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1. Introduction

Let H(D) denote the set of analytic functions in the unit disc p:{lzl<l),
endowed with the topology of locally uniform convergence, and let ä(D)* be its
topological dual. The elements of ä(D)* are the continuous linear functionals Z
on H(D). Denoted by M the set of real Baire measures I on the unit circle C:DD
such that I "dp:2, 

and bY M1, the subset

Mo:{rt: ! Or:2, llltll=k},

where llpll is the total variation of p. Obviously we have 2<k-<-. The formula

(1) f'(r) : exp I -ror(t -42) dp, ,f(o) : o,
Irll:1

for tle derivative /' together with the normalization /(0):g defines a mapping
V of M into H(D), which is injective and continuous in the weak* topology of M.
The representing measure of f is called p. Discrete measures of M represent the
Schwarz-Christoffel mappings; they are dense in V(M).

Because Mo is compact in this topology, its image V(Mk):Vk is compact in
H(D). Vo is the well-known class of normalized (f(z):z+arr'+...) conformal
mappings of D into C having boundary rotation nllpll=kn. Since the discrete

measures p with llpll:k are dense in Mo, the Schwarz-Christoffel mappings with
boundary rotation kn are dense in Zo.

For 2=k=4 the functions in Vo are univalent. In particular, V, consists of
the normalized univalent mappings of D onto convex domains.

Since I/o is compact, the real part of each functional L of H(D)* is maximized
within Zo by some function, and such functions are called support points if Re Z,

is not constant on Vy It is known that support points of Vo are Schwarz-Christof-
fel mappings with boundary rotation kn, or equivalently, their representing measures

aro discreto with norm k. This result is in [2], and to provide some framework a
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proof of it will be sketched in Lemma 1. The purpose of this paper is to provide
additional properties of support points.

Many functionals of H(D)* have been studied for Vo. One example is the
coefficient functional an in f(z):z*arz|{...*an2"a.... After early attempts it
was finally proved in [t] and [3] that for all zr the maximum of Re a, over Zo is
achieved by the function whose representing measure has its positive and negative
part concentrated at q:l and at q- -1, respectively, i.e., for

K(,): +{{x)r''-'l
Another example is obtained by evaluation of f ' at a fixed point p of D\{0},

or more generally, by Re {e*f '(p)}, a€R. The extremals for these functionals give
the support points of the region R(p): {f '(p), "f€Voy, which is convex only for p
sufficiently small. However, the set {logf'(p): f€Vo} is convex and is known [7]
to have its boundary points furnished by functions./' of the form

(2)

(3) .f' (r) - ( I - r7 z)rrrz -' I (L - ( z)k t2+ L

where l(l:l4l:1 and (*q. By exponentiation, some of these boundary points
are taken onto the support points of R(p). This implies that only functions with
derivative of the form (3) can maximize the functionals Re {r*"f '(p)}.

Similarly, in Section 5 we shall see that extremals for functionals of the form
Re l4rar* Aaaa), where Az, ABQC and a2, as appear in f(z):2aarz2+arzla...,
have representing measurss supported by only two points. It was among these
functionals that we were searching for candidates having extremals of a different
type. Since there is none, it seems reasonable to conjecture that all support points of
Vo must have derivatives of the form (3).

The convex hull of Vowill be denoted by co Yk. lt consists of all finite convex
combinations of elements of v1,. Its closure will be denoted by co vo. A function
f€.Vo is an extreme point of coYp or coVo if f cannot be expressed as a proper
convex combination of two distinct elements of coYp or 6Vb respectively.

It is known l4l that the support points of z, coincide with the extreme points
of 6 V, and are produced by the one-point measures of Mr. Until now no rela-
tions between support points and extreme points were known for k>2. For k>4
it was shown in [3] that the extreme points of co l/u are functions with derivative
of the form (3). For these values of k we shall show that support points of vohave
the same form (3). Although we shall give some information for 2<k-4, a descrip-
tion of the support points of Yo and the extreme points of ddv1, remains as an
intriguing open question for 2<k<4.

In this paper we shall prove the following:

Theorem l. For k>2 the representing measure oJ'each support point in Vo
is discrete and has its positiue part concentrated at a single point.
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Theorem 2. For k>4 each support point of Vo has a derivatiue of the form (3).

Theorem 3. For 2<k=4 each support point of V1, is an extreme point of
co Vr.

Theorem 4. For k>2 each functional Re {Arar*Arar}, Az,lB€C\{0},
achieues its maximum within Ye only for functions witlt f' of the form (3).

If ,4, is a positive multiple of Af,, then the maximum of Re {Arar*Aras} over

Zo occurs for a rotation of the function K(z) in (2), namely for (AzllArl\K(lArlzlAr).
Some less trivial cases are tabulated in Section 6 where A, is a negative mul'
tiple of Af,.

2. The fonn of support points

First we sketch a proof of the following important lemma. The framework is

basic and will be used later.

Lemma l. For each support point o.f Vo the representing rneasure p is discrete

and has norm k.

Proof. LetJo be a support point of Ze corresponding to a functional Lin H(D)*,
and let po be the representing measure offi. Then by setting

7t": po*e(p-ps), 0 -- e < l,

we have a variation of po within Mo, for each p in M1,. By substituting ,r.r, into (1)

we obtain a variation offi within V1,, which has the form

f! (z) : f{ (21 - e I fi @tos (t - a z)d(u - u) + o 1u'1
c

as e *0. Define L'by L'(f'):Z("f). Then

Re z(I) : Re z(Å)* u I t1r» a1r- p; +o(ez),
c

where
J1D : -F.e L'(f{(z)log(L-az))

is a harmonic function on D. The extremality of fi implies that !"JQ)dfu-po)=O
for every F(M*. From this it follows that the positive and negative parts of po

are supported by subsets of C where "I(4) reaches its maximum and minimum,
respectively. Since I is not constant onVo, the function "f(a) is not constant either,

and we conclude that these two subsets of C are discrete and disjoint. This com-
pletes the lemma.

Lemma I remains true for solutions to nonlinear, Gäteaux differentiable func-
tionals. An earlier proof of the lemma is given in [2]. The discreteness of p was

shown earlier in [6].
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We shall also need the following result from [3].

Lemma 2 (Brannan-Clunie-Kirwan). If afunction g of H(D) is subordinate

to afunction (l+cz)lQ-z), for some complexnumber c with lcl=-l, andrf p=-t.
then there is a probability measare i on C such that

s(z)o: Il'r**)' ,,
t6l:r

Our basic result on the form of support points is the following.

Theorem l. A support point of Vp has a discrete representing measure with
positiue part supported by a single point. Thus the deriuatiue of a support point is
of the form

(4)
j:L

where l(l:l?il:|, at=O, and fl=rqi:kl2-|. Moreouer, ( and 4r,...,n, qre

mutually disjoint.

Remark. Each support point is a Schwarz-Christoffel mapping with excatly
one corner at infinity, where the canonical direction turns around a positive angle
of (kl2+l)n, while at all other corners it takes negative turns. For 2<k=4 the
image has an infinite convex complement which is not a strip or a halfplane; for
n:l it is a wedge. If k:2, the product is deleted and f(z):llQ*Q), l(l:1
(cf. [a[.

Proof of Theorem 1. Let f maximize the real part of a functional L in H(D)*
for which Re Z is nonconstant on V1,. By Lemma I f is of the form

f'(r) - tt tr-(iz)-§,. n tr- ryjz)o,
i:l j:L

where lhl:lql:|, 2,1=rai:kl2-1, Z?=rfri:kl2+|, and where the sets {(,}
and {ar} are disjoint. Since the function Sk):IIi:r(l-q,21-0,r0, with B:p12'r1,
maps D into the halfplane Ro w> ll2, it is subordinate to 1/(1 -z). As a result,
Lemma 2 with c:0 implies that g(z)P:lrcr=rQ-121-447 for some probability
measure )., and by (5) that

(6) f'(z): I t 1r11t-14-P at
l(l:r

where h (z) : IIi =, 0 -4 i z)d;.

Let L'correspond to Lby L'(f'):L(f). Then, by linearity, we have

ReL'(f'): I E@al
l6l:1

f'(z)- (l-{z)-ktl-t n t1 _ 1iz)-o,,

(5)
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where E(0:yeq'(h(z)(t-121-a1y is harmonic on D. Since å(z)(t-(21-a i"
the derivative of å function in Yp, we also have E(O=Re L'(f') by extremality.

As a consequence, the probability measure ,t must be supported on a subset of C
on which E(O achieves its maximum. Since E(0 is harmonic on D, either ,l has

finite support or E($ is constant.

lf EG) were constant, we would have L'(h(z)z):Q for €v€r1r v:1,2,3, ""
In this case, since h(z)+o in D and (f'lt')(o):t' we could conclude that

for all f in Vo. Thus Z would be constant on Vy-

Consequently, the support of )' is a finite set {(r,..., (,*}. If ,t has mass '1, at

ti U:1, ..., N), then (5) and (6) imPlY

m

rt Q-Ct4-f ' : Är(l -hz)-P +... +,try(l -(nz)-q'
i:1

Since B: )i, §r, acomparison of singularities yields tn:N:7, and the theorem

is proved.

3. Support points for ft >4

For k>4 it was shown in [3] that the extreme points of coV* are functions

with derivatives of the form (3). In this section we shall show that even the support

points of Vyhave this form if k>4.

Theorem 2. For k>4 each support point of Ve has a deriuatiue of the form

(3) f'(z) : (l -qz)t'tz-r 1(l -671r'rz+t

where l(l:lttl:l and (*q.

Proof. Let f be a support point corresponding to a functional L of H(D\".
According to Theorem 1,/' satisfies

(t - ( z)z f , (z) :,U,1' -li:)"
where (, 4L,...,qn are distinct points of C and d:Z]=rai:kl2-l>1. Each

function log((t -Aiz)10-Q)) maps D onto a horizontal strip of width z. There-

fore, as in [8, Theorem2.25], the convex sum

s(z): z!i-b,]:l#
maps D into some horizontal strip of width z. Thus there exists a constant c, where

lcl:t and c*-1, such that s(z) is subordinate to log ((l+cz)lQ-z)). Since

L,(f,)-1,(r+)-1,(h)
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es(') is subordinate to (l + cz)l$ _-z) and a*-1, Lemma 2 irnplies that

t7)

for some probability measure .1.

The next part of the proof runs parallel to the proof of Theorem l. I_Et L,
correspond to Lby L'(f'):L(f). Then FieL'(f'):!ct=tA(Oil, where E(O:
ne {z'(t -(z)-,((t+cEz)10-C4))1. since 1r-(21-i((ric(z)le -t4)" is the
derivative of a function in Vo, we also have E(()<Re L'(f ') by extremality. As a
consequence, the probability measure ,1 must be supported on a subset of c on
which g(O assumes its maximum. Since E(O is harmonic on D, either i has
finite support or Eff) is constant.

If E G) were constant, we would
1, 21 3, ... , and so

L'(f) : L'(tt - (r)-'(1

have L'((t -Cz)-z z')-0 for every y -

-C4'f'k)) : L' (tt - (r)-')
for alllin 21. Thus z would be constant onvo. To make the argument conclusive,
we have to establish that no coefficient c, in the expansion of ((t +cz)le-z)),
vanishes. But this follows immediately from Lemma 2. lf e>0 is sufficiently small,
the function l*ezu is subordinate to (l*cz)l(l-z), and Lemma 2 implies

A*dt:cv

Consequently, the support of )" is a finite set {(r, ...,€*}, and (7) becomes

.f'(z): (r-gr1-z ä ^,Fk)".
By comparing the singularities in this representation with that from Theorem I it
follows that ,ly':l and 6r:(. This completes the proof.

4. Support points for 2<k<4

For k:2 and k>4 we now know that support points of Vo and, extreme
points of co Yo are of the form (3). A similar relation between support points
and extreme points for 2=k--4 would be desirable although nothing is known
about extreme points in this case. A slightly weaker statement is given by the fol-
lowing theorem.

Theorem 3. For 2<k<4 a support point of V1,is an extreme point of coVo.

Proof. I.et f be a support point of Yy ar,d admit a representation as a proper
convex combination of two distinct functions g and h in co vo. since g and h are
themselves finite convex combinations of functions in Vo, it follows thatlitself is

I c" ai.-
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a finite convex combination of distinct, function, .fi in Vx:

NN
f- z7ifi, Ai>0, zÅi: l.

j:1

It is no loss of generality to assume that all f, differ from /.
Since/maximizes the real part of a functional in H(D)*, the same is true of

each f, in the convex sum. Therefore Theorem I implies

.f' (r) : (l - 921-t'tz-t fi (l -r1" z)""

and

fj (r) : (1 - (, 21-r'tz-t fi (l - q i,,z1"io i

where(, 4t,...,qn atedistinct, (j, qjr.,...,Ii,1 are distinct, l(l:l(;l:lrt,i:lqt.l:1,
the ao and aro, are positive, and

Z o,: 
4 

ot",: ftl)-l < l.

From a comparison of singularities, it follows immediately that (i--C for at least

one j. By reindexing, we may assume that (!:(.
Consider the specific form of the functions f ' and fj in the idenlity 7':

Z'!=r lr f! . Analytic continuation along a small loop around f" leads to an identity

ezftiq.jit (z) : § Ä,rr*0,1 1r1j:r

for real constants är. For z:0 this implies

sznieo - ) ),rrrnr,
i=r

and is possible only if ezoiör:eZoino, j:1,...,N. In particular, since (r*q,, the

product lf",(l-46,2)'1" must contain the factor (l-qoz)o". At this point we have

used the fact that the exponents ao and dbtate strictly between 0 and l. Since o

is arbitrary, the functions / and /, coincide, contrary to assumption, and this com'
pletes the proof of the theorem.

Remark. The proof of Theorem 3 does not extend easily to all values of k.

For example, corresponding to k:6 one has f:fi|2+fzl2 for the functions

f'(z):ffi#a, f{(,):##,
fi(z\: \l+z)2' 'r.r - (l _(z)o .

On the other hand, for the values of /c not covered by Theorem 3 a stronger con-

clusion is provided by Theorem 2.



220 Warrrn HnNclnrNER, Arnpnr Pruucnn and GrrNN ScnonEn

5. Linear combinations of a, anll a,

In case 2=k<4 the preceding results do not say whether the product in (4)
contains several distinct factors (splitting) for some support points or whether only
one factor occurs for all support points. We shall consider this question for a rela-
tively simple class of functionals. originally, we had hoped to find examples for
splitting in this class, but we shall see that splitting does not occur in this situation.

Let B, be the second coefficient body of Vo. That is, 82 is the set of pairs
(az, as) where a, and arappear as coeff.cients in the expansion f(z):2 * a2221 sr2s 4 . ..
for some function f in Vo. It is known l7l that,B, is homeomorphic to a closed
ball in Cz and that to each boundary point of B, there corresponds only one func-
tion in vk. Tbe representing measure p of this function is supported by at most
4 points on C, where some trigonometric polynomial of degree 2, say

T(et\ : Re {creie a crezie),

reaches its maximum and minimum. The positive part of p is concentrated at the
maxima and the negative part of pt at the minima. conversely, each T generates a
boundary point of ,8, in this way. A quantitative description of the boundary or'
.8, has been given also by H. Haario [5].

Now we focus our interest on the support points of ,Br. They maximize over
Bzthe real part of a functional

L: A2a2*Asas, Az, As€C.

By viewing L as a functional on vo, it follows from Theorem I that functions /
corresponding to support points ,B2 must be of the form

f'(z) : (l -412)\. (l -ryrz),zl(t - 6z1r,tz+r,

where ar>0, u1*ar:kf2-I, and (*?li, That is, the positive part of the represent-
ing measure is supported by one point and the negative part by at most two points.

We express L as a function on Mo by using the representation (l). It yields

2a, : I n du and 6ar: (2ar)z * [ n, du.
Itrlir lrrl:1

By setting At:6(a*ib), Az:2(c+id), a,b,c,deR, and q-eie, it follows that

(8) ReI -

Let po maximize Re Z

-b(/sin 20 dp+2 f ror 0 dp./sin 0 dp)

*c/cos 0dp-dIsinAdp.

, U cos 20 dst+U cos 0 dp)' -U sin g dp)')

over Mo, and put

2[cos 0dpo, o-2lsin 0dpo.(e) a-
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Applying the p"-variation as considered in the framework of Lemma 1, we
obtain

J(r'u) dQr- FJ < 0 for all p€.Mk

as an extremality condition, where now

(10) J(r'u) - a(cos 20+q cos 0-o sin 0)+c cos 0-d sin0

-b(sin 20+ g sin 0+o cos 0).

The same argument as used in the proof of Lemma I implies that the positive and
negative part of po is located at the points of C where ,I attains its maximum and
minimum, respectively. By what was said a few lines earlier, the positive part of
po has to be concentrated at a single point while its negative part is supported by at
most two points of C.

For the remaining part of this investigation we make the assumption that, for our
functional L, tlte negatiue part of pois supported by two distinct points. This assump-
tion will lead us to some necessary conditions on L thal provide a contradiction.
Therefore we will come to the conclusion that also the negative part of po is supported
by a single point.

By assumption the indicator function "I must reach its minimum at two distinct
points. We shall now characterize such functions ,I. We set M:maxJ and
m:rnin J and apply a lemma of Fejdr and F. Riesz saying that a nonnegative
trigonometric polynomial is the square of the modulus of an algebraic polynonial
in e'0. Since M-lhasasecond or fourth order zero, say at eie, and is positive else-

where on C, it follows that

M - J (eto) : pl(eie - ei") (e" - w)l',

where w:rei0, O=.v=l, and p>0. Similarly, we can write

J (eie) - m : ql(eie - eit)(eio - eia77

with q>0 because J-m is positive on C except for two distinct double zeros,

say eiv and eiö. Taking derivatives, we find

r

(11)

and

(12)

-2r sin(20 -o-p))

# @") -  q(sin (0 _y) + sin (g -ä) - sin (20 -y -ä)).

Since the right hand sides are identical in 0, they remain so if the parameters c, B,
y, ö are decreased by a constantr (that corresponds to replacing 0 by 0+r). For
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x:(yaö)12 we have y*6:0 without loss of generality. Preserving for the other
new parameters the old notations a and B, we find that equation (12) reduces to

AJ
* (et9): -4q(sin 20-sin (0-y) -sin (0 + y)).

By comparing coeffi.cients with the revised (1 l), it follows that rp:q, a*B:v,
p (l * r)2 sin o(:0, and 2p (l - r)2 cos a: - 4tl . 2 cos y. This implies sin ry:0, and
by a further rotation, we may set a:0; hence

coST:-(ll')'.
4r

This equation restricts the possible values of r to the interval (3-21/r,lJ
and cosy to (-1,0]. Thus, up to a rotation, a three-point support for po is of
the following form: The point 4 : 1 supports the positive part of po and two points
eir and e-'?, where nf2<y<.v, support the negative part of po. (Observe that
l:nl2 is the limiting case corresponding to r:1. Here there are two absolute
maxima, at 0:0 and 0:n, but only one bears the whole mass kl2*1.) The
indicator ,I is then given by

(13) J(nt') - 2q(cos 20 -4 cos 1, 
. cos 0).

If po is an extremal measure for the functional L(f):Arar*Arar, then Po

defined by dfio(0):f,p0(0+r) is an extremal measure for the similar functional
Z(f):,qr"-i'ar+Are-zi"ar. Therefore we may restrict our attention to a func-
tional Z having for its extremal measure po the support at q:l for the positive
part and tt q:stit for its negative part. Comparison of (13) to (10) implies

(14) b:0, ac+d -0, aQ+c-- cosy

further norm alize a - 1. Thus (8) reduces toinrmediately, and since q=0 we may

Re z : ! cos 20 dp+(l 
"rt 

o au)' -([ sin 0 dp)z

+c.;f cos 0 dp-d I sinl dp.

This functional has to be maximized by a measure po which has its positive part
located at q* 1 and its negative part spread over the two points e+'r with weights
both nonvanishing.

Let Re L:iDt1. @, where

and let

By (14) and (9) the

@r00 - [ cos 20 dp+(f cos 0 dp,)'+t { cos 0 dp,

Y{ti-[sinlclP.
choice of y within [n12, n) uniquely determines c, q, and @r(po);
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this is because these quantities do not depend on how the negative part of p, is
spread over {etr,e-ry}. Suppose that the negative part of po has mass kl2-l-t
and t at these points, where 0=l* kl2-1. Within this range we have to determine
I so that @r(pr) is a maximum under the condition o*d:O. Obviously, we have
@r(yo)<dzl$ and equality holds if and only if y(1t): -d12, in which case the
condition o: -d implies iDr(po):yQto)2. Consequently, because y0tö:
Qt+l-kl2) sin y, the expression iDr(pJ is maximized only for t:0 or t:kl2-1.
This contradicts the assumption that the negative part of p6 is located at two distinct
points. Thus we have finally proved that a measure corresponding to a support
point of Brhas only one negative mass and one positive mass.

Theorem 4. For k>2 eaclt functional Re {A2a2*Axas}, Az,lB€C\{O},
achieues its mqximum u,ithin Vo only for functions with f ' of the form (3).

Of course, if A, or A, is zerc (but not both), the conclusion of Theorem 4
remains true.

Based on the limited information from Theorem 4 it seems reasonable to.
conjecture that support points of Vo remain of the form (3) even for 2<k<4.

6. The functional Re {araipar}

Although Theorem 4 does not actually provide the maximum of Re {Arar* Arar}
in closed form, it reduces the problem to an easy one for a small computer. One
needs only to find the maximum of a function of two variables.

If l, is a positive multiple of Af,, then this maximum occurs for a rotation of
the function K(z) in (2). A less trivial example is furnished by the functional

Table for M -max Re {as * igar\
Yk

0

I
2
3

4

5

6

7

8

180

194.s

210.0
228.6
270
270
270
270
270

1

1.t25
1 .500
2.125
3

4

5

6

7

180

189.5

200.9

213.9

229.8
256.4
270
270
27A

0

33.7

51 .0

62.5

7 2.3

84.5

90

90

90

1.833

2.012
2.506
3.285
4.341
5.669
7.167
8.667

10.167

180

187.4

1 95.8
20s.4
216.5

230.2
250.9

270
270

0

20.4

37.1

49.9

64.2

69.7

8l .0
90

90

3

3.186
3.727
4.s9s
s.773
7.247

9.014
11

l3

180

186.2

192.9

200.3

248.7

218.s
230.3

247.A

270

0

t4.2
27.3

39.0
49.2

58.s
67 .4

77.8
90

4.5
4.687
s.242
6.1 50

7 .395
8.965

1 0.849
1 3.040
l5.s

zla I ,o Itnn-sp

k:5

al* MMM

90
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Re lar*iqa2) for g real. We computed the maximum value of this functional

over Vp for several values of q and ft. There are at most two functions of the form
(3) for which the maximum occurs. We have recorded the values E and rlt in degrees

at which the positive and negative parts, respectively, of the representing measure

p are concentrated; that is, (:exp inEfi8A and 4-exp inltll80. For the second

solution one replaces q by 180-q and rlr by 180-t/.
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