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ON THE EXISTENCE AND UMQUENESS OF SOLUTIONS
F'OR STRONGLY NONLINEAR ELLIPTIC

VARIATIONAL PROBLEMS

VESA MUSTONEI{* ANd CHRISTIAN G. SIMADER

1. Introduction

In this note we are concerned with the existence and uniqueness of solutions of

nonlinear variational equations and inequalities for quasilinear elliptic partial dif-

ferential operators of the form

Au(x) - Z (- 1)tdt pa(s,(D.u(x))), x€Q
lal=m

which can be thought of as a simple nonlinear generalisation of the Laplace opera'

tor. Here 0 is an open bounded subset in -RN and the coefficients 8'c are continuous

functions obeying no growth restrictions from above.

The probleriis of this type have been extensively studied of late in the context

of the theory of mappings of monotone type acting between Banach spaces which

are determined by the behaviour of the coefficients. When the growth is at most of

polynomial type, it is customary to work with reflexive Sobolev spaces (see [2], [4],

itSl, [tOD, but when no such restriction is imposed, it is natural to tackle this problem

in the framework of complementary systems of Sobolev-Orlicz spaces (see [6], [7],

[8], [9], [10]). In this method the function space, where the problem is to be studied,

is determined by the maximal growth of the coefficients. However, the abstract

surjectivity results are available for the existence of solutions for the problem,

provided an additional coercivity condition is fulfilled. That condition means a

iestriction for the growth from below. There have been several ways to widen the

space between these two growth limitations. One may consider the sums of dif-

ferential operators such that the principal part is coercive, obeying a polynomial

growth condition, while the other terms may have liberal growth (see [3], [5], [11],

[g], [19], [20], l2ll, B2l). The introduction of an anisotropic product of sobolev

spaces allows different growth for various coeffi.cients of the same order ([7D, [10]).
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The growth limit from above for the lower order terms can be slightly lifted by the
use of the full force of the Sobolev embedding theorem.

The purpose of the present note is to introduce a new rather simple regularisa-
tion method which allows more liberty for the coefficients g, of the operator (1.1)
than the methods described above and which can be applied to variational inequali-
ties as well as to various boundary value problems. we shall make the operator
coercive in some function space by imposing on the functions go a weak growth
restriction from belowwhich only means that g,(t)*@ as l+@ and go(t)r--
as , * - -. No growth limitations will be needed from above. To be more precise
we introduce our conditions for the coefficients g,.

(Hr) For each u, lol=*, the function g,: .R*R is continuous. There exists
an Orlicz function M and a constant cr>O such that for each lul=rn,

(1.2) g*{t)t = M(t)-ct for all t€R.

(Hr) For each d. with lol-* the function gn is strictly irtcreasing.

(Hr) For each a with lol= m-l
where rd is continuous and bounded

E"U)I>O for all /€^R ond

the function gn has a representation go:eo*ro,
and eo rr cotxtinuoLts, satisfying the conditions

(1.3) q"(t)5 = E.$)s+KI E.Q)I+KZ

for all s, /€.R, K, and K, being some positiue con,stants.

We would like to mention that (1.2) guarantees the existence of the representa-
tion in (Hr) for all lul=m-l. on the other hand, it will be possible to relax (1.2)
for lal<m-l provided Poincard's inequality holds in the Sobolev space involved.
The inequality (1.3) is well known by the papers dealing with strongly nonlinear
elliptic problems also in a more restrictive form (cf. [5], U8l, [19], [20], [210. It
obviously holds for all nondecreasing functions (see t20l p. 11). Note also that we
have made no oddness assumption for g, (cf. [9], [10]).

Our existence theorems for variational equations and inequalities for the opera-
tor (1.1) satisfying the assumptions (Hr) to (Hr) will be prove<l in Section 3. For
technical reasons we shall first treat the case where the function M appearing in
(H) has a special form M(t):colf le for some constants co>Q and l<p<.*.
The general case will then be derived from this particular case. In Section 4 we
give some examples of applications which can be handled by our existence theorems.
The last section of this paper is devoted to studying the uniqueness of the solutions
of the problems treated in Section 3 when all coeffi.cients go are strictly increasing.
A difficulty arises from the fact that go(Dou) for each lal=m lie in I1(O), only.
Therefore, for the uniqueness of the solutions of various interesting problems we
shall assume the domain O to be starlike.
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We finally rnention
ary value problem have
method. Our study can

that some similar existence results for the Dirichlet bound-
been obtained by R,. Landes ([13], I14l) by the Galerkin
be easily extended for the more general operators

(- 1)l"l D"Ao(*, u(x), Du (x), ..., D* u(x)), xeQAu(x) - Z
lal=m

by modiflcation of the conditions (Hr) to (Hr) for the coeffcients Ao accordingly.

2. Preliminaries

Let 0 be a bounded domain in ,RN with N>2, let m>l be an integer and let
l=p--. W-'p(Q) will stand for the Soboleu space (of equivalence classes) of func-
tions z defined on O whose distributional derivatives up to the order m Iie in Z'(O).
The norm on W^'P(Q) is given by

llull*,p : {oz*llD" ullor,\'to,(2.1)

where the summation extends over all multi-indices o:(or,..., div) of non-negative

integers with lal :at+d.z+...tay<m and D":[I{=r (010x),. W{,,({z)willdenote
the closure in W-'n(Q) of Cfr(O), the inflnitely differentiable functions with compact
support in O. In W{''(O) the expression

(2.2) lul*, p : { Z llD. uln,}rt o

defines also a norm which is equivalent to (2.1).

An Orlicz function is any continuous map M:,R*,I? which is even, convex

and satisfies

The complementary Orlicz function of M will be denoted by NI. The Orlicz class

K*(O) is deflned as the set of measurable functions a such that

and the Orlicz space LM(f2) as the linear hull
burg norm

{-,

of KM((Z) furnished with the Luxem-

M(t) M(t)
f ..*0 t f,-+ oo t

ilui,u : inrlt : { a(r!t, 
) 

a* = t).

The closure in L*(A) of bounded functions with compact support in O is denoted

by E*(A\. The Soboleu-Orlicz space of functions z such that u and its distributional

! *tu(x)) ttx
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derivatives up to the order m lie in Z.(O) is denoted by W-L*(Q). It becomes a
Banach space with the norm

(2.3) llull*.u: max {llD"ullva: lal= ml.

A similar definition applies to the space W- EM(A). For a more detailed discussion
on Orlicz spaces we refer to ll2l.

Let V be a closed subspace of W*''(Q) containing Wtr,,@) and let
J>max {N,p}. Thenthe set W:Wm+L,s(Q)^V isaclosedsubspace of W-+',"(Q).
If the domain O has the cone property, it follows from the Sobolev embedding
theorem ([1] p. 97, for example) that W^+r,'(O) is continuously embedded in Cff(A),
a Banach space under the norm

llull-,*: max {llD"ulla-: lal = m}.

For any a€W we introduce a partial differential operator

Bu (x) : 
r,?* * r(- Dl'l D. (lD u (x)l - 2 D" a (x)),

which gives rise to a mapping ,S from W to W* (a duality map with respect to the
gauge Ö(r):r"-') by the rule

(2.4) (S1u;,u1: / Z lDul'-zDul)oudx,
d lal=n+r

where u,u€W and (.,.) denotes the pairing between W and W*,the dual space

of I4/. The map § is monotone, i.e. (S(u)- S(;),u-u)=0 for all u,u€W and it
takes bounded sets of W onto bounded sets of W*; indeed,

l(s(r), u)l=llullFrllullw for all u,u€W.

Moreover, since (S(rz), u):11u11;, S is coerciue in W, i.e. (S(z), u)llullit** as

llulln**, Observe finally that ,S is also continuous and pseudo-monotone (cf. [a]),
that is, (PM) whenever (u) is a sequence in Zwhich converges weakly to an element
u in W (we wite ur-u) and lim sup (S(ar), ur-u)=O, it follows that,S(z;)-,S(a)
and (,S(z), ur)*(s(u), u).

Let us assume that the functions g, satisfy the conditions (Hr) to (Hr) introduced
in Section I for all lol=m. We shall denote

vt: {u€v: g,(D'o)(LL(o) and g,(D"o)D"uQr1(o) for all lal = 7ny.

It is clear that WcVLcY. The semilinear form

(2.5) a(u, u): f Z S,(O"u)D"u dx
ö lal=*

is well-defined and bounded for all u(V, and u€W. Therefore we can define a
(nonlinear) mapping Tfrom Vrto W* by

(2.6) (f1u1,o): a(u,u) for all u(V1, t)€.W.
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We shall close this section by the following result which is an immediate con'

sequence of the theory of mappings of monotone type acting between reflexive

Banach spaces.

Lemma l. Let g be a bounded domain in RN hauing the cone propetty, let K1

be a closed coflt)ex subset of W containing the origin, let the functions g" satisfy the

conditions (Hr) ro (Hr) and let the mappings S and T be defined by Q.4 and (2'6),

respectiuely. Then for any fQ.W* and any o>O the uariational inequality

o(siu;, a-u)+(r@),o-u)=(f,u-u) for all a€Kr

admits a solution u in K1.

Proof.It suffices to verify that the mapping oS*T from W to W* is con'

tinuous, pseudo-monotone and coercive (see [16] p.247, for example). The con'

tinuity and pseudo-monotonicity of S are already clear and the respective properties

for o,S* 7 follow from the Sobolev embedding theorem (cf. taD. By (Hr), (f p1, u)=

-c, for all u€W, implyingthat

o (s 1u;, u) + (r p1, u) llull w' = o ll u ll F' - c rll ull w'.

Thus o^S* 7 is also coercive. tr

3. Existence theorems

We shall apply Lemma 1 to produce existence theorems for variational inequali'

ties and boundary value problems for the elliptic operator (1.1). To reduce the

use of the rather complicated Sobolev-Orlicz spaces to the minimum we shall

first deal with the particular case where the function M appearing in the condition

(Hr) has the shape
M(t): s'111t

for some p with 1<p<- and ca=O. This condition,

(Hr)* For each a, lal=m, the function gn: R*R is continuous. There are

constant§ cs'c1>O andp with l<P<* such thatfor each lul=m,

(1.2)* g.(t)t > coltlo -c, for all t€R

enables us to stay within the frames of reflexive Sobolev spaces. The general case

with the condition (Hr) we shall treat by making the necessary changes in the proof.

Let V be a closed subspace of W^'p(Q) containing Wtr'o(O), whete IV^'?(Q)

is determined through the condition (Hr)*. By choosing §>max {N,p} we define

Vy-14tn+t,s1A)aV. Then we have
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Theorem l. Let Q be a bounded domain in RN hauing the cone property, let the

functions g, satisfy the condition§ (Hr)*, (Hr) and (H), and let K be a closed con-

uex subset of V containing the origin. Thenfor each f(V* the uariational inequality

(3.1) a(u,w-u) = (f,w-u) for all w€WnK

admits a solution u in KnVr.

Proof of Theorem 1. To invoke kmma 1 we make two observations. Firstly,
the natural injection map i of 14/ to V is continuous. Thus V* c.W*. For any f€Y*
we shall wite f(W* instead of the more precise statement i".few*. Secondly,
when Kis a closed convex setinV the set Kr:KnW inherits the same property
as a subset of 7/. Consequently, by Lemma 1, for any z€N there exists zn€K1

such that

(3.2) I ttun), ?) -u,)+(T(un), u -u,) = (f, u -un)

for all u€Kr. Setting u:0€K1 and bearing in mind (2.5) and (2.6) we get

Itta,), u,)* fZ
d lal=m

rim sup {+(s(r,), w -r,.)l

go(D"un)D"u,dx = (f, ur)

for all n€l{. By (2.4) and (Hr)* we have further

I

; llu 
"ll"n 

+ 
"ollu,ll', - 

c, = czllu,llv

with c, being some positive constant. Hence we can conclude that the real-valued
sequences {lluÅlr}, {(Un)llu"ll"*} and {lnZvt=*g,(D"u,)D"u,dx} remain uni-
formly bounded. Since Z is a reflexive Banach space, there exists a subsequence of
{a,} such that (we do not change the notation, for simplicity) u,-u. As K is also

weakly closed, u(K. We shall show that u is a solution of (3.1). For showing this
it is sufficient to establish the following four assertions for some further subsequence

of {u"}.

(1)

(2)

(3)

(4)

= 0 for any w€W,

[ *(D"LDDdu dx = trim inf { go@oun)D"undx for all

lim { *"(D"un)D"w dx : I go(Dnu)D"w dx for all
n 

,r€vr.

lal= ru,

w€.w,
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Indeed, provided that (1)-({ has been verified, we obtain from (3.2) fot any w:o
in WnK,

(f, w -u): lim (.f, w -un)= lim sup {1 (s(r,), * -u,)l

* lim sup 
{ { rä_g*(D" 

u) (D w * D' u) dx}

= lim,f , ) s,(Du,)Dowdx-,2 {rim inf | *(D"u,)D"u,dxl
ä loE---' taiE. ' å

= f Z go(Dnu)D"wdx- f Z s,(O'r)D'udx:a(4w-u),
å l"E^ fi ln1=^

which will prove (3.1), ubeingin KaVr.
To show (1) we remark that (lln)llu,llio'*0 as t1*€, because {(lln)llu"ll'nl

is bounded. Since (S(r,), un)=-}, we have

r11
7(s{r,), *-u,) = 7(s{a,), w)=i llu,ll"o,'llwllr,

which implies the assertion (1).

The next step is to show that (2) and (3) are true for all lal=m-t, Indeed, as

f Z s,(o'un)D"undx< cs for all n€N
ä t"l=-

with c, a positive constant, we have, in view of (Hs), also

L Z *,(rou,)Dundx< cn, I . 2 lr,(o"u,)D"unldx = ct
ä lal=n a lal=m

for all n€N, ca, being again some positive constant. On the other hand, by the

Sobolev embedding theorem, Dou,(x)*p'u(x) a.e. in O for all lal=m-l for
some subsequence. By Fatou's lemma

(3.4) [ o,(D"u)Ooudx< liminf ! v,(Du)Dnundx.

By the dominated convergence theorem ro(Dou,)*rn(p"u1 in L{(O) and hence

(3.5) lim f r,(D'uo)D"u,dx: t r,(D"u)Dnuilx

for all lal=m-|. Now (3.4) and (3.5) imply that Q\ holds true and that also

g,(Dnu)D"u€Zl(O) for all lal=m-|.
For any ä>0,

lv,(D" u,(x)) | =, 81,. I E 
"Q 

)l + ö E *(D' u,(x)) D u * (x).

Applying Vitali's convergence theorem we obtain Qn(D"u)-E,(D"u) and
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g,(D"u)*g,(Uu) in Z1(O) for all lol=-*-t. Finally, since Dnw€ L*(O) when-
ever ur€ W and lal=m, we obtain (3) for all lwl<m-|.

To be able to establish the assertions (2) and (3) also for all lol:* it is clearly
sufficient, by exactly the same argument as above, to show that

Doun(x) '-* D"u(.x) a.e. in a for all locl - m.(3.6)

Then it will also be plain that g,(D"u)D"u(L1(Q) and g,(D"u)eLL(Q) for
all lal<-m, which means that u(Vr, i.e. the assertion (4) holds true, too. Hence

the proof of Theorem 1 is completed by verification of the claim (3.6). This we
shall do by means of the following three lemmas.

Lemma 2. For each a with lal:m there exists a function h, in LL(Q) such

that g,(D"u)*h, in I)(O)for some subsequence of {u,\.

Proof. It is sufficient to show that {g,(D"u,)} is uniformly equi-integrable for
each lal:7n By the conditions (Hr)* and (H) each ga cara be written in the fbrm
gn:e,*cn, where E*(t1:g.11)-9.(0) and co:9,(0). Thus E,(t)t>O for all
l(R. For any ä=0 we have

E,(D" u,(x)) 
=, EXI, lE "Q)l 

+ ö E n(D" u,(x)) D" u,(x),

where {E"(D"u,) D"un} is uniformly bounded in Z/(O) by a constant ca for all lol:m.
For any measurable subset E of Q we then have

{ ,r"(D"u.)l dx =

where K, is a constant depending on ä. Grven e=0 let ö be such that öcn<e,l)

and let p(E)<.e12K5. Hence we can see that {E,(D"u)l and therefore also {g"(D'u,)}
are equi-integrable. D

In the following lemma we denote, for convenience, h,:go(D"u) for each s
with la1-m-1. Thus we can write go(D"u,)-lt" in L|(Q) for all lal=m, where
in fact gn(D"uS*7n in Ll(A) for all lal=m-1.

Lemma 3. limsup IoZH=*{go(D"u,)-ho}D"undx = o.

Proof. Since {u,}cKr:KaW,we may substitute u:ili Q=i<n) in (3.2) to get

(3.7)

and hence

go(D" u,)(D" u j - Do un) dx

= (f,ui-un)

L Z go(Do un)Do unclx € !(s(r,), ui -u,)+(f, u*-u i)
ä lal=m

I Uu dx + öcn - Ka tt(E) * öcu,

Itton),ui-u,)+ { ,.ä^

+rz
ö lal=m

go(D" un) D" u i dx.
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As (siz,), u,)=-o we have further

[ . z {r,@n un) - hn) Dn u, d x =} {ttr,), u ) + (f, u n- u i)
ä l"l=^

* { rå_go(D' 
u) Dnut d* - { roä^hoDo 

undx.

Letting n** arrd keepingifixed we can conclude

(3.8) lim,sup I Z {r"(o"u^)-hn}Dnundx= (f,u-ui)
ä lol=,"

* 
{ rä^hoD" 

u' dx -t'\'"' {,,ä^hnD 
u' dx'

On the other hand, we can deduce from (3.7) also that

L Z f,o"uidxz(f,ui-u)-limsup L Z lr"(o'un)D"unldx
dt"G^' " ' älrl=-

for all ,/€N, where we already know that Z,o,=^llg,(D"u,)D"unllat4ca for all

n€N. Hence

-liminf f 2 h,o.undx<cn.
' ä lol=^

Finally we can select from the sequence {u;} such a subsequence {ar*} that

lim f 2h"o"uiudx:lim-inf .f ZhoD"und*,**-lwEn ' äl"l=^

which enables us to conclude the assertion of Lemma 3 from (3.8). n

Lemma4-Dnu,(x)-D"u(x)a.e.inQforalllol:*forsomesubsequence
of {u"}.

Proof. We denote

q *(x) : Z { s,(D u 
^(x)) - g.(»" u (x))} (o" u,(x) - D' u (x)).

lel=m -

In view of (Hr) the convergence of D"u,(x) to D"u(x) almost everywhere for all

lal:m is implied by q,(x)*0 a.e. in O (cf. [14], Lemma 6). In fact, as q^(x)=O

for all x€Q, it is sufficient to show that

(3.9) lim suP .[ q,@) dx < e1,,

' ti*

where eo*Q as ft*- and {Oo} is a growing sequence of the subsets of O such

that p(O\Or)*0 as k**.
To this end we define for anY k:1,2, ...

Qo: {x(Q: lD"u(x)l = k arid lh,(x)l = k for all lal = m\.
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Then we observe that

(3.10) ,iy 
d,,ä^g,(Du)(Du,-Du)dx:0,

(3.11) l,_-f )ho(Dnu,-Du)dx:0
and " riu l"l:^

(3'12) 
'r' d ,,ä^(hn- 

g,(D'u,))Du d'x : o

for any fixed &. Moreover, by the inequality (1.3) of (Hr) we have for all lol=
ffi-1,

{E "(D" 
u) - E 

"(D" 
u")} D" u o = K, E,(D" u) D,u * K2,

where rpo(D'u)D"ucl](O). Since {e,(D,u,(x))-cp,(D"u(x))lD"u,(x)*0 a.e. in
o for all lol=m-l and since its positive part is dominated bya function in r1(o),
we can deduce by the dominated convergence theorem that

lim sup f {tO,(D u,) - E,(D u)}D u, dx < 0.

Since also

(3.13) {rn(D'u)-r,(Douo)}Dnu,*0 in Z1(O) for all lal = m-t,
we get (with the convention h,:gn(D"u) for all lal=m-l)
(3.14) limsup 

{,,å_r{h*-g,(Du*))Doundx=0.
As a consequence of (3.10), (3.11), (3.12) and (3.14) we can derive

limsup I o,@)dx:limrup -[. Z g,(Dou,)(D"u,-Dou)dx

: rimsup .f z [^trt-)r-ho]Dnuodx
riu l"l:^

= tim sup 
{ r\_{g,(D"u,) -ho} D, u,dx

+limsup L Z {ho-go(D,u,,)}D,u,dx.
o\oulcl:z

Taking into account that the functions gn for each lol:* satisfy the inequality
(1.3) of (Hr), we can apply the argument of [13] p. 20 to show that

(3.15) .Z {tr"(*)-s.(D"u,(x1)}D"u,(x)=t-(x)lal-m

for all n(N, f being some function in LL(a). From (3.15) and Lemma 3 it then
follows ttrat

limsup to,@)dx= { r61ax,
d2k O\Or
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where eo:/rryo*I(x)dxt0 as p*-, which completes the proof of Lemma4

and also the proof of Theorem 1. n

For various boundary value problems for the operator (1.1) subject to the

boundary constraints associated to the subspace V with 1ryn'0(Q)cVcw*'e(Q),

where p is determined by the condition (Hr)*, we have the following theorem:

Theorem 2. Let Q be a bounded domain in RN hatsing the cone property and

let the functions go satisfy the conditions (Hr)*, (H) and (H). Then for each f(V*
there exists u in V, such that

(3. 16)

while

(3.17)

f Z g*(D"u)Dow dx - (f, w) for all w€W,
ä lal=m

go(Dou)D"u dx 5 (f, u).

Proof. We may choose K:V in the proof of Theorem 1. Setting u:w*tto
in (3.2) with w arbitrary in W we get

11s1r,), ,) + f Z g"(D"u,)Dow dx : (f, w).
n- åWl=*

Letting hefe n** we obtain (3.16). Furthermore, if we substitute w:0 in (3.1),

we obtain (3.17). n

Remark 1. When the two norms ll'11.,, and l'1,,o ut" equivalent in Z
(i.e. poincar6,s inequality holds), the coercivity condition (1.2)* of (Ht)* can be

relaxed for the functions g, with lal=m-|. such is the case when v:w{'o(o),
for example.

Next we shall tackle the general case where the conditions (Hr), (HJ and (HJ

are assumed . Letv be a closed subspace of w-'t(Q) containing w{''(o). selecting

s=N we define V[/:W*+r'"(a)nV. Let further E*(Q), W-EM(Q\ and E*(a)
be the spaces determined through the function M appearingin the condition (Hr). We

note that each f€w-^ET(at:{f:zw=^(-l)t"to"r,' f,(En(a) for all lal=m\
defines an element in W* by

(f, w) -
while

lC[ w)l < const.ll*lln 
,,§*llf"lln.

Now we are in a position to Prove

Theorem 3. Let Q be a bounded domain in RN haufug the cone property, let

the functions g, satisfy the conditions (Hr), (Hr) and (Hr) and let K be a closed con'

fz
ä lal=m

f Z foD"wdx,
ö lal=m
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oex subset of Y containing the origin. Then for each f(w-^ EM(a) the uariational
inequality

a(u, w -u) = ("f, w -u) for all w(KnW
admits a solution u in KaVrnW^L*(Q).

Proof. we shall only indicate the changes which are necessary in the run of
the proof of Theorem l.

The inequality (3.2) obviously holds for all ae!{r:yaW. Settins w:0 in
(3.2) we get for all r€N,

By (H')

where we have used the fact that .f,EE*(o) for all lal=m and where cu>0 is a
constant' As a consequence we can conclude that the real-valued sequences

{(tln)llu,ll""}, .tZ,o,=^ [ o a(D"u,)dx] and {Zr,=^ t og,(D,u,)Doundx} are uni-
formly bounded. By the de la Vallde-poussin theorem (l2l p. 174), {O.u,} is
uniformly equi-integrabte in z1(o) for each lul=m. on the other hand, as {D,u,}
is bounded also in L*(o) for each lol=-*, we can establish the existence of a sub-
sequence of {u,} such that Dou,*pny in L*(g) for the topology o(t-*1O1, En@))
and also D"ttn-pnu in LL(a) for each lal=m. we can then show the desired
result that the limit element u(w^L*(Q)nK is also in v, and, solves (3.1) by
vorifying again the assertions (1) to (a). The proofs of these assertions remain true
without any essential change. we mention the following two facts only. Firstly,
(3.5) and (3.13) hold by Vitali's convergence theorem because ofthe equi-integrability
of {D"u,}. Secondly, (.f,u"\*(f,u) as n**. since D,u,,*potr1 in L*(e) for
o(L*1Ay En@D for all lol=o, and, .f:(f")<W-^ EM(o). tr

For the boundary value problems subject to the boundary constraints which
are associated to the subspace v wlth w{,1(o)cvcl4*,1(Q) the following gen-
eralisation to Theorem 2 canbe derived from Theorem 3.

Theorem 4. Let Q be a bounded domain in RN haaing the cone property and
let the functions g* satisfy the conditioas (Hr), (H) and (Hr). Then for each
f€W-^Em(Q) there exists u in VrnW^LM(O) such that (3.16) and (3.17) hold.

Remark 2. When Il . ll,, r and | 
. 1.,1 are equivalent norms in V (for example

Y:wt'r(a\), the coercivity condition (1.2) of (Hr) can be relaxed for the functions
g, with lol=-m-1.

(3.1)

|rtan), un)+ [ t.ä*so(Doun)Douncrx 
=- ! t.ä*f.D.u,dx.

and Young's inequality (U21 p. 135) we have further

i uu,ll'w + 1,,ä*M (D' un) dx - cL = ! t,ä*M(2f,) 
+ M (I o" u,,) dx

:=cs++ f Z M(D.u,,)dx,
L ö lal=m
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4. Examples and applications

In this section we shall indicate briefly some examples of the problems which
can be solved by our existence theorems of the previous section. We start with
mentioning some speciflc functions go which satisfy the conditions (Hr) or (Hr)*,
(H) and (H).

l) g,(t) : lrlz" sgn /,

where O<pa<- for all lal<m. The Sobolev space W-'o(Q) is determined by
p:min {p"+l: lal<m}. In this case the partial differential operator ,4 defined by
(1.1) has polynomial growth which may depend upon the direction. This kind of
operator is called anisotropic in the literature (cf. [4 p. 191). Obviously the func-
tions gn satisfy the conditions (H)*, (Hr) and (Hr).

2) g*(t) : ltlo"evla" tfnr,
where O<po,4al* for all lol=ot. Then W^'p(Q) is defined as above and the
operator I is anisotropic with an exponential growth. The conditions (Hr)*, (Hr)
and (Hr) are satisfied.

t <0,
conditions (Hr)*, (Hr) and (Hr) are again
A is not odd (cf. [8], [10]).

4) As an example of functions g, satisfying (Hr) but not (H.)* we mention

g"(t) : log (1* lll) sgn I for all lal = m.

The Sobolev-Orlicz space W'LM(Q) is then deflned by the function

3) s.{t): 
{'1",, ,,,ji"J;: ttD, ir

where U-por go< * for all lol=nr. The
satisfied. Note further that the operetor

tz
I lrl=*
lo.u

M (s) g"(t) dt.
0

The corresponding operator A has slow growth, the coercivity condition (r.2) of
(Hr) being still satisfied.

5) The functions gondy, of course, be any combinations of the types mentioned
above. A constant cn can be added to each g, with lol:m and each g, with l«l=
m-l may be added by any bounded function ft,.

we finally conclude with some examples of specific boundary value problems
and convex sets r( appearing in the applications.

a) lf V:W{,p(O) with l=p<.*, Theorem2 or Theorem4, respectively,
establishes the existence of a weak solution z for the Dirichlet problem

(- 1)t"t Do{s.(o"u)) : f in {),

-0 on 0A for all lal<m-l
(4.1)
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for each prescribed f<W-^'/(O) (resp. /€ I4/-* EM(o)), provided the functions go

satisfy the conditions (H)* (resp. (H)), (Hr) and (Hu).

Similarly, if V:W*''(Q), the existence of a weak solution for the boundary

value problem with Neumann type boundary constraints follows.

b) Let ,lrcw''*(A) be a given function such that t/(x)=0 on the boundary

0Q. Let
K: {uqW['o (o): u(x) a t@) a.e. in o]

let the functions g, satisfy the conditions (Hr) to (Hr). The "obstacle problem"

for a solution u in K of the variational inequality

f Z g*(D"u)(D'u, - Dor) clx > (f, w -u) for ail w€K^W,
ä lal=r

where W:WL"(Q)n!y;'e(A),,s>max {N,p}, with I <.p<.@ if (HJ* is satisfled,

p:l if only (Hr) is met. When r/(x)<0 in the whole set O, 0€.K and the existence

of a solution u im KoZ. follows immediately from Theorem 1 for each f€r-r'n(A)
and from Theorem 3 for each f<W-rEM(O\ respectively. If 0(K, we may per'

form a change of variable u*fr:u-l/+, where t!+:max {,/,0}.
Then we set

R : {aEw}' o ($:'fr(x) = rlr (x) -rlt+(x) in Q},

whence K contains the origin. The problem (4.2) is now equivalent to findinC A(R
such that

(4.3) f Z s,(o'n+D'{/+)(Dfr,-D"fr)dx=(f,fr-A) for all fr(RaW.
ö lol=r

Setting §*(x, t):g,(t+D"{t+(x)) and formulating the analogous conditions for the

functions of the type g,(x, t) the existence theorems remain valid and the solvability
of (4.3) follows.

c) Let y:{u(W-'r(Q): u(x)=0 on åO}. Then t}re variational inequality (3.1)

is equivalent to a boundary value problem with certain boundary constraints (cf.

U71p.99). When v:{u€Iv;'t(o): lvu(x)l=1 a.e. in o}, (3.1) constitutes a prob-

lem of the type appearing in the theory of elasto-plasticity (cf' [17], p. 100).

5. Uniqueness theorems

Our purpose in this section is to deal with the uniqueness of solutions of the

variational problems for the operator (1.1) discussed in Section 3. To this end we

shall assume in what follows that all coefficients gd are strictly increasing. For

co.nvenience we shall restrict ourselves to the second order operators and to the

cal;e where the strict form of the sign condition is fulfilled. Thus we can reformulate

the conditions for the functions go,8r, ..., giv 8s follows.
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(E) For each i:0,1,...,N the function g;: l?*,R is continuous and strictly
increasing, and satisfies g,(r)t>0 for all tqR. There exists an orlitz function M
and a constqnt cr>Q such that for each i:1,2,..., N,

giQ)t= M(t)-c, for all t€R.

(EJ go?)t = M(t)-q for ail t€R.

For each i:0, 1,..., N we define the function G; by

(5.1) G,(s) g,(t) dt,---: i
0

which is convex obeying the inequality

(5.2) G,(s)-G,(r) > g,(r)(s-r) for all s, r€R.

when o is a bounded subset of RN having the cone property, v is a crosed
subspace of WL,l(Q) containing Wi',(o), W:VaWr'"(e) with s=trI, and K
is any closed convex subset of V containing the origin, it follows from the conditions
@r) and (Er) and from Theorem 3 that the variational inequality

N

(5.3) I Z S,(D,u)(D,w-D,u)dx> (f, w-u) for all weKnW
ö i:o

admits a solution u in KnVTnWLL*(O) for each given f in W-,EI(O), where

Vr: {u€V: g,(Diu)D,u€Lt(Q) and. g{Dp)<Lr(Q) for i :0, l, ..., N}.

On the other hand, by (5.2) each solution a of (5.3) is also a solution of the inequality

åto,(Diw)-Gi(D,u)\clx 
> (f, n,-Li for all w€Knw.

f the bound ary value problem

gi(Diu) Diw dx - (f, w) for all w(W

with the property

(s.6) f )r,@,r)D,udx=(f,u)
ä ,:o

are also solutions of (5.4) with K:v. our study on the uniqueness of solutions for
(5.3) is based on the inequalitv (5.a) which, however, should hold true for all w in
KnVr, where

vr: {uQv: G.(Dq)QLL(O) for all i :0, 1, ..., N}.

Note that Z. is containedinVr, since G,(r)< g{t)t for all t<R and i:0, l, ..., N.
As c,(r)>0 lbr all t€R, (5.4) is obviously satisfied for all w€V with w{Vz.
The following simple lemma (cf. [3]) shows that the main problem in establishing

(5.4)

Similarly, t

(5.5)

{
he solutions o

tNlz
ö i:o
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ttre uniqueness for (5.3) or for the pair {(5.5), (5.6)}, respectively, is to extend (5.4)

for all w€KnVr,

Lemma 5. Let the functions g; (i:0, l, ..., N) satisfy the conditions (Er) and

(E). Then the uariational inequality

{ å{G,(Dn)-Gi@,u)}dx 
>- (J', u- Lr) for att u€Knv,

admits at most one solution u in KaVr.

Proof. Let u, and u2 be two solutions of (5'7) in Kn Zr. Since VrcV, and

since each G; is convex, (ll2)(ur*ur)evr. Thus we can set p:(ll2)(u1*ur) in

the inequalities

!,]{o'(''u) - 
G'(D'u)} dx = (f'' - u')'

^N

I Ä{o,r''u) - 
G,(D iu')} dx = (f' a - u')'

and we obtain by addition,

[ å{seDfpo - o,(Lrtf*)},, = oo ,:r (

The conclusion u1:u, follows now from the strict convexity of the functions G;

for each l:0, 1, ..., N, n

A donrain Q in .RN is said to be starlike, if for any r> l, Q,: {x€RN: rx(Q\ cc Q,

i.e. §,cQ and Q, is compact. We shall deal below with the starlike domains only.

We are able to prove the uniqueness of solutions for the boundary value problems

with the Dirichlet boundary conditions (V:W|L(O)) and with the Neumann type

boundary conditions (f :WL'11A)), and for the obstacle problem (Example b, in

Section 4). For simplicity, to avoid the discussion of various cases separately, we

shall assume thatf is a given function in L*(O). We start with

Theorem 5. Let Q be a bounded starlike domain in RN hauing the cone property

and let the functions gi satisfy the conditioil (Er). If V:W|''(A), then for each

.f<L-(O> there exists a unique u in V, such that

- å Di(tt@,u))* so fu) - f in a

(in the sense of distributions), while (5.6) also holds.

Proof. Let u be a solution of (5.8) satisfying (5.6). Such a solution exists by

Theorem 4 and Remark 2. Thus

äN
f Z e,{Diu) Diw dx - (f, w) tbr all }v€ C;" ((2),

ö i:o

(5.7)

(5.8)
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which, in view of (5.2) together with (5.6), implies that

(s.9) [ ),{e,to,w)-G{Diu)}dx= (f,w-u) for all w€cf (o).

To be able to apply Lemma 5 we must only show that (5.9) remains valid for
al. w in l.r.

Let u€Wi''@) with Gt(Dp)(La(A) for all i:0,1,.'.,N. For any ä with
0=ä=l we define Or:{x€RN: ä-1x€O}, whence Ouc c Q. Let further

. Iu(ö'1x), if x€Qa,
za(x) : t o, if x(o\ou

and or(x): ö25(x) for all x(Q. Then zu and a6 belong to Wt'L(o) and zu*11 i1

Wi''@) as ä*1 (t121 p.70). Hence also uu*tr in Wi'l(A) as ä*1. Further'

more, as

I cr(u(x))dx: ä-il ! Go(u(ö-ax))dx: a-N I eo(zo@))dx,

GoQ)*6o1121 and ö-NGrQo)*Go(u) in I1(O) as ä*1. Since O=Go(äs)=Go(§)

for all s€R and 0=ä=1, Go(uo(x))=Go(ru(r) for all x€O. On the other hand,

Go(u5(x))*Go(u(x)) a.e. in o. Hence it follows by the dominated convergence

theorem that Go(u)'6o7u) in Z1(o) as ä*1' Similarly one can show that

Gi(D;a5)'Gi(D1u) in Z1(O) for each i:1,2, "',N'
The next step is to approximate each u5 by test functions. We denote

the mollification of uufor any e>-0 ([1] p.29).Foreach given ä, u5"€Cf,(Q) and

0ö"*oö in W|'L(O) as e*0 (ltl p. 52). We must show that G;(D1t5)-Gt(Dpa)
in I](O) for all i:0,1,...,N. Indeed, by Jensen's inequality (see [12] p. 123),

0 = Go(ur,(x)) : Go (!i"t*-t»'o})dY)

= [ i 
"@ - t) cr(r rtv')) av: (Go(,ä)),(x),

where (Go(or))"*Go(ur) in Lr(A) (1] p. 30). Therefore G6(45,)*Gs(u) in La(A)

again by the dominated convergence theorem. For each i:1,2,.'., N we similarly

have
G,(D, u o "(x)) 

: G,((D, u ) "(r)) = (C, (O, u ) 
") 

(x),

and the convergence G1(Dru)*6t(Diu) in Lt(A) can be derived accordingly.

The final step of the proof is to set w:D6" in (5.9), to send firstly e*0 and

then ä*1 to obtain the assertion. tr

For the Neumann type boundary value problems some modifications are nec-

essary.

ua,(x) - [ i,(x- y)uo!) dy,



250 Vrsa MusroNrN and CnnlsrrAN G. Sr*ranrn

Theorem 6, Let Q be a bounded starlike domain in RN hauing the cone property
and let the functions g, satisfy the conditions (E) and (Er\. Let V:Wt'r(Q) and
W:YIW'"(A) with s>N. Then for each f(L*(Q) there exists a unique u in
VraWrL*(Q) such that (5.5) and (5.6) hold.

Proof. I*tube a solution in VrnwtLM(A) of the pair {(5.5), (5.6)}. A solu-
tion exists by Theorem 4. As above in the proof of Theorem 5 we can conclude that

(5.10)

(5.1 1)

^Nlz
ö i:o {G,(D,w) - G,(D,u)) dx = (.f, w -u) for all w€W2,"(0).

In view of Lemma 5 it will be suffcient to find, for each u(W\l(Q) with
Gr(D,o)eLt(O) for all i:0, 1, ..., N, a suitable approximationin Wz,"(Q). For any
å=1 wedeflne Oo:{x€RN: ä-rx€O} sothat OccQu. Let z6(x):11(S-1x) for
all x€Qu. Then zo*x in Wr't(Q) as ä*l and, furthermore,

implying that Gokö)eLL(O) and Go(zo\*6o711) in Z1(O) as ä*1. For each
i:1,2,..., try', we havo further Dizo(x):S-LDiu(ö-Lx) and hence

Consequently, Gi(Diz5)*Gi(Dp) in Z1(O) for each i:1,2,...,N follows by a
previous argument.

Each z5 can now be approximated by the mollification zr, such that 26"*26
in W\'L(Q) as €*0, because OccO, (see [1] p. 52). It is also obvious that
zö,€Wz"(Q) for any e>0 and ä>1. We can complete the proof as the proof of
Theorem 5 by showing that G;(D,zu)*6i(Diz) in Z1(O) for all z':0, 1,...,N
and letting then e*0 and finally ä*l in (5.10) with ,n:Zö". I

We shall close our discussion with the following uniqueness theorem for the
obstacle problem.

Theorem 7. Let Q be a bowtded starlike domain in RN hauing the cone property,
let thefunctions gisatisfy the condition (Er),let y: {ue W!,1 (O): u(x)>-r! (x) a.e. in Q},
where r! is a giuen function in W2'* (A) with lt=O in 8, and let V:W|,'(A),
W:VnW','(Q) with s>N. Thenfor each f€L*(Q) there exists a unique u in
KnY, such that

I or(r(r)) dx : ä-N 
{ 

or(r(ö-1x)) dx > ö-N I or(ru(r)) dx,

! 
o,@,u(r)) dx - ä -N 

{ 
o,(D,r(ä -, x)) dx > ö -- 

! 
G,(D,u(ö-L x)) dx

> ä -. 
!G,(ä 

-t Diu(ö-1x)) dx - ö-* { G,@,zu@)) dx.

r;
ö i:o

gi(Diu)@tw -Diu) dx = (f, w -u) for all w€KnW.
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Proof. By Theorem 3 and Remark2 a solution u€KnV, of (5.11) exists' By

the previous argument we get from (5.11) the inequality

tN

I Z {G,(Diw)-Gi@#)) dx = (f, w -u) for all we K^W.
ö i:o

For a given u€K with Gt(Dp)€LL(a) for all i:0,1,.'.,ÅI, we define u,

and rsu"with 0=ä< I and e>0 as in the proof of Theorem 5. Since these approxi-

mations are not necessarily in K, we also consider a map w*'il,!, in W1'1(Q)

deflned by
w,p(x): max {w(x), ,lt(x)): [w-rl]+(x)+f (x).

As r/(x)<O a.e. in O, 0q:Q. Moreover, it is known that

IDtw(x), if w(x) > rL@),
D,wq(x): tr,,/(*), if w(x) = r/(x)

and that the map w*w,!, is continuous in W|'L(Q). Then it is also cleat that og:rt,
(o)re K and (o5)a,€K. Since ur"*u 5 ärrd uu-11 in W\'L(Q) äs e*0 and ä*1,
respectively, (uo)q-(u),t, and (u5)s*uq:u in W'''(Q). Next we show that

c,(o,1@)r))*Gt(DtD in Z1(O) for each i:0, l, ..., N. Indeed, it is readily seen

that D((ur)e)(x) *Diu(x) a.e. in O (for a subsequence). By continuity also

G,(D,(ur)*)(x))*G(D,r(x) a.e. in O. From the proof of Theorem 5 we already

know that Gi(Dp5)-G,(D;u) in L'(a). Hence there exist functions hs, h1, "', hn

in Z1(O) such that G,(Dtuu"@))=h1(x) a.e. in O. Consequently,

c,(D,((u )s) (x)) = c,(»,u5" (x)) + c, (D,,1, @))

< ht(x)+Gt(D,,|,@)),

where h*G{DilD€LL(A) for all i:0, 1, ...,1{' Hence G,(D,((uä")u)) -Gi(D$)
in Lt(Q), by the dominated convergence theorem.

Because (or)* is not necessarily in W|'"(O) and therefore not in W, the final
step of the proof is to find for each fixed (ur)p an approximation in W. Indeed,

1et w:u5,(Cfl(O) be given. For any n€N we define a function qn: R*R by

q"{t)

The mollif,cation of' en is

eno>O and eno 0 for a
such that 0=S(x)=1 in

1

Ts
/,n

1l
It 

-<I5-,/.tl n

1

-<.t.n

[0, ir t=t,:1nr--h-t'
!:
Ir-6, ir

denoted by eno

11 t=lf4n. Mo
O and A (x): 1

, where 0< oi<.lf 4n. Then eno(C""(A),
reover, there exists a function A € C;(O)

in the support of w. Now we can set
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,ilno:{eno(b'-rlD+{ip. Hence it is obvious that w*(W|''(Q)AW2'-(Q), wn">

{p=lr, i.e. wno is also in K. As cpoand Eiarc continuous and w-rlr is bounded

in W''*(Q), we can easily conclude that wn,+wsQ:\rt in WL'!(Q) as o*0
and n**, while g(x):l i1 supp(wp). since lq".(t)l=lrl+1 and lq:,,(t)l=l
for all t, we can apply the dominated convergence theorem to conclude that Gn(wn) *
Co(w,y\ and G1(D1wno)*Gt(Diw{,) for all i:1,2,...,.ly' in L'(A)- Our proof is

complete if we substitrtte wno with w:ua" into (5.12) and let 6+Q, n+*, 8+O

and finally ä*1. n
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