depends on a theorem of Besicovitch [3, Theorem 3].

Theorem B. Let p andtt be measures on 0D such that t'(r(P' r))=0 for each

P in 0D and eqch positiue r. If
p(t(P. r))r,tsffp;ffi

is greater thqn -* for all P in 0D and is non-negatiue for y-almost all P in 0D, then

p is non-negatiue.

1. An extension of Theorem A. In order to make Theorem A applicable to

functions of class ff,we require the following result which is analogous to Theo-

rem A but which concerns behaviour "near infinity".

Lemma l. Suppose that u,D€af and that

(:) u(M): Iu(M)-tcx (M€D)

and

(4) u(M): I"(M)*dx (M€D),

where p, v€F and c, d are real constants. If c and d arå not both zero, then

(s) ti^ Yto;:' '!, : lim 49'0.-!- : :.i'j'J r(0", » - ;:; ../y'(u,o, r) d '

where cld is understood to be a- (resp. -*) if d:O=c (resp. =c).

By [, Lemma 4],

I r(0*, !) : (2n * 2) (s,* r) -'.v 
{, 

(r' * u)- <" + z't r z p(r (0, t)) dt.

Also, by [, Lemma 2],

i tL + r) -.n- 'lt l(, @, t)) dt =f oo.
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Hence, if e >0, then there exists a positive number,4 such that when y>l
t? I

I f ilv'+t')-1n+tt/z p(z(0, t)\ dtlrdr
A6

= {, b, * rz) - (n + B) t 2 
I 
pl (, (0, q) at + [ t (l a 721 - <" + z) t' 

I ul (, 10, t11 a t

1

= Z Arlpl(r(O, A))y-"-s*t.

It follows that as !* **
u(0*, y) : Iu(0*, y)+cy : (c+o(l))y.

Using this and the corresponding result for u, we find that the first limit in (5) exrsts

when c and d are not both zero and has the stated value.
Since ,.//(Io,0,r)*Q as r+*- by [], Lemma2(iii)] and similarly for 1,,

the corresponding result for the second limit in (5) follows easily from the observa-
tion that .//(x,0, .) is a positive constant on (0, -p-1.

2. Domination and uniqueness theorems

Theorem l. Suppose that u€ff, o(ff+ and

(6) ):y,u1u,P, r) : f -
for each P in 0D. If

.. l/(u, P,r\
nms}P //(ut, r) 

> - -

for each P in 0D and if there exists a real number A such that

.. _,//fu. p: r) 
= I1'Y*3lP tu(uJ, rl

for valmost all P in 0D, where v is the measure occurring in the Poisson integral
representation of u, and if

.. -//(u,0:! 
= ,q.,rT'J}p .u(r, o, rt

lhenu--Au in D.

In proving this theorem, we may suppose that A:0, for otherwise we could
work with u-Au. Suppose thatu and u have the representations (3) and (4). Since

"//(x,P,.) is constant on (0, 4-), equation (6) implies that

(7) ]i**.n]", P, r) : f - (P€\D)
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and that

,ip;ypffi{:
Hence, by Theorem A

,: -. ,%U", P, r)ringypffi (P€aD).

ti- roo P(t!P'4^'il;pr v$e, r))

is greater than -- for all P in 0D and is non-negative for y-almost all P in 0D.
By (7) and Lemma B

lim y-L u(7, y) : f co
)*0 *

rim;ypffi--co

t-n-'u(r(P,t))dt -f oc (P€AD)

and therefore t(r(P,.))=0 for each P in 0D and each positive r. Hence Theo-
rem B is applicable, and we find that ,u is non-negative. Hence lr>g in D, and it
remains to prove that c--0. If c:0, there is nothing to prove, and if c#0, then,
since d>0, the required result follows from Lemma 1.

In Theorem 1 all the hypotheses on the behaviour ofmean values can be replaced
by hypotheses concerning behaviour along normals to åD. Thus, modifying the
proof of Theorem I in obvious ways, we obtain the following.

Theorem 2. Suppose that uQlf , u€a(+ and

!

fo, eqch T in R". If

fo, each T in R" and if there exists a real number A such that

fo, y-almost all (7, 0) in 0D,
representation of u, and if

then u> Au in D.

lim su, "\T-'l > A^;,iö;t u(7, 1t) - 
t'.

where v is the measure occurring in the Poisson integral

rimyp:ff*zA,

In fact, all our results with hypotheses on mean values have counterparts with
hypotheses on behaviour along normals. Because of the penultimate inequality
in Theorem A, the mean value hypotheses seem better, and henceforth we give
our results only in their "mean value" form and take for granted the correspondin§
"normal" form.
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We next consider a special case of Theorem 1. In order to state it in its simplest

form, we need the following lemma. The r-dimensional Lebesgue measure on 0D

is denoted by ,1.

Lemma 2. If u(af , then
lim "//(u,0, r)

exists anrl. is finite and

)!91r"/4(u, 
P, r)

exists and is finite for A-almost all P in 0D.

The first result in the lemma follows by taking u(M):x(M€D) in Lemma 1.

The second result follows by taking o:1 in Theorem A and observing that

r-"p(r(P,r)) has a finite limit as r*0* for /'-almost all P in 0D.

Theorem 3. Suppose that u(tr. If

,l:y1rll(u, P, r)

is non-negatiue for Ä-almost all P in 0D and is not equal to -* for any P in 0D

and if
!iyn@, 0, r) > 0,

then u>O in D.

This is obtained by taking u(M):l+x (M(D) and A:0 in Theorem 1. The

corresponding result for the unit disc (with hypotheses on the radial limits) is due to

Bruckner, Lohwater and Ryan [4; Theorem2]'
We come now to the uniqueness results. These are applications of Theorem 1.

Theorem 4. Suppose that u(lf, and u(ff+. Strppose also thut (6) holdsfor
each P in bD. If

l"//(u, P, r)l

".To'rt .zC:F:f < +6
in 0D,.fo, each P

(8)

for v-almost
representation

(e)

then u -0 in D.

atl P in 0D, where y is the nleosure occurring in the Poisson integral

of u, and

rininf "ffi-0,

By applying Theorem 1 with -u replacing u and with l:0, we obtain

u<O in D. Hence we can replace the lower limits in (8) and (9) by limits. Another

application of Theorem I now shows that u>0 in D, and the result is proved.
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If we take u(M):l+x (M(D) in Theorem 4, then, in view of Lemma2 we

obtain the following.

The orem 5. Suppose that u(tr. If lim,-sa r.//(u, P, r) is zero for l-almost

all P in 0D and is not equal to *- for any P in 0D and if ,.,//(u, 0,r)t0 s5 v**,
then u:O in D.

Alternatively, Theorem 5 can be proved by applying Theorem 3 to u and -u.
The corresponding result for the unit disc (with hypotheses on the radial limits)

is due to Lohwater [9; Corollary].
In fact, we can weaken the hypotheses in Theorem 5. For this, we need the

following lemmas.

Lemma 3. Let E be q set of ),-measure 0 in 0D. Then there exists a positiue

harmonic function u in D such that

( 10)

for each P in E.

Lemma 4. For

(11)

and
fl (*, P, ,) - (2n +2) -'sn *,. ,

where %n is the uolume of the unit ball in R".

The results in Lemma 4 can be proved by direct calculation. For
calculation entailed in proving (11), see l7 ; p. 2851.

In proving Lemrn z 3, we note first that it is enough to produce a

monic function u in D which satisfies the second equation in (10) for
for we always have, by Lemmd 4,

,[n r-//(u, P, ') - #g] u(M): * -
ttt €D

each P in 0D and each positiue nuwtber r

,,// (1, P, r) : xnr-L

an aid to the

positive har-
each P in E,

lim inf r "(/ (u, P, r) =- r'& (7, P, r) ligtlpt u (M )
M€D

: tt"bprlpf u(M).
M€D

Let (Q*) be a sequence of relatively open subsets of åD such lhat Q^= E and

).(Q*)<2-^ for each m. For each m, let u-be the Poisson integral in D of the

characteristic function of d)^, and let ,:ZI=ru* in D. By well known properties

of Poisson integrals, eachu^ is harmonic and positive in D and u^(M)*l as M-P
for each P in Q^. It follows that u satisfles the second equation in (10) for each P
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E and that u is either positive and harmonic in D or identically equal to { e
D. The latter alternative is excluded since

1n

in

1-
2 tn*t 

År.Dn 
(0*, 1) =

Hence u has the required properties.

Our improvement cf Theorem 5 will
result.

oo

Z l(Qn) - Z 2-m :1.
m:l I,lt:L

be obtained as a corollary of the following

Theorem 6. Suppose that u(af and that there exist real numbers A and B
such that

liminf r.// (u, P, r) < Ax,

for all P in lD\E, where )"(E):0, and

hmrnf "4/(u, 0, r) = BQn*2)-rso*r.

Let u be a positioe harmonic function in D. If

(t2) 1i*ifi49:L,- -D- = sr*o* "{llu, 
p, r)

for each P in E, then u(M)=A+Bx for each M in D.

Notice first that (12) will continue to hold if u is increased by the addition of
another function which is positive and harmonic in D. Hence, by Lemma 3, we

may suppose that ril(u,P,r)*f- as r*0* for each P in E. Further, by
adding the function l+x to o, we may suppose also that -4/(u,P,r)*f- as

r*0* for each P in 0D and that

limrnf ,/4(u, 0, r) > 0

(see Lemma 4). Also, we may suppose that A:B:0, since, by Lemma 4, we could
replace a throughout by the function M*u(M)-A-Bx. It follows from the
hypotheses and the properties of u that

,^itfffil=o
for each P in 0D and that

.. ^.//(u,04_ = g.rmrnt ,//@3, 11

The result now follows from Theorem 1.

Corollary. Suppose that u(tr. Suppose also that r"4/ (u, P, r)*g as r*0+
for each P in lD\E, where A(E):O, andthat .//(u,@,r)*g cts r+@. If there

exists a positiue harmonic function u in D such that .4/(u, P,r)/,.il(u, P,r)*g as

r*0* for each P in E, then u:0 in D.
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The Corollary follou's by applying Theorem 6 to u and -u.
Lemma3 that this Corollary is stronger than Theorem 5.

3. A representation theorern. Here we use Theorem 6 to obtain
theorem for functions of class ff. An analogous result for the unit
by Bruckner, Lohwater and Ryan [4, Theorem 3].

TheoremT. Supposethat u€lf. If

It follows from

a representation
disc was proved

(13)

is non-negatiue for )"-almost all P in 0D and is equal to - * only for a countable set

{Pr, Pr, ...} of points in 0D and if

limsup -4/(u,0, r) : k,

then
u(M) : Ip,(M)- It,(M)*(2n*2)(s,*)-lkx (M(D),

where pr, pz($+ and

ur: *(n*t; j ti-^.rrp{rn+l..//(u, pr, r)}ör,
i:L r+u+

ö, being the unit Dirac measure concentrated at Pr.

We have stated the result for the case where the countable exceptional set is
infinite. It is trivial to modify the statement and proof to cover the case where the
countable exceptional set is finite or empty.

Since u(af,, we can write u(M):Iu(M)+r* for each M in D,where p(fr
and c is a real number. Suppose that e>0 and for each positive integer,l put
di:p-(?i|)+e2-i. Let

in D. Since

2", I Olpl)-,-t 65j(p) = [ o+VD-,-,dp- (p)+e 2,r-,< *-,j:r ab ab i:7

w(,tr. Let w(M):Ir(M)*c'x for each M in D, wherc 4(fr ar..d c'is a real
number.

Now let Ebe the set of points of 0D at which the limit (13) fails to exist or is
negative. By Lemma 2, ),(E):0. Since w>a in D, we have

(14) liminf r"//(w, P, r) = 0 (P(AD\E).
Since

,t«Pi»: p({Pi)+or, = 0

w-u+åo,,u,
j:1
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for each positive integer j, we have, by [, Theorem 2, Corollary]

j!y*r'*'.il71* P.i, r) =0.
Hcnce

(15) r.//(w,Pi,r)*** (r*0*;i:7,2,...).

By Lemma 3, there exists a positive harmonic function u in D such that r,,// (u, P, r)*
*- as r*0* for each P in E. If P€.E\{P1,P2,...}, then

limåfp r.,//(w, P,r)= limoyp r../4(u, P, r) >--,
so that

(i6) ri*;yoffifi =- o (P(u'\{P,, P,, ...\).

By Lemmas I (with v=0, d:7) and 4,

(17) .t/t(w,O,r) * (2n*2)-rs,*tc' (r *-;.

From (14), (15), (16), (17) and Theorem6, we find thal w(M)>c'x for each M
in D. Hence, letting e*0*, we obtain

u(M)+ å p-@,\) 15,(M)-c' x > o (MQ).
.i: r

Hence

(18) u(M): Iu,(M)- å p-GpiDtu,(M)+cx (M€D)
J:L

for some Fr(fr+.
From [; Theorem 2, Corollary] it follows that

r"+L -//(I u, P i, r) * (n + 1) -1p({Pr}) (i : l, 2, ...).

Hence, by Lemma 4,

(19) p({i';}) : (n-t 1),[år" rn-r..//(u, Pi, r).

Since r.//(u, Pr,r)t -- for each.i, the limit in (19) is non-positive. Hence p({Pi})
in (19) can be replaced by -t-(P:)), and it foilows from (18) that

u(tt1: Iu,(M)*(n+t)14 ):y* {r"n'.'tt(u, Pi, r)\15 (M)*cx (M(D).

Finally, by Lemmas I (with t=0, d:1) and 4

,// (u, 0, r) * (2n I 2)-r s,* rc,

so that s:(2nt2)(sn+t)-Lk, as required.
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