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ON PSEUDO-MONOTONE OPERATORS
AND NONLINEAR PARABOLIC INITIAL-BOUNDARY
VALUE PROBLEMS ON UNBOUNDED DOMAINS

VESA MUSTONEN*

1. Introduction

Let Q be an arbitrary domain in RY (N=1) and let Q be the cylinder 2X(0, T)
with a given 7=0. We shall consider on Q the quasilinear parabolic partial dif-
ferential operator of order 2m (m=1) of the form

ou(x,t)
(1) T+Au (x, 1),
where A4 is an elliptic operator given in the divergence form
) Au(x,t) = 3 (=1)* D*4,(x, t, u, Du, ..., D™u).
laj=m

The coefficients 4, are regarded as real-valued functions of the point (x,¢) in Q,
of n={n,: |B|=m—1} in R¥ and of {={{;: |f|=m} in RY>, where a=(0, ..., o)
and B=(B,, ..., By) are N-tuples of nonnegative integers, |B|=p;+...+fy and
D*= [, (9)ox)™.

If we assume that the functions 4, satisfy the familiar condition

(A, Each A,(x,t,n,0) is measurable in (x,t) for fixed &=(n,{) and con-
tinuous in ¢ for fixed (x,t). For a given p=>1 there exists a constant ¢;>0 and a
Sfunction k,€LF(Q) with p’=p/(p—1)~' such that

14,(x, 1,7, O = e (JCP~2 4+ Inle =2+ ky (x, 1))
Sor all |a|=m, all (x,t)€Q and all ¢=(n,{)eR"+N2=R",
then the operator A gives rise to a bounded map S from the space ¥"=L*(0, T; V)
to its dual space ¥°*, V being a closed subspace of the Sobolev space W ™?(Q).

When @ is a bounded domain, the operator d/0¢ induces a maximal monotone
map L from the subset D(L)={v€¥": dv/ote ¥, v(x,0)=0 in Q} to ¥™*, and
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from a simple set of additional hypotheses of the Leray—Lions type it can be derived
that S is pseudo-monotone on D(L). This result is then applicable to the existence
of weak solutions for the parabolic initial-boundary value problems for the opera-
tor (1).

When Q is unbounded, the situation is different while the compactness part
of the Sobolev embedding theorem and Relich’s selection theorem are no more
available and the above definition of the set D(L) does not make sense.

The purpose of the present note is to show, for arbitrary domains €, that the
map S induced by the elliptic operator 4 is pseudo-monotone as a map from the
space # =9¢"nL*(Q) to #™* on the set D(L)={ve# : dv/dte #™, v(x,0)=0 in Q}
whenever the coefficients A4, satisfy the following conditions (cf. [5] p. 323, [6])
in addition to (A,):

(Ay) For each (x,t)€Q, each nE€R™ and any pair of distinct elements { and
¢* in RN,

|a|21m {Aa(xa 1, 1, g)_Aa(xﬁ 1, n, C*)}(Ca_ :) = 0.

(A;) There exist a constant c2$0 and functions k,€L'(Q), h, L7 (Q) for all
le|=m, such that

A%, 1, )& == 2 h(x, 1) E—ko(x, 1)

la|=m la|=m

Sor all (x,t)€Q and all £€RM,

This result is analogous to the elliptic case studied by F. E. Browder [1]. In
fact, our method here is a modification of the method introduced by R. Landes
and V. Mustonen [4], which makes it possible to relax one of the classical conditions
imposed on the coefficients 4,,.

The result of pseudo-monotonicity can be applied to the variational problems
for the operator (1) involving a domain which is not necessarily bounded. As an
example we shall show that the partial differential equation

ou .
3 7)—1—+Au—f in Q

with the initial-boundary conditions

u(x,00=0 in Q
“) {D“u =0 on 0QX(0,T) for |of=m—1
admits a solution u for any given fin L”(Q). Under similar conditions (a condition
stronger than our (Aj;) was needed) this existence theorem was also proved by
G. Mahler [6] by an ad hoc approximation method which was originally introduced
by P. Hess [2] for elliptic Dirichlet problems.



On pseudo-monotone operators and nonlinear parabolic initial-boundary value problems 227

2. Prerequisites

Let Q be an open subset of RY. The Sobolev space of functions u such that
u and its distributional derivatives D*u lie in LP(Q) for all |a|=m is denoted by
wm™r(Q). By W ?(Q) we mean the closure in W™?(Q) of Cg°(Q), the space of
test functions with compact support in Q. If u€ W™?(Q), we shall write #(u)=
(D*u: |a|=m—1}, {(u)={D"u: |o|=m} and &(u)={D*u: |¢|=m}. When T=0 is
given and V is a closed subspace of the Sobolev space W™P(Q), we denote
v =IP(0, T; V), a Banach space equipped with the norm

T
lully = { [ lu@)]p de}™.
0
We let further %" stand for the Banach space ¥ nL2(Q) with Q=0X(0, T)
and with the norm |« [,= I+l 120

The duality pairing between the elements u in a Banach space X and f in X*
is denoted by (f, u)y, where the subscript X will be omitted when no confusion is
possible. If l<p=<eo, # is reflexive and its dual space is #™*=¥"*4+L*(Q),
where ¥ *=LF(0, T; V*). Furthermore,

W L2(Q) CW* < L0, T; V*+L¥Q));

for each u€  the distribution derivative u’=0u/dt can be defined and the con-
dition w’€#™* makes sense. Each uc€# with w’'¢#™ is (after a modification
on a set of measure zero) a continuous function, [0, 7]-L2(£) and the following
integration formula holds (see [6], [7]) for all u, ve ¥~ with ', v'eW™:

) W', )y + ', u)y = (” (1), U(T))Lz(sz)—(“ 0), U(O))L2(9)-

Let L stand for the linear map from ¥~ to #"* which takes v to »” having the

domain
D(L) = {ue#: w'eW™, u(x,0) =0 in Q}.

It follows from (5) that (Lu, #)=0 for all u€ D(L). Thus L is a monotone linear map.

We close this section by recalling the definition of a pseudo-monotone map
and an abstract surjectivity result which we will employ in proving the existence
theorem in Section 4. Indeed, Theorem 1.2 of [5] p. 319 can be stated as follows:

Proposition 1. Let X be a reflexive Banach space with strictly convex norms
in X and X*. Let L be a linear maximal monotone map from D(L) to X* with D(L)
dense in X, let T be a bounded map from X to X*, and suppose that T is D(L)-pseudo-
monotone, i.e. for any sequence (v,)CD(L) with v,~v (weak convergence) in X,
Lv,~Lv in X* and limsup (T(v,), v,—v) =0, it follows that T(v,)~T(v) in X*
and (T(v,), v,)~(T(v),v). If T is coercive on X, i.e. (T(u), u)lul2—~e> as |ul|—>oo
in X, then for any feX* there is uc¢ D(L) such that Lu+T(u)=f.
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3. Theorem on pseudo-monotonicity

Let us assume that the coefficients A, of the operator (2) satisfy the conditions
(A, (Az) and (A,) in the given domain Q=QX(0, T). On account of (A,) the
equation

6) a(u,v) = l > [ A,(x, 1, E@W) D*vdx dt
al=m o)

defines a bounded semilinear form on ¥ X ¥ . Hence (6) gives rise to a bounded
(nonlinear) map S from ¥~ to ¥™* by the rule

) (S),v) =a(u,v), u,veY"

In view of (A,) and (A,) it is clear that ¥~ would be the natural space for the mapping
S but, on the other hand, the map L is defined on the subset D(L)c# ¥ only,
with values in #°*. Therefore we shall regard S as a map from #" to #"* and prove

Theorem 1. Let Q be an arbitrary domain in R, T=0, Q=QXx(0, T) and
let the functions A, satisfy the conditions (A,), (Ay) and (A;). Then the map S from
W to W* defined by (7) is D(L)-pseudo-monotone.

Proof. We can follow the lines of the proof of the elliptic case in [4]. Indeed,
let (v,)cD(L) be a sequence such that v,~v in %, Lv,~Lv in #* and
lim sup (S(v,), v,—0)=0. We must verify that S(v,) ~ S(v) in #"* and that (S(v,), v,) ~
(S(), v), at least for an infinite subsequence of (v,). As v,~v in ¥, D*v,~ D*v
in L?(Q) for all |x|=m and v,~v in L2(Q). Our aim is to show that D*v,(x, 1)—
D*v(x, t) almost everywhere in Q for all |x|=m for some subsequence. By (A,)
this implies that 4,(x, 7, £(v,))~4,(x, ¢, E(v)) ae. in Q for all |a|=m. By (A,
this also means that 4,(., ., £(v,))~4,(., ., £@)) in L”(Q), and thus S(v,)—~ S(v)
in #* follows. The a.e. convergence of D*v,(x, ?) to D*v(x,t) for all |a|=m—1
is established by Aubin’s Lemma ([5] p. 57). Indeed, W ™?(Q) is compactly embedded
in W™=b?(w) for any subdomain w with a compact closure in Q. Thus v,~v in
W and Lv,~Lv in #™ together imply (cf. [6] p. 205) that v,—~v (strongly) in
L*(0, T; W™ *P(w)), ie. D*v,~D*v in LP(wX(0, 7)) for all |x|=m—1, and
the a.e. convergence for a subsequence follows.

To verify that D*v,(x, t)~D*v(x, t) a.e. in Q also for all |x|=m we denote

gu(x, 1) = Iaém {4a(x, 2, n(0,), L) — 4. (x, 1, n(v,), { @)} (D*v,— D),
pa(x, 1) = | ém A,(x, t, £(v,))(D*v,—D*v),
rn(x’ t) = laém Aa(xa z, 77(%), {(v))(D“v——D“v,,),

s,(x, 1) = g s%'—l A,(x, 1, £(v,)) (D*v—D4v,).
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Then ¢,=p,+r,+s, in Q. If we can show that ¢,(x,7)—~0 a.e. in Q, then the
desired result follows from Lemma 6 due to R. Landes [3]. In fact, as g,(x, )=0
for almost all (x, t)€Q by (Ay), it suffices to show that

®) limsup [ g,(x, )dxdt = &,
Ok

where Q,=Q, X (0, T), (L) is a growing sequence of bounded subdomains of Q
such that p(@\U;_, €)=0 and &—0 as k—e. For any fixed k we have

[a.0)= [P )= [ puCe D)+ [(rax D+s.(x 1),
(% Q O\ Qs Qe

where we know by assumption that limsup [ o Pn(x, 1)=0. Moreover, since (D*v,)
is bounded in L?(Q) and (4,(., ., £(v,)) is bounded in L”(Q), we get by (A),

— [ no=—3 [ 4,(x1&@)Dw,
oNQ, lel=m o\(g,
lalsm Q\‘ékA o 1 SCI)D
=c 3{ [1In (x,z)lv}””+ f ky(x, 1)
la|=m O
« p,_

where obviously g —~0 as k—oo, ¢ being some positive constant. Since D*v,—D%v
in LP(Q,) for all |a|=m—1 and since A,(.,.,n(v,), {@)~A4,(.,.,n({®),{(®)) in
L7(Qy) for all |a|=m by (A;) and the dominated convergence theorem, we can
conclude that

lim sup f(r,,(x, D)+s,(x, 1) =0
"

tor any fixed k. Thus (8) has been verified.
We complete the proof by showing that (S(v,), v,)—~(S(®), v). In view of the
assumption, lim sup (S(v,), v,)=(S(v), v). Hence it suffices to prove that

) lim inf (S(v,), v,) = (S@), v).
By (A,) we have

A (xa Z é(vn))Da =, é'm Aa(x’ Z 1’](0,,), C(U))(Da Un—Dav)

al

+l IZ Aq(x, t, &(v,)) D0,
aj=m
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and hence we get further for any fixed £,

fA (x, 1, E(v,)) D*v, = é’m an(x, 1, n(v,), L)) (D*v,— D)

|a]Sm 0

+ 3 fA (x, £, E(v,)) D*v+ [ Au(x. 1, E@) D,

la|= xzfsm— 0.
+ 2> f A,(x, 1, E(,))D*v,.
laj=m [eAN(%
By the same arguments as above in proving (8) we obtain

lim inf 2 fA (x, 2, E(y)) Dy, = = an(x, 1, E(v)) D —¢,,
al=m ]

lal=

where ¢, —~0 as k—o<o, and so the proof is complete.

4. Parabolic initial-boundary value problem

We shall employ Theorem 1 and Proposition 1 for obtaining an existence theo-
rem for the parabolic equation (3) with initial-boundary conditions (4). Indeed, we
can choose V=W;"?(Q) to obtain

Theorem 2. Let Q be an arbitrary domain in R¥, T=0, Q=QX(0, T) and
let the functions A, satisfy the conditions (Ay), (Ay) and (Ay). If a(u, w)llul;'—<
for all ucy” with |jull, <o, then for any feL¥(Q)+L2(Q) the equation (3) admits
a weak solution u in D(L), i.e. there exists uc D(L) such that

0
(10) (—(-9%, w] +a(,w) = (f,wy forall weH:
W
Proof. First we remark that by assumption the map S defined by (6) is coercive
on ¥, although not necessarily on #". Therefore, to invoke Proposition 1 with
X= we perform the substitution u=e¢*v with k a positive constant, as suggested
in [6]. Then we obtain from (3) the equation

—(;—U—-!-Av-l-kb =f in Q

with the initial-boundary conditions (4), where

Av(x,t) = 3 (= DDA, (x, 1, E()),

lal=m
A, (x,1,8) = e MA,(x,1,¢¢) and f=eMf

It is obvious that the functions A4, also satisfy the conditions (A,) to (A,;) with a
new constant ¢ and new functions N,€L7(Q). Now we define a map
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S, =8+S,: W -W*
by
S@,w)y=d@w,w= 23 ‘/.A~a(x, t, E())D*w dx dt
ia]émQ

and
(So(@), w) =k fvw dx dt.
Q

On account of Theorem 1, § is D(L)-pseudo-monotone. It is easily seen that
also the sum S;=S+S, is D(L)-pseudo-monotone. Moreover, S; is coercive on
9 . Indeed, by the assumption of the theorem, a(v, v)|v]|;'—~< and therefore

(S]_(U), U) _ 5(1), U)+k||v||L2(Q) o oo
lollw [v]4+1vll L2g)

as  [vlly — oo.

For applying Proposition 1 we must finally verify that the map L=9/d¢: D(L)—~#"*
is maximal monotone and that D(L) is dense in #%". By Lemma 1.2 of [5] p. 313
it suffices to show that for any v€#  and we€#™ such that

an 0=W-—Lu,v—u) for all ueD(L)

it follows that t€ D(L) and w=Lv. To show this let v€é#” and we# ™ be given,
let ¢€Cg(0,T) and #€V NL*(Q) be arbitrary and let w=¢u. Then uc¥,
u(0)=u(T)=0, u'=¢'ucL2(Q)c#™ and hence u€D(L). Since (Lu,u)=0, we
get from (11) by (5)

0= (w, v)— (@i, v) —(w, oil),

where
.
(@@, v) = (f o’ (Ho(t)dt, L_‘)VnLa(n)
0
and
T
(w, Qi) = (f @ ()w(r) dt, ﬁ)VﬂLz(Q)’
0
while

T »
f o' (Nv(@)dic L3(Q) c V*+L*(Q) and fqo(t)w(t) dteV*+L2(Q).
0 0

Consequently, for all @€V nL2(Q),

T T .
0= o) —([ o @We@di+ [ o@)w)dt, i), g,
0 0
implying that

T T
f go’(t)v(t)dtz—f @()w(r)dt
0 0

tor all eCg(0, 7)), ie. w=v'=Lv. The fact that v(0)=0 implying v€D(L)
follows from (5) and (11) by standard argument (see e.g. [8] p. 176).
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Now we are in a position to employ Proposition 1 to establish the existence
of an element v in D(L) such that

[-(((;—lt;’ W]W-I-ﬁ(v, W)+ k(@ Wiz = (s Ww

for all wew , for any given fc# *. Reversing the substitution we get (cf. [6])

[%—u, e~k w) +a(u, e~ w) = (f, e~ "w),
t W

for all wew , which implies that (10) holds. Since also u€D(L), the proof is
complete.

Remark. Itis clear from the proof of Theorem 1 that the Dirichlet null bound-
ary condition in (4) can be replaced by any boundary condition associated to V
with WmP(Q)cVcW™?(Q). On the other hand, it can be shown that (3) admits
also a periodic solution #(0)=u(T) if one chooses

D(L) = {ue " wew™, u(0) = u(T)}.
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