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1. Introduction

Let H(D) denote the set of analytic functions in the unit disc D= {|z|<1},
endowed with the topology of locally uniform convergence, and let H(D)* be its
topological dual. The elements of H(D)* are the continuous linear functionals L
on H(D). Denoted by M the set of real Baire measures p on the unit circle C=0D
such that [ du=2, and by M, the subset

My={u: [dp=2, |u| = K},
Cc

where |lu|| is the total variation of u. Obviously we have 2=k~ . The formula

0] f@=exp [ —log(l—nz)du, f(0)=0,

Inl=1

for the derivative f’ together with the normalization f(0)=0 defines a mapping
V of M into H(D), which is injective and continuous in the weak* topology of M.
The representing measure of f is called u. Discrete measures of M represent the
Schwarz—Christoffel mappings; they are dense in V' (M).

Because M, is compact in this topology, its image V(M )=V, is compact in
H(D). V, is the well-known class of normalized (f(z)=z+a,z%+...) conformal
mappings of D into C having boundary rotation 7 |p|=kn. Since the discrete
measures p with ||u|| =k are dense in M, the Schwarz—Christoffel mappings with
boundary rotation kx are dense in V.

For 2=k=4 the functions in ¥V} are univalent. In particular, V, consists of
the normalized univalent mappings of D onto convex domains.

Since V', is compact, the real part of each functional L of H(D)* is maximized
within ¥, by some function, and such functions are called support points if Re L
is not constant on V. It is known that support points of ¥ are Schwarz—Christof-
fel mappings with boundary rotation k=, or equivalently, their representing measures
are discrete with norm k. This result is in [2], and to provide some framework a
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proof of it will be sketched in Lemma I. The purpose of this paper is to provide
additional properties of support points.

Many functionals of H(D)* have been studied for ¥,. One example is the
coefficient functional a, in f(z2)=z+a,z*+...+a,z"+.... After early attempts it
was finally proved in [1] and [3] that for all #» the maximum of Rea, over ¥} is
achieved by the function whose representing measure has its positive and negative
part concentrated at =1 and at n=—1, respectively, i.e., for

© K(z) = 715 [(i fz)m— 1].

V4

Another example is obtained by evaluation of f” at a fixed point p of D\ {0},
or more generally, by Re {¢”f’(p)}, «€R. The extremals for these functionals give
the support points of the region R(p)={f'(p): f€V,}, which is convex only for p
sufficiently small. However, the set {logf'(p): f€V,} is convex and is known [7]
to have its boundary points furnished by functions f” of the form

A3) f(@) = (1=n2)**= (1 =)kt

where [{|=[y|=1 and (5. By exponentiation, some of these boundary points
are taken onto the support points of R(p). This implies that only functions with
derivative of the form (3) can maximize the functionals Re {e*f’(p)}.

Similarly, in Section 5 we shall see that extremals for functionals of the form
Re {4,a,+ Aza;}, where A,, A;€C and a,, a; appear in f(2)=z+a,22+a,23+ ...,
have representing measures supported by only two points. It was among these
functionals that we were searching for candidates having extremals of a different
type. Since there is none, it seems reasonable to conjecture that all support points of
V, must have derivatives of the form (3).

The convex hull of ¥, will be denoted by co V. It consists of all finite convex
combinations of elements of V. Its closure will be denoted by €6 ¥,. A function
J€Vy is an extreme point of coV; or oV, if f cannot be expressed as a proper
convex combination of two distinct elements of coV, or coV,, respectively.

It is known [4] that the support points of ¥, coincide with the extreme points
of coV, and are produced by the one-point measures of M,. Until now no rela-
tions between support points and extreme points were known for k=>2. For k=4
it was shown in [3] that the extreme points of €0V, are functions with derivative
of the form (3). For these values of k we shall show that support points of ¥, have
the same form (3). Although we shall give some information for 2<k <4, a descrip-
tion of the support points of ¥V} and the extreme points of ¢o6 ¥, remains as an
intriguing open question for 2<k<4.

In this paper we shall prove the following:

Theorem 1. For k=2 the representing measure of each support point in V,
is discrete and has its positive part concentrated at a single point.
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Theorem 2. For k=4 each support point of V has a derivative of the form (3).

Theorem 3. For 2<k<4 each support point of V, is an extreme point of
coV,.

Theorem 4. For k=2 each functional Re {Asa,+Asas}, A,, A€ C\{0},
achieves its maximum within V', only for functions with f of the form (3).

If A, is a positive multiple of 42, then the maximum of Re {4,a,+ Azas} over
V, occurs for a rotation of the function K(z) in (2), namely for (d4y/|4,))K(|45]|z/A5).
Some less trivial cases are tabulated in Section 6 where A, is a negative mul-
tiple of 43.

2. The form of support points

First we sketch a proof of the following important lemma. The framework is
basic and will be used later.

Lemma 1. For each support point of V, the representing measure | is discrete
and has norm k.

Proof. Let f, be a support point of ¥} corresponding to a functional L in H(D)*,
and let p, be the representing measure of f;. Then by setting

B = tote(u—py), 0=e=1,

we have a variation of u, within M,, for each u in M,. By substituting p, into (1)
we obtain a variation of f; within ¥, which has the form

L@ =fE)—e [fi(2)log(1=n2)d (1 —pe)+0()
C
as ¢—0. Define L’ by L'(f)=L(f). Then

Re L(f) = Re L(f)+& [J(n)d(n—po)+0(e),
C

where
J(n) =—Re L'(fJ(2) log (1 —72))

is a harmonic function on D. The extremality of f; implies that [ J(7)d(u—p)=0
for every u€M,. From this it follows that the positive and negative parts of y,
are supported by subsets of C where J(i) reaches its maximum and minimum,
respectively. Since L is not constant on V', the function J(r) is not constant either,
and we conclude that these two subsets of C are discrete and disjoint. This com-
pletes the lemma.

Lemma 1 remains true for solutions to nonlinear, Gateaux differentiable func-
tionals. An earlier proof of the lemma is given in [2]. The discreteness of u was
shown earlier in [6].
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We shall also need the following result from [3].

Lemma 2 (Brannan—Clunie—Kirwan). If a function g of H(D) is subordinate
to a function (1+cz)/(1—z), for some complex number ¢ with |c|=1, and if p=1.
then there is a probability measure 4. on C such that

g(z)? = f ( lltcfzz ]p d;.

1&l=1

Our basic result on the form of support points is the following.

Theorem 1. A support point of V, has a discrete representing measure with
positive part supported by a single point. Thus the derivative of a support point is
of the form

@) F/(2) = (1={2)~+2=1 JJ (1—n,2)~%,

where |(|=|n;|=1, 0;>0, and 2"_, 0;=k/2—1. Moreover, { and ny,...,n, are
mutually disjoint.

Remark. Each support point is a Schwarz—Christoffel mapping with excatly
one corner at infinity, where the canonical direction turns around a positive angle
of (k/2+1)x, while at all other corners it takes negative turns. For 2<k=4 the
image has an infinite convex complement which is not a strip or a halfplane; for
n=1 it is a wedge. If k=2, the product is deleted and f(z)=z/(1—-{z), [{|=1
(cf. [4]).

Proof of Theorem 1. Let f maximize the real part of a functional L in H(D)*
for which Re L is nonconstant on V,. By Lemma 1 f’ is of the form

m

) £@= I A=t I (=25

= Jj=1

where |(i|=In;|=1, 37_, o;=k/2—1, 37, p;=k/2+1, and where the sets {{;}
and {n;} are disjoint. Since the function g(z)=][", (1—{;z) %/, with p=k/2+]1,
maps D into the halfplane Re w=1/2, it is subordinate to 1/(1—z). As a result,
Lemma 2 with ¢=0 implies that g(z)’=f,_, (1—¢2)7?d. for some probability

measure A, and by (5) that

©) @@= [hE-¢)"d:
l&l=1
where /1(z)=]]_, (1—n;z)".
Let L’ correspond to L by L'(f")=L(f). Then, by linearity, we have

ReL'(f)= [ o()da

1§l=1
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where @(&)=Re {L’(h(z)(l—éz)_ﬁ)} is harmonic on D. Since h(z)(1—&2)~F is
the derivative of a function in ¥V, we also have ¢@(£)=Re L'(f’) by extremality.
As a consequence, the probability measure 4 must be supported on a subset of C
on which ¢ (&) achieves its maximum. Since ¢(£) is harmonic on D, either A has
finite support or ¢ (&) is constant.

If (&) were constant, we would have L'(h(z)z")=0 for every v=1,2,3, ...
In this case, since /(z)=0 in D and ( f7/h)(0)=1, we could conclude that

L'(f)y=L [h I;l;) = L'(h)

for all fin V,. Thus L would be constant on V.
Consequently, the support of 1 is a finite set {&;, ..., {y}. If A has mass 4; at
¢ (j=1,..,N), then (5) and (6) imply

[0 = 1 =62) 4t i =82

Since f=>™, B:, acomparison of singularities yields m=N=1, and the theorem
is proved.

3. Support points for k=4

For k=4 it was shown in [3] that the extreme points of Co ¥} are functions
with derivatives of the form (3). In this section we shall show that even the support
points of ¥ have this form if k=4.

Theorem 2. For k=4 each support point of V has a derivative of the form
(3 ()= (A =—nz) (1= L2y
where |(|=|n|=1 and {#n.

Proof. Let f be a support point corresponding to a functional L of H(D)™
According to Theorem 1, f” satisfies

n(1—n;z\V
oo i(722)
(=122 () = I\ =
where {, #,...,7, are distinct points of C and a=27_, a;=k/2—1=1. Each
function log ((1—7;2)/(1—{z)) maps D onto a horizontal strip of width z. There-
fore, as in [8, Theorem 2.25], the convex sum
TIPS o/
s(z) = j;; S log =tz
maps D into some horizontal strip of width 7. Thus there exists a constant ¢, where
lcj=1 and c#—1, such that s(z) is subordinate to log (A+e2z)/1 —-z)). Since
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€@ is subordinate to (1+cz)/(1—z) and «=1, Lemma 2 implies that

™ 1-tpr@=ev= [(1X) g

for some probability measure A.

The next part of the proof runs parallel to the proof of Theorem 1. Let L’
correspond to L by L'(f)=L(f). Then Re L'(f")= [, _, ¢(&)di where ¢(&)=
Re {L((1 —{2)72(1+c€2)/(1=E2))%)).  Since  (1—L2) (1 +cé2)/(1—E2))* is the
derivative of a function in ¥, we also have ¢(¢)=Re L'(f’) by extremality. As a
consequence, the probability measure 4 must be supported on a subset of C on
which ¢(¢) assumes its maximum. Since ¢(¢) is harmonic on D, either A has
finite support or ¢(&) is constant.

If @(£) were constant, we would have L'((1—{z)~2z*)=0 for every v=
1,2,3,..., and so

L'(f) =L (1= (1 -2 f(2)) = L'(1-{2)?)
for all fin ¥,. Thus L would be constant on V. To make the argument conclusive,
we have to establish that no coefficient ¢, in the expansion of ((1+cz)/(1 —2))"

vanishes. But this follows immediately from Lemma 2. If >0 is sufficiently small,
the function 1+ez” is subordinate to (1+c¢z)/(1—z), and Lemma 2 implies

0+ ae=c, fz;de.
(o)

Consequently, the support of 4 is a finite set {¢y, ..., &y}, and (7) becomes

N .z)*
f@=0-t7 24 ("‘11+—c§.’“zz J-

By comparing the singularities in this representation with that from Theorem 1 it
follows that N=1 and & ={. This completes the proof.

4. Support points for 2<k <4

For k=2 and k=4 we now know that support points of ¥, and extreme
points of €o V) are of the form (3). A similar relation between support points
and extreme points for 2<k—<4 would be desirable although nothing is known
about extreme points in this case. A slightly weaker statement is given by the fol-
lowing theorem.

Theorem 3. For 2<k<4 a support point of V, is an extreme point of co V.

Proof. Let f be a support point of ¥, and admit a representation as a proper
convex combination of two distinct functions g and % in co V. Since g and 4 are
themselves finite convex combinations of functions in ¥, it follows that f itself is
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a finite convex combination of distinct functions f; in V;:

N N
f= Sty k=0 Si=l
j=1 Jj=1

Tt is no loss of generality to assume that all f; differ from f.
Since f maximizes the real part of a functional in H(D)*, the same is true of
each f; in the convex sum. Therefore Theorem 1 implies

f1(@) ==Lz~ [T (1=n, 2
and
f7(2) = (1=5;2)7 [T (L=njo, 200

where(, 7y, ..., n, aredistinct,{;, 7, ..., N, are distinct, |C{=iCj|=[ndi=lr1kjl=l,
the «, and a;, are positive, and

So,= S, =k2-1<1

From a comparison of singularities, it follows immediately that {;={ for at least
one j. By reindexing, we may assume that {;={.

Consider the specific form of the functions f” and f] in the identity /"=
Zj.v:l A;f7. Analytic continuation along a small loop around 7, leads to an identity

N
eZnia,f’ (Z) — 2 }Vj e2n:i6jfj’ (Z)
Jj=1

for real constants ;. For z=0 this implies
J
N
2711 — 2710 ;
o2ty — 2; A; e
j=

and is possible only if e*™i=¢*"%  j=1, ..., N. In particular, since {;n,, the
product [], (1 _i71612)11°1 must contain the factor (1 —5_z)%. At this point we have
used the fact that the exponents x, and «;, are strictly between 0 and 1. Since o
is arbitrary, the functions f and f; coincide, contrary to assumption, and this com-
pletes the proof of the theorem.

Remark. The proof of Theorem 3 does not extend easily to ail values of k.
For example, corresponding to k=6 one has f=f,/2+/,/2 for the functions

sy (I=iz)(1+iz) sy (1—2)*
f(Z)-—T:C—Z‘)I—, fl(z)_—(l—lz)“’

sy (1422
L@ =gy
On the other hand, for the values of k not covered by Theorem 3 a stronger con-
clusion is provided by Theorem 2.



220 WALTER HENGARTNER, ALBERT PPLUGER and GLENN SCHOBER

5. Linear combinations of a; and a,

In case 2<k=<4 the preceding results do not say whether the product in (4)
contains several distinct factors (splitting) for some support points or whether only
one factor occurs for all support points. We shall consider this question for a rela-
tively simple class of functionals. Originally, we had hoped to find examples for
splitting in this class, but we shall see that splitting does not occur in this situation.

Let B, be the second coefficient body of ¥,. That is, B, is the set of pairs
(a», @) where a, and a3 appear as coefficients in the expansion f(z)=z+a,z2+az3+...
for some function f in V. It is known [7] that B, is homeomorphic to a closed
ball in C? and that to each boundary point of B, there corresponds only one func-
tion in V. The representing measure p of this function is supported by at most
4 points on C, where some trigonometric polynomial of degree 2, say

T(e?) = Re {c; e+ c,e%?},

reaches its maximum and minimum. The positive part of p is concentrated at the
maxima and the negative part of u at the minima. Conversely, each T generates a
boundary point of B, in this way. A quantitative description of the boundary of
B, has been given also by H. Haario [5].

Now we focus our interest on the support points of B,. They maximize over
B, the real part of a functional

L = A2a2+A3a3, A2, A3€C-

By viewing L as a functional on ¥V, it follows from Theorem 1 that functions f
corresponding to support points B, must be of the form

ff@=0—-np2)4. (1—n52)%/(1 —Cz)"/2+1,

where «;=0, o;+a,=k/2—1, and {>n;. That is, the positive part of the represent-
ing measure is supported by one point and the negative part by at most two points.
We express L as a function on M, by using the representation (1). It yields

2a, = fndy and 6a; = (2a,)%+ fﬂ2dﬂ-

[nl=1 Inl=1
By setting A;=6(a+ib), A,=2(c+id), a, b, c,dcR, and n=e® it follows that
®) ReL:a(fcosZBd,u+(fcos@du)2—(fsinGd,u]z)

~b(fsin29d,u+2fcos(9d,u-fsinOd,u)
+cfcos0d,u—dfsin6d,u.
Let py maximize Re L over M, and put
) 0 =2 [ cos 0 dy,, o =2 ['sin 0 dp,.
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Applying the p,-variation as considered in the framework of Lemma 1, we

obtain
2n

fJ(ei")d(u—uo)éO for all €M,

0

as an extremality condition, where now
(10) J(€%) = a(cos 20+ ¢ cos 0—a sin 0)+c cos 0 —d sin 6
—b(sin 20+ ¢ sin 6+ 0 cos 6).

The same argument as used in the proof of Lemma 1 implies that the positive and
negative part of pu, is located at the points of C where J attains its maximum and
minimum, respectively. By what was said a few lines earlier, the positive part of
Uo has to be concentrated at a single point while its negative part is supported by at
most two points of C.

For the remaining part of this investigation we make the assumption that, for our
functional L, the negative part of pq is supported by two distinct points. This assump-
tion will lead us to some necessary conditions on L that provide a contradiction.
Therefore we will come to the conclusion that also the negative part of g, is supported
by a single point.

By assumption the indicator function J must reach its minimum at two distinct
points. We shall now characterize such functions J. We set M=maxJ and
m=minJ and apply a lemma of Fejér and F. Riesz saying that a nonnegative
trigonometric polynomial is the square of the modulus of an algebraic polynomial
in €', Since M —J hasasecond or fourth order zero, say at ¢, and is positive else-
where on C, it follows that

M—J(e?) = p|(e? —e) (e —w)[3,
where w=re*, 0<r=1, and p=0. Similarly, we can write
J(ei")—i71 — ql(eie_eiy)(eio_eié)[2

with ¢g=0 because J—m is positive on C except for two distinct double zeros,
say e'? and ¢”. Taking derivatives, we find

(11) %(e“’) =——2p((1+r2) sin (0 —a)+2r sin (8 —f)
—2r sin (20 —o— B))

and

(12) g—'; (€"%) = 4¢(sin (0 —y) +sin (0 —8) — sin (20 —y —5)).

Since the right hand sides are identical in 6, they remain so if the parameters «, S,
y, 0 are decreased by a constant t (that corresponds to replacing 6 by 6+1). For
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1=(y+3)/2 we have y+0J=0 without loss of generality. Preserving for the other
new parameters the old notations « and f, we find that equation (12) reduces to

g—g (€") = —4q(sin 20 —sin (6 —y) —sin (6 +7)).

By comparing coefficients with the revised (11), it follows that rp=gq, a+p=n,
p(1+r)?sin =0, and 2p(l—r)?cos a=—4¢-2cosy. This implies sin =0, and
by a further rotation, we may set a=0; hence

(1—rp
4r

cosy =— .

This equation restricts the possible values of r to the interval (3—21/5, 1]
and cosy to (—1,0]. Thus, up to a rotation, a three-point support for p, is of
the following form: The point y=1 supports the positive part of y, and two points
e and e™", where m/2=y<m, support the negative part of p,. (Observe that
y=m/2 is the limiting case corresponding to r=1. Here there are two absolute
maxima, at #=0 and O=mn, but only one bears the whole mass k/2+1.) The
indicator J is then given by

(13) J(e®) = 2q(cos 20 —4 cos y - cos 0).

If o is an extremal measure for the functional L(f)=4,a,+ 4sa;, then fi,
defined by dfiy(0)=duy,(0+1) is an extremal measure for the similar functional
L(f)=A,e "ay,+ A;e~¥"a,. Therefore we may restrict our attention to a func-
tional L having for its extremal measure y, the support at n=1 for the positive
part and at n=e*" for its negative part. Comparison of (13) to (10) implies

(14 b=0, ac+d=0, ag+c=—4cosy
immediately, and since ¢=0 we may further normalize a=1. Thus (8) reduces to
Re L = [ cos 20 du+( [ cos 0 du)* —( [ sin 0 du)*
—I—cfcos@d,u—dfsin 0du.

This functional has to be maximized by a measure p, which has its positive part
located at n=1 and its negative part spread over the two points e*” with weights
both nonvanishing.

Let Re L=&,+ &, where

b, (1) =/cos 20 dy+(fcosf)du)2+cfcos()d,u,
@y(1) = —( [ sin 0 du)’—d [ sin 0 dp,

yu) = fsin 0du.
By (14) and (9) the choice of y within [r/2, ) uniquely determines ¢, g, and @;(u);

and let
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this is because these quantities do not depend on how the negative part of y, is
spread over {e”, e~""}. Suppose that the negative part of u, has mass k/2—1—¢
and ¢t at these points, where 0<r¢<k/2—1. Within this range we have to determine
t so that @,(u,) is a maximum under the condition ¢+d=0. Obviously, we have
D, (1) =d?/4 and equality holds if and only if y(u,)=—d/2, in which case the
condition o¢=—d implies @,(u))=y(u,)?. Consequently, because y(uy)=
(2t+1—k/2) sin y, the expression @,(u,) is maximized only for =0 or t=k/2—1.
This contradicts the assumption that the negative part of p, is located at two distinct
points. Thus we have finally proved that a measure corresponding to a support
point of B, has only one negative mass and one positive mass.

Theorem 4. For k=2 each functional Re {Aya;+Asas}, Ay, A;€C\ {0},
achieves its maximum within V only for functions with f* of the form (3).

Of course, if 4, or A, is zero (but not both), the conclusion of Theorem 4
remains true.

Based on the limited information from Theorem 4 it seems reasonable to.
conjecture that support points of ¥, remain of the form (3) even for 2<k<4.

6. The functional Re {a;+iga,}

Although Theorem 4 does not actually provide the maximum of Re {4,a,+ 4;a;}
in closed form, it reduces the problem to an easy one for a small computer. One
needs only to find the maximum of a function of two variables.

If A; is a positive multiple of 42, then this maximum occurs for a rotation of
the function K(z) in (2). A less trivial example is furnished by the functional

Table for M=max Re {a,+iga.}
k

k=2 k=3 k=4 k=5
e| o M @ v M | e v M 0 v M
0180 |1 180 0 1.833 180 0 3 180 0 4.5
1]194.5| 1.125{ 189.5] 33.7 2.012 | 187.4| 20.4 | 3.186| 186.2| 14.2 4.687
2] 210.0f 1.500} 200.9| 51.0 2.506 195.8| 37.1 | 3.727| 192.9| 27.3 5.242
3| 228.6( 2.125| 213.9] 62.5 3.285 205.41 49.9 | 4.595]| 200.3| 39.0 6.150
4 | 270 3 229.8( 72.3 4.341 216.5| 60.2 | 5.773| 208.7| 49.2 7.395
51270 |4 256.4| 84.5 5.669 | 230.2| 69.7 | 7.247| 218.5| 58.5 8.965
6 | 270 5 270 90 7.167 250.9| 81.0 | 9.014| 230.3| 67.4 10.849
71270 6 270 90 8.667 270 90 11 247.0] 77.8 13.040
81270 |7 270 | 90 10.167 | 270 | 90 13 270 | 90 15.5
=8 270 | o—1 | 270 90 |3p/2—11/6| 270 90 [20-3]| 270 90 50/2—-9/2
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Re {a;+iga,} for o real. We computed the maximum value of this functional
over V, for several values of ¢ and k. There are at most two functions of the form
(3) for which the maximum occurs. We have recorded the values ¢ and ¥ in degrees
at which the positive and negative parts, respectively, of the representing measure
u are concentrated; that is, {=exp in@/180 and n=exp imy/180. For the second
solution one replaces ¢ by 180—¢ and ¢ by 180—1.
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