A NOTE ON MAXIMUM MODULUS ALGEBRAS

PENTTI JÄRVI

1. Let X be a locally compact Hausdorff space and let A be an algebra of complex-valued continuous functions on X. Then A is called a (local) maximum modulus algebra on X, provided that for each compact subset K of X with topological boundary ∂K , and for each f in A, we have

(*) $|f(p_0)| \le \max\{|f(p)|| p \in \partial K\}$ for $p_0 \in K$

(see [9], [11]). One of the main results of [9] reads as follows ([9, Theorem 2]).

Theorem A. If A is a maximum modulus algebra on a plane domain G, and if A contains a function which is analytic and not constant in G, then every member of A is analytic in G.

Recently, Bear and Hile ([2, Theorem 4]) gave the following extension of Theorem A.

Theorem B. Let G be a plane domain and A a maximum modulus algebra on G. If for each $z \in G$ there is an open neighborhood U_z of z and a function $f_z \in A$ such that f_z is an interior (i.e., light and open) mapping on U_z , then there is a homeomorphism φ of G onto a plane domain G' such that $g \circ \varphi^{-1}$ is analytic in G' for each $g \in A$.

In this note we show that the requirement that f_z be open is not needed to establish the conclusion of Theorem B; in other words, openness turns out to be a consequence of the remaining assumptions. Actually, our first theorem states that members of any maximum modulus algebra are quasiopen mappings in the sense of Whyburn ([12], [13]); moreover, it is a simple matter to verify that a quasiopen and light mapping is open. Relying on Theorem 1, we will also revise some results of Bear and Hile ([2, Theorem 3]), W. C. Fox ([3]) and Kra ([5, Theorem III]). The note is concluded with some simple observations on algebras of quasiconformal functions (cf. [1]).

2. Let X and Y be topological spaces. A continuous mapping $f: X \rightarrow Y$ is said to be *quasiopen*, provided that for any $y \in f(X)$ and any open set U in X containing a compact component of $f^{-1}(y)$, y is an interior point of f(U). The following characterization is due to Whyburn [13, p. 112].

Lemma. If X and Y are locally compact Hausdorff spaces, a mapping $f: X \rightarrow Y$ is quasiopen if and only if for each relatively compact open set U in X $\partial f(U) \subset f(\partial U)$.

In fact, Whyburn limited himself to locally compact separable metric spaces, but the validity of the Lemma is readily seen even in the setting given above.

Theorem 1. Let X be a locally compact Hausdorff space and let A be a maximum modulus algebra on X. Then every member of A is a quasiopen mapping $X \rightarrow C$.

Proof. By [9, Lemma 1], we may assume that A contains the constants. Let $f \in A$ and let U be a relatively compact open set in X. Suppose that $\partial f(U) \neq f(\partial U)$ and take a point $z_0 \in \partial f(U)$ such that $z_0 \notin f(\partial U)$. Since $f(\partial U)$ is compact (note that ∂U is nonempty by (*)), we find a point $z_1 \in C \setminus f(\overline{U})$ such that $|z_1 - z_0| < \min \{|z_1 - z|| z \in f(\partial U)\}$. Then pick out a point $z_2 \in f(\overline{U})$ such that $|z_1 - z_2| = \min \{|z_1 - z|| z \in f(\overline{U})\}$. Clearly, $z_2 \notin f(\partial U)$.

Set $z_3 = (z_1 + z_2)/2$ and

$$d = \min\left\{\frac{1}{4} |z_1 - z_2|, \frac{1}{2} \min\left\{|z - z_2| | z \in f(\partial U)\right\}\right\}.$$

Further, let $D(z_2, d)$ stand for the set $\{z \in C | |z - z_2| < d\}$. Now choose a point $q \in U$ such that $f(q) = z_2$ and denote by C the nonempty compact set $f^{-1}(\overline{D(z_2, d)}) \cap \overline{U}$. It is clear that $C \subset U$ and $z_2 \notin f(\partial C)$. Thus $|z_3 - z_2| < \min \{|z - z_3| | z \in f(\partial C)\}$.

Denote by g the mapping $p \mapsto (z_3 - f(p))^{-1}$, $p \in C$. By the previous inequality,

$$|g(q)| > \max\{|g(p)| | p \in \partial C\}$$

Consider the identity

$$(z_3 - f(p))^{-1} = (z_3 - z_2)^{-1} \cdot \sum_{i=0}^n \left(\frac{f(p) - z_2}{z_3 - z_2}\right)^i + \left(\frac{f(p) - z_2}{z_3 - z_2}\right)^{n+1} \cdot (z_3 - f(p))^{-1},$$

 $p \in C$, $n \in N$. Clearly, the function

$$f_n: p \mapsto (z_3 - z_2)^{-1} \cdot \sum_{i=0}^n \left(\frac{f(p) - z_2}{z_3 - z_2} \right)^i$$

is a member of A for each n. On the other hand,

$$\left| (z_3 - f(p))^{-1} \cdot \left(\frac{f(p) - z_2}{z_3 - z_2} \right)^n \right| \le \frac{1}{|z_3 - z_2|} \cdot \left(\frac{1}{2} \right)^n$$

in C for each n. It follows that $f_n \rightarrow g$ uniformly on C. But this implies that g also attains its maximum modulus on ∂C , a contradiction to (* *).

We conclude that $\partial f(U) \subset f(\partial U)$ for each relatively compact open set U in X. The assertion now follows from the preceding Lemma. \Box

Corollary. Let X be a locally compact Hausdorff space and let A be a maximum modulus algebra on X. Then $f \in A$ is an open mapping $X \rightarrow C$ whenever f is light. Remark. It is clear that for an *individual* function, in general, validity of the maximum principle does not imply quasiopenness (see also [3]).

3. Our first application provides the generalization of Theorem B mentioned before. Although it is an immediate consequence of Theorem B, in view of Corollary to Theorem 1, we prefer to base the proof on Theorem A and hence reproduce some arguments from [2].

Theorem 2. Let G be a domain in \hat{C} , the extended plane, and let A be a maximum modulus algebra on G. If for each $z \in G$ there is an open neighborhood U_z of z and a function $f_z \in A$ such that f_z is light on U_z , then there is a homeomorphism Φ of G onto a plane domain G' such that $g \circ \Phi^{-1}$ is analytic in G' for each $g \in A$. Accordingly, the conclusion holds whenever A contains a mapping light on G.

Proof. Let $z \in G$, and choose an open neighborhood $U_z \subset G$ of z and $f_z \in A$ such that $f_z|U_z$ is light. By Corollary to Theorem 1, $f_z|U_z$ is interior. By Stoïlow's theorem ([10, p. 121]), there is a homeomorphism φ_z on U_z such that $f_z \circ \varphi_z^{-1}$ is analytic on $\varphi_z(U_z)$. Let A_z stand for $\{g \circ \varphi_z^{-1} | g \in A\}$. Then A_z is a maximum modulus algebra on $\varphi_z(U_z)$ which contains the nonconstant analytic function $f_z \circ \varphi_z^{-1}$. By Theorem A, $g \circ \varphi_z^{-1}$ is analytic on $\varphi_z(U_z)$ for each $g \in A$.

It is now readily verified that G together with the local parameters (U_z, φ_z) , $z \in G$, constitutes a Riemann surface \tilde{G} ; moreover, the members of A are analytic on \tilde{G} . Since \tilde{G} is planar, there is a conformal mapping Φ of \tilde{G} onto a plane domain G'. Clearly, $g \circ \Phi^{-1}$ is analytic in G' for each $g \in A$. \Box

Example. Define $\varphi: C \rightarrow R$, $\varphi(z) = \operatorname{Re} z$, and denote by C(R) the algebra of all continuous complex-valued functions on R. Then $\{g \circ \varphi | g \in C(R)\}$ is a maximum modulus algebra on C. This simple example shows that lightness, or something like that, is really needed to guarantee some sort of analyticity.

Next consider the situation of [2, Theorem 3]. In other words, let $G \subset \hat{C}$ be a domain and A a uniform algebra on \overline{G} such that the maximal ideal space of Ais \overline{G} and the Shilov boundary Γ is a proper subset of \overline{G} (for the terminology, we refer to [4]).

Let $z \in G \setminus \Gamma$ and let $U_z \subset G \setminus \Gamma$ be a connected open neighborhood of z. Suppose that there is a function $f \in A$ such that $f | U_z$ is light. Since A_z , the restriction of A to U_z , is a maximum modulus algebra on U_z by Rossi's theorem [4, p. 92], there is, by Theorem 2, a homeomorphism φ_z on U_z such that $g \circ \varphi_z^{-1}$ is analytic on $\varphi_z(U_z)$ for each $g \in A$.

As before, the local parameters (U_z, φ_z) are compatible in an obvious way. Consequently, for each component D of $G \setminus \Gamma$ there is a homeomorphism Φ of D onto a plane domain such that $g \circ \Phi^{-1}$ is analytic for each $g \in A$. Thus the property of being countable-to-one in the version of Bear and Hile is replaced by lightness in Theorem 3. Let $G \subset \hat{C}$ be a domain and A a function algebra on \overline{G} . Assume that the maximal ideal space of A is \overline{G} and the Shilov boundary Γ is a proper subset of \overline{G} . If for each $z \in G \setminus \Gamma$ there is a neighborhood U_z of z and a function $f_z \in A$ such that $f_z|U_z$ is light, then there is on each component of $G \setminus \Gamma$ a homeomorphism Φ onto a plane domain such that $g \circ \Phi^{-1}$ is analytic for each $g \in A$.

Remarks. (1) The assumptions of [2, Theorem 1] admit a similar relaxation. This follows immediately from Corollary to Theorem 1, in view of Rossi's theorem.

(2) Apparently, a result analogous to Theorem 3 can be obtained whenever G is a relatively compact domain in any Riemann surface. Similarly, in Theorem 2 G could be taken as an arbitrary Riemann surface.

In a similar fashion, we can establish the following extension of a result of W. C. Fox (see [3]).

Theorem 4. Let X be a topological manifold of dimension two, and let f and g be functions, not both constants, sending X into C. There exists a conformal structure for X relative to which both f and g are analytic if and only if the algebra generated by f and g is a maximum modulus algebra on X and at least one member in this algebra is also light.

The next theorem generalizes a striking result of Kra ([5], [7]).

Theorem 5. Let X be a connected, locally compact, Hausdorff space, and let A be a maximum modulus algebra on X which separates points and contains the constants. Suppose that, for every $p \in X$, the ideal $M(p) = \{f \in A | f(p) = 0\}$ is principal. Then X can be given a unique conformal structure which respects the topology such that every $f \in A$ becomes an analytic function on X. In particular, X is an open Riemann surface.

Remark. In Kra's version, the nonconstant functions in A were assumed to be open mappings. Cf. also Remarks (2) and (3) in [5, p. 239].

Proof (as in [7]). Let $p \in X$ and let $t \in A$ be a function which generates M(p). Since A separates points, $t(q) \neq 0$ for each $q \neq p$ in X. Let V be an open neighborhood of p with compact closure \overline{V} , and denote $\delta = \min \{|t(q)| | q \in \partial V\}$ (again, $\partial V \neq \emptyset$ by (*)).

Given any $f \in M(p)$, |f| and |f/t| attain their maxima for \overline{V} at points on ∂V . Hence

$$||f/t|| \leq (1/\delta) \cdot ||f||, \quad f \in M(p),$$

where $\| \|$ refers to the sup norm on \overline{V} .

Thus the assumptions of the lemma of Porcelli and Connell (see [7, pp. 318—319]) are satisfied. Consequently, on the open set $U = \{q \in V | |t(q)| < \delta/2\}$, every function $f \in A$ is equal to a convergent power series in t; i.e., $f | U = g \circ (t | U)$, where g is analytic on $\{z \in C | |z| < \delta/2\}$. Since A separates points, t must be injective on U.

It follows from Corollary to Theorem 1 that t is also open on U. Accordingly, t|U is a homeomorphism of U onto $t(U) = \{z \in C | |z| < \delta/2\}$.

Now, clearly, the pairs (U, t|U) constitute a unique conformal structure on X in such a way that each member of A becomes an analytic function on X. \Box

4. For the sake of illustration, we will add some observations on QC(G), the class of quasiconformal functions on a plane domain G. Recall that a quasiconformal function on G can be defined as a function f which admits a representation $f=g\circ\varphi$, where φ is a quasiconformal homeomorphism $G \rightarrow \varphi(G)$ and g is an analytic function on $\varphi(G)$; thus we include the constants but exclude functions with "poles" (cf. [6, p. 250]).

Assume that $A \subset QC(G)$ is a nontrivial algebra with the usual operations. By Theorem B, we find a homeomorphism $\varphi: G \to \varphi(G)$ and an algebra, say B, of analytic functions on $\varphi(G)$ such that $A = B \circ \varphi = \{g \circ \varphi | g \in B\}$. Plainly, φ is quasiconformal on G. Thus $A \subset QC(G)$ constitutes an algebra if and only if there is a quasiconformal homeomorphism φ on G and an algebra B of analytic functions on $\varphi(G)$ such that $A = B \circ \varphi$. In particular, the complex dilatations (see [6, pp.191—192]) of any two nonconstant members of an algebra coincide (as elements of $L^{\infty}(G)$, of course).

Assume now that $A \subset QC(G)$ is a maximal algebra, i.e., A = A' whenever A' is an algebra such that $A \subset A' \subset QC(G)$. Then clearly $A = H(G') \circ \varphi$, where H(G') stands for the algebra of all analytic functions on $G' = \varphi(G)$. Obviously, there is a one-to-one correspondence between the class of maximal algebras in QC(G) and the set $\{\mu \in L^{\infty}(G) | \|\mu\| < 1\}$ (see [6, p. 204]).

Assume then that $A_i \subset QC(G)$ is a maximal algebra and φ_i a corresponding quasiconformal homeomorphism, i=1, 2. Suppose that $T: A_1 \rightarrow A_2$ is an algebraic homomorphism. Let φ_i^* denote the homomorphism $g \mapsto g \circ \varphi_i$, $H(\varphi_i(G)) \rightarrow A_i$, i=1, 2. Then $T' = \varphi_2^{*-1} \circ T \circ \varphi_1^*$ is an algebraic homomorphism $H(\varphi_1(G)) \rightarrow$ $H(\varphi_2(G))$. By [8, Theorem 1], there is a unique analytic mapping ψ of $\varphi_2(G)$ into $\varphi_1(G)$ such that $T'g = g \circ \psi$ for each $g \in H(\varphi_1(G))$. Consequently, there is a oneto-one correspondence between the class of homomorphisms $T: A_1 \rightarrow A_2$ and the class of analytic mappings $\psi: \varphi_2(G) \rightarrow \varphi_1(G)$. In particular, A_1 and A_2 are algebraically isomorphic if and only if $\varphi_1(G)$ and $\varphi_2(G)$ are conformally equivalent.

References

- [1] BEAR, H. S., and G. N. HILE: Algebras which satisfy a second order linear partial differential equation. Pacific J. Math. 75, 1978, 21–36.
- [2] BEAR, H. S., and G. N. HILE: Analytic structure in function algebras. Houston J. Math. 5, 1979, 21–28.
- [3] Fox, W. C.: Analyticity without analysis. Proc. Amer. Math. Soc. 13, 1962, 274-275.
- [4] GAMELIN, T. W.: Uniform algebras. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969.
- [5] KRA, I.: On the ring of holomorphic functions on an open Riemann surface. Trans. Amer. Math. Soc. 132, 1968, 231—244.
- [6] LEHTO, O., und K. I. VIRTANEN: Quasikonforme Abbildungen. Die Grundlehren der mathematischen Wissenschaften 126, Springer-Verlag, Berlin-Heidelberg-New York, 1965.
- [7] RICHARDS, I.: Axioms for analytic functions. Adv. in Math. 5, 1970, 311-338.
- [8] ROYDEN, H. L.: Rings of analytic and meromorphic functions. Trans. Amer. Math. Soc. 83, 1956, 269—276.
- [9] RUDIN, W.: Analyticity, and the maximum modulus principle. Duke Math. J. 20, 1953, 449-457.
- [10] Stoïlow, S.: Leçons sur les principes topologiques de la théorie des fonctions analytiques. -Gauthier-Villars, Paris, 1956.
- [11] WERMER, J.: Maximum modulus algebras and singularity sets. Proc. Roy. Soc. Edinburgh Sect. A 86, 1980, 327—331.
- [12] WHYBURN, G. T.: Quasi-open mappings. Rev. Roumaine Math. Pures Appl. 2, 1957, 47-52.
- [13] WHYBURN, G. T.: Topological analysis. Princeton University Press, Princeton, New Jersey, 1958.

University of Helsinki Department of Mathematics SF-00100 Helsinki 10 Finland

Received 16 January 1981