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ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS
FOR STRONGLY NONLINEAR ELLIPTIC
VARIATIONAL PROBLEMS

VESA MUSTONEN* and CHRISTIAN G. SIMADER

1. Introduction

In this note we are concerned with the existence and uniqueness of solutions of
nonlinear variational equations and inequalities for quasilinear elliptic partial dif-
ferential operators of the form
(1.1 Au(x) = ( é (— D" D*(g,(D*u(x)), x€Q
which can be thought of as a simple nonlinear generalisation of the Laplace opera-
tor. Here  is an open bounded subset in RY and the coefficients g, are continuous
functions obeying no growth restrictions from above.

The problems of this type have been extensively studied of late in the context
of the theory of mappings of monotone type acting between Banach spaces which
are determined by the behaviour of the coefficients. When the growth is at most of
polynomial type, it is customary to work with reflexive Sobolev spaces (see [2], [4],
[15], [16]), but when no such restriction is imposed, it is natural to tackle this problem
in the framework of complementary systems of Sobolev—Orlicz spaces (see [6], [7],
[81], [9], [10]). In this method the function space, where the problem is to be studied,
is determined by the maximal growth of the coefficients. However, the abstract
surjectivity results are available for the existence of solutions for the problem,
provided an additional coercivity condition is fulfilled. That condition means a
restriction for the growth from below. There have been several ways to widen the
space between these two growth limitations. One may consider the sums of dif-
ferential operators such that the principal part is coercive, obeying a polynomial
growth condition, while the other terms may have liberal growth (see [3], [5], [11],
[18], [19], [20], [21], [22]). The introduction of an anisotropic product of Sobolev
spaces allows different growth for various coefficients of the same order ([7]), [10]).
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The growth limit from above for the lower order terms can be slightly lifted by the
use of the full force of the Sobolev embedding theorem.

The purpose of the present note is to introduce a new rather simple regularisa-
tion method which allows more liberty for the coefficients g, of the operator (1.1)
than the methods described above and which can be applied to variational inequali-
ties as well as to various boundary value problems. We shall make the operator
coercive in some function space by imposing on the functions g, a weak growth
restriction from below which only means that g,(f)—>< as t—o and g,(f)——
as t——<. No growth limitations will be needed from above. To be more precise
we introduce our conditions for the coefficients g, .

(Hy) For each o, |a|=m, the function g,: R—R is continuous. There exists
an Orlicz function M and a constant ¢,>0 such that for each |o|=m,

(1.2) 8.()t = M(t)—c; for all teR.
(Hy) For each o with |a|=m the function g, is strictly increasing.

(H;) For each o with |x|=m—1 the function g, has a representation g,=q@,+r,,
where r, is continuous and bounded and ¢, is continuous, satisfying the conditions
0, ()t=0 for all t¢R and

(1.3) 0o(D)s = 9o () s+ Ky 90, (1) 1+ K,
for all s,tcR, K, and K, being some positive constants.

We would like to mention that (1.2) guarantees the existence of the representa-
tion in (Hj) for all |x|=m—1. On the other hand, it will te possible to relax (1.2)
for |u|=m—1 provided Poincaré’s inequality holds in the Sobolev space involved.
The inequality (1.3) is well known by the papers dealing with strongly nonlinear
elliptic problems also in a more restrictive form (cf. [5], [18], [19], [20], [21]). It
obviously holds for all nondecreasing functions (see [20] p. 11). Note also that we
have made no oddness assumption for g, (cf. [9], [10]).

Our existence theorems for variational equations and inequalities for the opera-
tor (1.1) satisfying the assumptions (H,) to (H,) will be proved in Section 3. For
technical reasons we shall first treat the case where the function M appearing in
(H,) has a special form M(t)=c,|t|? for some constants c,=>0 and 1<=p<ce.
The general case will then be derived from this particular case. In Section 4 we
give some examples of applications which can be handled by our existence theorems.
The last section of this paper is devoted to studying the uniqueness of the solutions
of the problems treated in Section 3 when all coefficients g, are strictly increasing.
A difficulty arises from the fact that g,(D"u) for each |ax|=m lie in L1(Q), only.
Therefore, for the uniqueness of the solutions of various interesting problems we
shall assume the domain Q to be starlike.
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We finally mention that some similar existence results for the Dirichlet bound-
ary value problem have been obtained by R. Landes ([13], [14]) by the Galerkin
method. Our study can be easily extended for the more general operators

Au(x) = I IZ (=D D*4,(x, u(x), Du(x), ..., D"u(x)), x€Q

by modification of the conditions (H,) to (Hj) for the coefficients 4, accordingly.

2. Preliminaries

Let Q be a bounded domain in R with N=2, let m=1 be an integer and let
l=p<oc. W™P(Q) will stand for the Sobolev space (of equivalence classes) of func-
tions u defined on Q whose distributional derivatives up to the order m lie in LP(Q).
The norm on W™P(Q) is given by

@2.1) [T {I ]2 D= ulg}e,

where the summation extends over all multi-indices a=(c;, ..., #y) of non-negative
integers with |a|=o04+ay+... +ay=m and D*=[[Y, (0/ox;)%. Wi?(Q)will denote

the closure in W™?(Q) of C5°(Q), the infinitely differentiable functions with compact
support in Q. In W}»?(Q) the expression

22) lttlm, = { 2 1D ulge}H

defines also a norm which is equivalent to (2.1).
An Orlicz function is any continuous map M: R—R which is even, convex
and satisfies
im MO o jim MO

t—>0 t—>o0

The complementary Orlicz function of M will be denoted by M. The Orlicz class
K,,(Q) is defined as the set of measurable functions u such that

fM(u(x)) dx < oo,
(2]
and the Orlicz space L,,(Q) as the linear hull of K,,(Q) furnished with the Luxem-

burg norm
lullag = inf{i: QfM(”flx)] dx = 1}.

The closure in L, (Q) of bounded functions with compact support in Q is denoted
by E,;(Q). The Sobolev—Orlicz space of functions u such that u and its distributional
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derivatives up to the order m lie in L), (Q) is denoted by W™L,(Q). It becomes a
Banach space with the norm

(23) [l e = max {| D*ullps: |o] = m}.

A similar definition applies to the space W™E,, (). For a more detailed discussion
on Orlicz spaces we refer to [12].

Let V' be a closed subspace of W™P(Q) containing W?(Q2) and let
s>max {N, p}. Then the set W=W"t-(Q)AV is a closed subspace of W™*15(Q).
If the domain Q has the cone property, it follows from the Sobolev embedding
theorem ([1] p. 97, for example) that W™+%*(Q) is continuously embedded in Ci(Q),
a Banach space under the norm

[tllm,e0 = max {|D*ul|p=: |o| = m}.
For any v€ W we introduce a partial differential operator

Bu(x)= 3 (=DFD*(|D*v(x)l*~2D%p(x)),
la|l=m+1
which gives rise to a mapping S from W to W* (a duality map with respect to the
gauge ®(r)=r*"") by the rule
2.4 (S, v) = f > |D*ulf~:D*uD*vdx,
O lel=m+1
where u, v€ W and (.,.) denotes the pairing between W and W*, the dual space
of W. The map S is monotone, i.e. (S(u)—S (), u—v)=0 for all u, veé W and it
takes bounded sets of W onto bounded sets of W*; indeed,

I(S(), v)| = llulli7Iolly  for all u,veW.

Moreover, since (S(u), u)=|ul},, S is coercive in W, i.e. (S(u), u)|ul;*~ as
luly—o=. Observe finally that S is also continuous and pseudo-monotone (cf. [4]),
that is, (PM) whenever (u;) is a sequence in W which converges weakly to an element
uin W (we write u;—~u) and lim sup (S(u;), u;—u)=0, it follows that S(u;)~ S(x)
and (S(uy), u;) (S (), u).

Let us assume that the functions g, satisfy the conditions (H;) to (H;) introduced
in Section 1 for all |x|=m. We shall denote

V= {veV: g,(D*v)€ L} (Q) and g,(D*v) D*ve L1(Q) for all la| = m}.
It is clear that WcV,;cV. The semilinear form

(2.5) aw,v)= [ 3 g(D*u)D*vdx

0 lal=m

is well-defined and bounded for all u€V; and v€W. Therefore we can define a
(nonlinear) mapping 7 from V; to W* by

(2.6) (T(w),v) =a(u,v) for all ucV;, veW.
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We shall close this section by the following result which is an immediate con-
sequence of the theory of mappings of monotone type acting between reflexive
Banach spaces.

Lemma 1. Let Q be a bounded domain in RN having the cone property, let K,
be a closed convex subset of W containing the origin, let the functions g, satisfy the
conditions (H,) to (Hy) and let the mappings S and T be defined by (2.4) and (2.6),
respectively. Then for any feW* and any ¢>0 the variational inequality

a(S@), v—u)+(TW), v—u) = (f,v—u) for all vk,
admits a solution u in K.

Proof. 1t suffices to verify that the mapping ¢S+7 from W to W* is con-
tinuous, pseudo-monotone and coercive (see [16] p. 247, for example). The con-
tinuity and pseudo-monotonicity of S are already clear and the respective properties
for ¢S+ T follow from the Sobolev embedding theorem (cf. [4]). By (H,), (7'(v), v)=
—c¢; for all veW, implying that

o (S@), v)+(T @), v)Ivlw' = ool * — el

Thus ¢S+ T is also coercive. O

3. Existence theorems

We shall apply Lemma 1 to produce existence theorems for variational inequali-
ties and boundary value problems for the elliptic operator (1.1). To reduce the
use of the rather complicated Sobolev—Orlicz spaces to the minimum we shall
first deal with the particular case where the function M appearing in the condition

(H,) has the shape
M) = coltl”

for some p with 1<p<eoo and ¢,>0. This condition,

(H)* For each a, |x|=m, the function g,: R—R is continuous. There are
constants ¢y, ;>0 and p with 1<p<oco such that for each |a|=m,

(1.2)* g ()t = coltlP—cy for all t€R

enables us to stay within the frames of reflexive Sobolev spaces. The general case
with the condition (H;) we shall treat by making the necessary changes in the proof.

Let V be a closed subspace of W™F?(Q) containing Wy"?(Q), where W™?(Q2)
is determined through the condition (H;)*. By choosing s=>max {N, p} we define
W=WwmtL5(Q)nV. Then we have
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Theorem 1. Let Q be a bounded domain in RY having the cone property, let the
Sunctions g, satisfy the conditions (H;)*, (Hy) and (H,), and let K be a closed con-
vex subset of V containing the origin. Then for each f€V™* the variational inequality

3.1 a(u, w—u) = (f,w—u) for all weWnk

admits a solution uin KnVj.

Proof of Theorem 1. To invoke Lemma 1 we make two observations. Firstly,
the natural injection map i of W to V is continuous. Thus V*cW*. For any feV*
we shall write f¢ W* instead of the more precise statement i*f€ W*. Secondly,
when K is a closed convex set in V' the set K;=Kn W inherits the same property
as a subset of W. Consequently, by Lemma 1, for any n€N there exists u,£K,
such that

1
(3'2) ';(S(un)9 v_un)_'_(T(un)’ v_un) = (f9 U—Mn)
for all v€K;. Setting v=0€K; and bearing in mind (2.5) and (2.6) we get
1
7 S w)+ [ 3 g (D) Dy dx = (£, )
S laf=m

for all n€N. By (2.4) and (H;)* we have further

1
7 Nalli +collttally — 1 = esllully

with ¢, being some positive constant. Hence we can conclude that the real-valued
sequences  {llu,ly}, {(A/mllul}} and {f, 3o 8.(D*u,) D*u,dx} remain uni-
formly bounded. Since V is a reflexive Banach space, there exists a subsequence of
{,} such that (we do not change the notation, for simplicity) u,—~u. As K is also
weakly closed, u€K. We shall show that u is a solution of (3.1). For showing this
it is sufficient to establish the following four assertions for some further subsequence

of {u,}.

D lim sup {% (S(uy), w—u,,)} =0 forany weW,

)] fga(D“u)D“u dx = liminf _/'ga(D“u,,)D“u,, dx forall |o|=m,
9 9

3) lim [ g,(D*u)D*wdx = [ g,(D*u)D*wdx for all weW,
Q2 2

“4 uel;.
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Indeed, provided that (1)—(4) has been verified, we obtain from (3.2) for any w=v
in WnKk,

(f, w—u) = lim (f, w—u,) = lim sup {% (S(u,), w—u,,)}
+lim sup{f 2> g,(D%u,)(D*w—D*u,) dx}
Q lal=m
= lim (D*u,)D*w dx — liminf [ g,(D*u,)D*u, dx
[ 3 a(Du) .aém{ Qfg( ) }

= f > ga(D“u)D"‘wdx—f > g,(D*u)D*udx = a(u; w—u),

O le=m O lel=m

which will prove (3.1), u being in Kn/Vj.
To show (1) we remark that (1/n)|u,||5, >0 as n—oo, because {(1/n)llu,]3}
is bounded. Since (S(u,), u,)=0, we have

L (S, W) = 7 (5w, W) = o 7 s

which implies the assertion (1).
The next step is to show that (2) and (3) are true for all |¢|=m—1. Indeed, as

f > g,(D*u)D*u,dx =cz forall neN

Q lal=m

with ¢, a positive constant, we have, in view of (Hy), also

f > @ (D*u,)D*u,dx = cq, f > g, (D*u,) D*u,ldx = ¢,

O la=m O la=m

for all nEN, c, being again some positive constant. On the other hand, by the
Sobolev embedding theorem, D*u,(x)—D*u(x) a.e. in Q for all |¢|=m—1 for
some subsequence. By Fatou’s lemma

(3.4) [ ou(D*u) D*udx = liminf [ ¢,(D*u,)D*u,dx.
Q 2

By the dominated convergence theorem r,(D*u,)—>r,(D*u) in L7(Q) and hence
(3.5) lim [ r,(D*u,)D*u,dx = [ r,(D*u)D*udx

2 2]
for all |¢|=m-—1. Now (3.4) and (3.5) imply that (2) holds true and that also

g, (D*u) D*uc [*(Q) for all |a|=m—1.
For any 6=0,

#a(D ()] = [max, 0o (1) + 00, (D*u, (x)) D*u, (x).

Applying Vitali’s convergence theorem we obtain ¢,(D*u,)~>¢,(D*u) and
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g2.(D*u,)—~g,(D*u) in L1(Q) for all |¢]=m—1. Finally, since D*weL™(Q) when-
ever weW and |a¢|=m, we obtain (3) for all |¢|=m—1.

To be able to establish the assertions (2) and (3) also for all |¢|=m it is clearly
sufficient, by exactly the same argument as above, to show that

(3.6) D*u,(x) >~ D*u(x) a.. in Q for all |o| = m.

Then it will also be plain that g,(D%u)D*uc L'(Q) and g,(D*u)el*(Q) for
all |x|=m, which means that u€¥V7, i.e. the assertion (4) holds true, too. Hence
the proof of Theorem 1 is completed by verification of the claim (3.6). This we
shall do by means of the following three lemmas.

Lemma 2. For each o with |a|=m there exists a function h, in L*(Q) such
that g,(D*u,)~h, in L'(Q) for some subsequence of {u,}.

Proof. 1t is sufficient to show that {g,(D*u,)} is uniformly equi-integrable for
each |«|=m. By the conditions (Hy)* and (H,) each g, can be written in the form
g.=@,+c,, where ¢,(t)=g,(t)—g,(0) and c¢,=g,(0). Thus ¢,(f)t=0 for all
teR. For any 6=0 we have

¢a(D14,(x) = Max, |9, (1)) +0¢a(D*uy(x)) Dt (x),

where {¢,(D*u,) D*u,} is uniformly bounded in L*(Q) by a constant ¢, for all |o|=m.
For any measurable subset £ of Q we then have

fl(pu(D“u,,)ldxé fKadx4—5c4=K5u(E)+5c4,
B E

where Kj is a constant depending on 8. Given &=0 let o be such that dcy<e/2
and let u(E)<¢/2K;. Hence we can see that {¢,(D*u,)} and therefore also {g,(D*u,)}
are equi-integrable. [

In the following lemma we denote, for convenience, h,=g,(D*u) for each «
with |¢j=m—1. Thus we can write g,(D*u,)—~#, in L*(Q) for all |«|=m, where
in fact g,(D*u,)—~h, in [*(Q) for all |a|=m—1.

Lemma 3. limsup [ 3=, {2.(D*u,) —h,} D*u, dx = 0.

Proof. Since {u,}c K,=Kn W, we may substitute v=u; (1=j=n) in (3.2) to get

(3.7 %(S(u,,), uj—u,)+ fl ‘Z' g,(D*u,)(D*u;—D*u,) dx
Q al=m
= (f; uj_un)

and hence

[ 3 gD u) D uydx = (S, =)+ (f =)

Q lol=m

+f > 8.(D*u,)D*u;dx.

O lel=m
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As (S(u,), u,)=0 we have further

f 2 {ga(Daun)_ha}Daun dx = -:?(S(un% uj)+(f; un—uj)

0 laj=m

+f 2,(D*u,)D*u; dx—f > h,D%u,dx.

O laj=m
Letting n—<> and keeping j fixed we can conclude

3.9) limnsup f > {g.(D*u,) —hyD*u, dx = (f, u—u;y)

O la=m

+ f S h,D*u;dx—lim inf f > h,D"u, dx.

lej=m lal=m
On the other hand, we can deduce from (3.7) also that

f > h,D*u;dx = (f, u; u)—hmsup f Z’ |g.(D*u,) D*u,| dx

O lal=m laj=m

for all jEéN, where we already know that 2>, _ |l g2.(D*u,) D*u,)| 1 =c, for all
neN. Hence
—11m inf f 2> h,Dlu,dx=c,

lal=m

Finally we can select from the sequence {u;} such a subsequence {u; } that

lim > h,D*uj dx = hm inf f > h,D%u,dx,

koo laj=m laj=m
which enables us to conclude the assertion of Lemma 3 from (3.8). O

Lemma 4. D*u,(x)—~D*u(x) a.e. in Q for all |x|=m for some subsequence
of {u,}.
Proof. We denote

qn(x) = ] g {ga(Daun(x))_ga(Dzu(x))}(Daun(x) _Dau(x))-
In view of (H,) the convergence of D*u,(x) to D"u(x) almost everywhere for all

le|=m is implied by g,(x)—~0 a.e. in Q (cf. [14], Lemma 6). In fact, as q,(x)=0
for all x€Q, it is sufficient to show that

(3.9) lim sup f g,(x) dx = &,
0

where & —0 as k—oo and {Q,} is a growing sequence of the subsets of @ such
that u(Q\ Q)0 as k-
To this end we define for any k=1,2, ...

Q. = {x€Q: [D*u(x)| = k and |h,(x)| = k for all |of = m}.
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Then we observe that

(3.10) lim [ 2 2.,(D*u)(D*u,—D*u)dx = 0,
g, lel=m
(3.11) lim j h,(D*u,—D*u)dx = 0
lef=m
and
3.12) lim f ' (he—gu(D*u) D*udx = 0

for any fixed k. Moreover, by the inequality (1.3) of (H;) we have for all lal=
m—1,
{(pa(Dau)_(pu(Daun)}Da U, = K1¢1(Dau)Dau+K29

where ¢, (D*u) D*uc L(Q). Since {(,(D*u,(x))—¢,(D*u(x))} D*u,(x)~0 a.e. in
Qfor all |a|=m—1 and since its positive part is dominated by a function in L (Q),
we can deduce by the dominated convergence theorem that

lim sup f {¢.(D*u,) — @, (D*u)}D*u, dx = 0.
Since also !
(3.13) {ro(D*w)—r,(D*u,)}D*u, -~ 0 in LY(Q) for all |¢] =m—1,
we get (with the convention A,=g,(D%u) for all |«|=m— 1)

(3.14) limsup [ 3 {h,~g,(D*u)}D*u,dx = 0.

Q laj=m-1

As a consequence of (3.10), (3.11), (3.12) and (3.14) we can derive

lim sup f q,(x) dx = lim sup f 2> g.(D*u,)(D*u,—D*u)dx
, 0, ld=m
= lim sup f 2 {g.(D*u,)—h,} D?u, dx
= lim sup f {ga(D“ W — N} D*u, dx

+1lim sup f 2> {h,—g.,(D*u,)} D*u,dx.
o\, ld=m

Taking into account that the functions g, for each |u|=m satisfy the inequality
(1.3) of (Hj), we can apply the argument of [13] p. 20 to show that

(3.15) 2@ = (0w @)}, () = I ()

for all n€N, I being some function in L¥(Q). From (3.15) and Lemma 3 it then
follows that
lim sup f q.(x)dx = f I'(x)dx,
2

2N\
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where ¢,= f N I'(x)dx—~0 as k--oo, which completes the proof of Lemma 4
and also the proof of Theorem 1. O

For various boundary value problems for the operator (1.1) subject to the
boundary constraints associated to the subspace ¥V with WgP(2)CV wm™P(Q),
where p is determined by the condition (Hy)*, we have the following theorem:

Theorem 2. Let Q be a bounded domain in RY having the cone property and
let the functions g, satisfy the conditions (Hy)*, (Hy) and (Hy). Then for each feV*
there exists u in V7 such that

(3.16) [ 3 g.(D*u)D*wdx=(f;w) for all weW,
Io) laj=m
while
(3.17) f | > g, (D*u)D*u dx = (f; ).
0 lal=m

Proof. We may choose K=V in the proof of Theorem 1. Setting v=w+u,
in (3.2) with w arbitrary in W we get

L(sw )+ [ 3 s0upprwds=(;w.
Q la =m

Letting here n—oo we obtain (3.16). Furthermore, if we substitute w=0 in (3.1),
we obtain (3.17). O

Remark 1. When the two norms | -], , and ||, , are equivalent in ¥/
(i.e. Poincaré’s inequality holds), the coercivity condition (1.2)* of (Hy)* can be
relaxed for the functions g, with |«|=m—1. Such is the case when V'=W"7(<Q),
for example.

Next we shall tackle the general case where the conditions (H;), (H,) and (Hs)
are assumed. Let ¥ be a closed subspace of W™(Q) containing W»*(Q). Selecting
s=N we define W=Wwm+tLs(Q)nV. Let further Ey(Q), W"E,(Q) and Ey(2)
be the spaces determined through the function M appearing in the condition (H;). We
note that each f€W™™Ey(Q={f=1yzm (—D"D*f;: fL€EG(Q) for all |et| =m}
defines an element in W* by

(f, w) = fHZf,D“wdx,
o laj=m

while

I(f; w)| = const. HWHWI ém Il foll 5z -

Now we are in a position to prove

Theorem 3. Let Q be a bounded domain in RY having the cone property, let
the functions g, satisfy the conditions (H,), (Hy) and (Hs) and let K be a closed con-
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vex subset of V containing the origin. Then for each f¢ W™"Ew(Q) the variational
inequality
3.1 au,w—u) = (f,w—u) for all weKnW

admits a solution u in KnV,nW™L,,(Q).

Proof. We shall only indicate the changes which are necessary in the run of
the proof of Theorem 1.

The inequality (3.2) obviously holds for all v€K,=Kn W. Setting w=0 in
(3.2) we get for all nEN,

%(S(u,,), u,,)+f > g,(D*u,)D*u,dx = f > f.D%u,dx.
Q la=m

O led=m

By (H,) and Young’s inequality ([12] p. 135) we have further

Liwliv+ [ 3 M@ruydx—c, = [ 3 HGA) + M (5 D7) dx
n S lai=m 2

fol la]=m

écs-l——;—f > M(D*u,)dx,
Q ld=m
where we have used the fact that f,€ E(Q) for all |x|=m and where ¢,=0 is a
constant. As a consequence we can conclude that the real-valued sequences
(Wl {Z02m [0 M(D*u,)dx} and {3, _. [og.(D*u,) D*u,dx} are uni-
formly bounded. By the de la Vallée—Poussin theorem ([12] p. 174), {D*u,} is
uniformly equi-integrable in L'(Q) for each |¢|=m. On the other hand, as {D*u,}
is bounded also in L, (Q) for each |x|=m, we can establish the existence of a sub-
sequence of {u,} such that D*u,—~D*u in L,,(Q) for the topology 0(Ly(Q), Eg(Q)
and also D*u,—~D%u in L'(Q) for each |¢|=m. We can then show the desired
result that the limit element u€ W™L, (Q)nK is also in ¥; and solves (3.1) by
verifying again the assertions (1) to (4). The proofs of these assertions remain true
without any essential change. We mention the following two facts only. Firstly,
(3.5) and (3.13) hold by Vitali’s convergence theorem because of the equi-integrability
of {D*u,}. Secondly, (f,u,)—>(f,u) as n—eco, since D*u,~D*u in L,,(Q) for
0(Ly(Q), Eg(Q)) for all |a|=m and f=(f)cW "Eg(Q). O

For the boundary value problems subject to the boundary constraints which
are associated to the subspace ¥V with WH(Q)cV W ™Y(Q) the following gen-
eralisation to Theorem 2 can be derived from Theorem 3.

Theorem 4. Let Q be a bounded domain in RN having the cone property and
let the functions g, satisfy the conditions (H), (H,) and (H,). Then for each
JEW™™Eg(Q) there exists u in Vo W™Ly(Q) such that (3.16) and (3.17) hold.

Remark 2. When ||-||,,; and |-|, , are equivalent norms in ¥ (for example
V=Wwi1(Q)), the coercivity condition (1.2) of (H,) can be relaxed for the functions
g, with |u|=m—1.
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4. Examples and applications

In this section we shall indicate briefly some examples of the problems which
can be solved by our existence theorems of the previous section. We start with
mentioning some specific functions g, which satisfy the conditions (H,) or (H,)*
(H) and (Hy).

) g.(t)=|t|P~sgnt,
where 0<p,<< for all |x|=m. The Sobolev space W™?(Q) is determined by
p=min {p,+1: |a|=m}. In this case the partial differential operator 4 defined by
(1.1) has polynomial growth which may depend upon the direction. This kind of
operator is called anisotropic in the literature (cf. [7] p. 191). Obviously the func-
tions g, satisfy the conditions (H,)*, (H,) and (H,).

2) g(t) = lt|r-esgnt,
where 0<p,, g,<e<~ for all |x|=m. Then W™P(Q) is defined as above and the
operator 4 is anisotropic with an exponential growth. The conditions (H,)*, (H,)
and (H;) are satisfied.

3 ‘ {t"«, if r=0,

VEO = tog (141, if 1 <o,

where 0<p,,q,<< for all |x|=m. The conditions (H,)*, (H,) and (H,) are again
satisfied. Note further that the operator 4 is not odd (cf. [8], [10]).

4) As an example of functions g, satisfying (H;) but not (H,)* we mention

g, (1) =log(1+]t])sgnt for all |of = m.

The Sobolev—Orlicz space W™L,,(Q) is then defined by the function

M) = [ g(@)dr.

The corresponding operator A4 has slow growth, the coercivity condition (1.2) of
(H;) being still satisfied.

5) The functions g, may, of course, be any combinations of the types mentioned
above. A constant c, can be added to each g, with |«|=m and each g, with |¢|=
m—1 may be added by any bounded function k,.

We finally conclude with some examples of specific boundary value problems
and convex sets K appearing in the applications.

a) If V=Wg?(Q) with 1=p<o, Theorem 2 or Theorem 4, respectively,
establishes the existence of a weak solution u for the Dirichlet problem
{ > DD (g (Dw)=f in @

la]=m

4.1
D*u=0 on 9Q for all |¢] =m—1
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for each prescribed fe W—™7(Q) (resp. fe W™"Ey (L)), provided the functions g,
satisfy the conditions (Hy)* (resp. (H,)), (H,) and (H,).

Similarly, if V=W™?(Q), the existence of a weak solution for the boundary
value problem with Neumann type boundary constraints follows.

b) Let Y€ W-=(Q) be a given function such that ¥ (x)=0 on the boundary
0Q. Let
K= {eWdr(Q): v(x) = ¢ (x) ae. in Q}
and let the functions g, satisfy the conditions (H;) to (H;). The “obstacle problem”
asks for a solution u in K of the variational inequality

4.2) f > g, (D*u)(D*w—D*u)dx = (f,w—u) forall weKnW,
o la=1

where W=W?2S(Q)n Wy P(Q), s>max {N, p}, with 1<p<ee if (H,)* is satisfied,
p=1if only (H;) is met. When (x)=0 in the whole set Q, 0¢K and the existence
of a solution u in KV, follows immediately from Theorem 1 for each f€ W ~?(Q)
and from Theorem 3 for each f¢ W™ 'Ey(Q), respectively. If 04K, we may per-
form a change of variable u—#d=u—y*, where y*=max {y, 0}.

Then we set

R = {2ewdr(Q): d(x) = ¥ (x)—yH(x) in Q},
whence K contains the origin. The problem (4.2) is now equivalent to finding @K
such that
(4.3) f S g (D i+ D™ +)(D*W—D*i)dx =(f, w—i) forall WeRnW.
o la=1

Setting £,(x, t)=g,(t+D*y*(x)) and formulating the analogous conditions for the
functions of the type g,(x, t) the existence theorems remain valid and the solvability
of (4.3) follows.

¢) Let K={ve W™(Q): v(x)=0 on 902}. Then the variational inequality (3.1)
is equivalent to a boundary value problem with certain boundary constraints (cf.
[17] p. 99). When K={ve Wp'(Q): |Vo(x)|=1 a.e. in 2}, (3.1) constitutes a prob-
lem of the type appearing in the theory of elasto-plasticity (cf. [17], p. 100).

5. Uniqueness theorems

Our purpose in this section is to deal with the uniqueness of solutions of the
variational problems for the operator (1.1) discussed in Section 3. To this end we
shall assume in what follows that all coefficients g, are strictly increasing. For
convenience we shall restrict ourselves to the second order operators and to the
case where the strict form of the sign condition is fulfilled. Thus we can reformulate
the conditions for the functions g, g, ..., &y as follows.
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(Ey)) For each i=0,1, ..., N the function g;: R—R is continuous and strictly
increasing, and satisfies gi(t)t=0 for all t¢R. There exists an Orlitz function M
and a constant ¢;>0 such that for each i=1,2, ..., N,

g(t)t = M(t)—c, for all tER.
(E») go(t)t = M(t)—c, for all tER.
For each i=0, 1, ..., N we define the function G; by

(5.1) Gi(s) = [ &) dr,

which is convex obeying the inequality
(5.2) Gi(s)—G;(H) = g,(t)(s—1) for all s,€R.

When Q is a bounded subset of R having the cone property, ¥ is a closed
subspace of W''(Q) containing Wp*(Q), W=V W2>(Q) with s=N, and K
is any closed convex subset of ¥ containing the origin, it follows from the conditions
(Ey) and (E,) and from Theorem 3 that the variational inequality

N
(5.3) [ 2 gDu)(Diw—Dyuydx = (f, w—u) forall weKnW
o i=0

admits a solution u in KNV, W*'L, (Q) for each given f in W 1E4(Q), where
Vy = {veV: g(D;v)D;ve L}(Q) and g;(D;v)eLY(Q) for i =0, 1, ..., N}
On the other hand, by (5.2) each solution « of (5.3) is also a solution of the inequality

N
(5.4) f 2HA{G,(D;w)—G(Dyuw)ydx = (f, w—u) forall weKnW.
i=o

2

Similarly, the solutions of the boundary value problem

N
(5.5) [ S aDu)Dwdx = (f,w) forall wew
o i=0
with the property
N
(5.6) [ 2 gD Dudx = (£, w)
Q =

are also solutions of (5.4) with K=V¥. Our study on the uniqueness of solutions for
(5.3) is based on the inequality (5.4) which, however, should hold true for all w in
KnV,, where

Ve = {o€V: G(D)eLX(Q) for all i =0, 1, ..., N).

Note that V', is contained in V,, since Gi(#)=g(¢)t for all t¢R and i=0,1,..., N.
As Gi(t)=0 for all t€R, (5.4) is obviously satisfied for all weV with wé¢V,.
The following simple lemma (cf. [3]) shows that the main problem in establishing
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the uniqueness for (5.3) or for the pair {(5.5), (5.6)}, respectively, is to extend (5.4)
for all weKnV,.

Lemma 5. Let the functions g; (i=0, 1, ..., N) satisfy the conditions (E,) and
(Ey). Then the variational inequality

5.7 f ZN' {G,-(Div)—G,.(Diu)} dx = (f,v—u) forall vEKnV,
& i=0

admits at most one solution u in KnV,.

Proof. Let u; and u, be two solutions of (5.7) in KnV,. Since V;CV, and
since each G; is convex, (1/2)(u;+u,)€V,. Thus we can set v=(1/2)(y+u) in
the inequalities

[ 2 (6Dw) - Gy dx = (f, o),
N
[ ZH{G(Dw) = Gi(Diup)ydx = (f, v~ uo),

and we obtain by addition,

j' gv Gi(Diul)—Gi(Diuz)_G. Diu,+Djuy dx=0
Pt 2 ! 2 -

The conclusion u;=u, follows now from the strict convexity of the functions G;
for each i=0,1,....,. N. O

A domain @ in RY is said to be starlike, if for any r>1, Q,={x¢RV:rxc Q}cc Q,
ie. @.cQ and ,is compact. We shall deal below with the starlike domains only.
We are able to prove the uniqueness of solutions for the boundary value problems
with the Dirichlet boundary conditions (V=W *(Q)) and with the Neumann type
boundary conditions (¥'=W'1(Q)), and for the obstacle problem (Example b, in
Section 4). For simplicity, to avoid the discussion of various cases separately, we
shall assume that f is a given function in L=(Q). We start with

Theorem 5. Let Q be a bounded starlike domain in RN having the cone property
and let the functions g; satisfy the condition (E,). If V=Wg'(Q), then for each
JEL=(Q) there exists a unique u in Vy such that

N
(5.8) - ;{; Di(gi(Diw)+gow)=f in Q
(in the sense of distributions), while (5.6) also holds.

Proof. Let u be a solution of (5.8) satisfying (5.6). Such a solution exists by
Theorem 4 and Remark 2. Thus

N
[ > eDw)Diwdx = (f,w) forall weCF(Q),
o i=0
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which, in view of (5.2) together with (5.6), implies that
(5.9) [ 3{GDw)~Gi(Duw}dx = (f, w—u) for all weCs (D).
Q2 i=0

To be able to apply Lemma 5 we must only show that (5.9) remains valid for
all win V,.

Let v€ Wr(Q) with G(Dp)eLY(Q) for all i=0,1,..., N. For any 6 with
0<d<1 we define Q;={xcR": 671xcQ}, whence Q;c Q. Let further

p(671x), if x€Q,,
=10 i xeo\Q,

and v,;(x)=0zs(x) for all x€Q. Then z; and v, belong to Wy'(2) and z;—v in
WLHQ) as d—1 ([12] p. 70). Hence also vs—~v in W'(2) as 6—1. Further-
more, as

[ Go(v@)dx = 0-N [ Go(v(3 %) dx = 57N [ Go(z5(x)) dx,
Q Q4 Q

Go(z5)~Go(v) and 37 NGy(z5)~Gy(v) in L}(Q) as d—~1. Since 0=Gy(05)=Go(s)
for all s€R and 0<d=<1, G,(vs(x))=Gy(z5(x)) for all x€Q. On the other hand,
Go(v5(x))>G,(v(x)) a.e. in Q. Hence it follows by the dominated convergence
theorem that G,(vs)—~G,(v) in L'(Q) as J6-—1. Similarly one can show that
G{(Dw;)—~G{(Dw) in L*(Q) for each i=1,2,..., N.

The next step is to approximate each v, by test functions. We denote

v&e(x) = f]s(x—y)vé(y) dy’
Q

~ the mollification of v, for any &>0 ([1] p. 29). For each given d, v5;,€C5’(€2) and
Vs —Vs N WELH(Q) as e~0 ([1] p. 52). We must show that Gy(Dws)—>Gi(Divs)
in L1(Q) for all i=0,1, ..., N. Indeed, by Jensen’s inequality (see [12] p. 123),

0= Go(vs(®) = Go [Je(x—1)vs(»)d¥)

Q

= [.(x=1)Go(v5 () dy = (Go(¥))s (),

where (G, (vs)),~G,(v5) in L'(Q) (1] p. 30). Therefore Gy(vs,) >~Go(vs) in L1(Q)
again by the dominated convergence theorem. For each i=1,2, ..., N we similarly
have
Gi(Divéa(x)) = Gi((Diva)e(x)) = (Gi(Divé)a)(x)9
and the convergence GyDw;)—Gi(Dws;) in L'(2) can be derived accordingly.
The final step of the proof is to set w=vs, in (5.9), to send firstly é~0 and
then 6—1 to obtain the assertion. [J

For the Neumann type boundary value problems some modifications are nec-
essary.
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Theorem 6. Let Q be a bounded starlike domain in RY having the cone property
and let the functions g; satisfy the conditions (E;) and (E,). Let V=W“Y(Q) and
W=V W?>5(Q) with s=N. Then for each feL=(Q) there exists a unique u in
Vin WL, (Q) such that (5.5) and (5.6) hold.

Proof. Let u be a solution in V; " W1L,(Q) of the pair {(5.5), (5.6)}. A solu-
tion exists by Theorem 4. As above in the proof of Theorem 5 we can conclude that

N
(5.10) [ S{GDwW)—G(Duw)}dx = (f,w—u) forall weW>(Q).
o i=0
In view of Lemma 5 it will be sufficient to find, for each ve W%-'(Q) with
G{(D;v)eL*(Q) for all i=0, 1, ..., N, a suitable approximation in W25(Q). For any
6>1 we define Q,={x€R": §-1x€Q} so that Qc < Q;. Let z;(x)=0v(5~1x) for
all x€Q;. Then zz;—v in W%'(Q) as 61 and, furthermore,

[ Go(w(®)dx =5 [ Gy(v(672x))dx = 6-¥ [ Go(z5(x)) dx,
Q Q5 Q

implying that G,(z;)€L*(Q) and Gy(z;)>Gy(v) in L1(Q) as 1. For each
i=1,2,..., N, we have further D;z;(x)=0"1Dw(6 'x) and hence

JG(Dw)dx =" [G(Dw(@ %)) dx = 6=V [G(D;v(07 %)) dx
Q 2, Q
=Y [G,(07 D371 x)) dx = 5N [ Gi(D;z5(x)) dx.
(2] Q

Consequently, Gy(D;z;)~G(Dw) in L*(Q) for each i=1,2,..., N follows by a
previous argument.

Each z; can now be approximated by the mollification zs;, such that z;—z;
in Wh'(Q) as ¢—~0, because Qc cQ; (see [1] p. 52). It is also obvious that
25,€ W25(Q) for any &>0 and 6>1. We can complete the proof as the proof of
Theorem 5 by showing that G(Dzs;)—~G{(D;z;) in LY(Q) for all i=0,1,...,N
and letting then ¢—~0 and finally 61 in (5.10) with w=z;. O

We shall close our discussion with the following uniqueness theorem for the
obstacle problem.

Theorem 7. Let Q be a bounded starlike domain in RN having the cone property,
let the functions g; satisfy the condition (E;), let K= {v€ W' (Q): v(x) =y (x) a.e.in Q},
where Y is a given function in W»= (Q) with Yy=0 in Q, and let V=Wr*(Q),
W=VW?5(Q) with s>N. Then for each fEL“(Q) there exists a unique u in
KnV; such that

(5.11) fZN'gi(Diu)(Diw—D,-u)dxé(f,w—u) for all weKnW.
o i=0
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Proof. By Theorem 3 and Remark 2 a solution u€KnV; of (5.11) exists. By
the previous argument we get from (5.11) the inequality

(5.12) f ZN,' {G\(D;w)—Gy(Dyw)}dx = (f, w—u) forall weKnW.
g i=o0

For a given v€K with G(Dw)eL'(Q) for all i=0,1,..., N, we define v,
and v, with 0<=8<1 and >0 as in the proof of Theorem 5. Since these approxi-
mations are not necessarily in K, we also consider a map w-w, in W“(Q)
defined by

wy (%) = max {w(x), Y (x)} = [w—¢]"(x)+ ¥ (x).

As Y (x)=0 a.e. in Q, 0,=0. Moreover, it is known that

Diw(x), if w(x) = y(x),
Dy (x), if wx)=y(x

and that the map w-w, is continuous in Wh1(Q). Then it is also clear that v,=v,
(v5)y€K and (vs),€K. Since vs—vs and v;—~v in W4H(Q) as e~0 and -1,
respectively, (vs)y—~(vs), and (v)y—~vy=v in W»'(Q). Next we show that
G{Di((vs5),)) ~G{(Dw) in L}(Q) for each i=0,1, ..., N. Indeed, it is readily seen
that Dy(vs)y)(x)~D(x) ae. in Q (for a subsequence). By continuity also
G{D{(v5)y) (%))~ G{Dw(x)) ae. in Q. From the proof of Theorem 5 we already
know that Gy(D;vs)—~G(Dw) in L'(Q). Hence there exist functions hy, Ay, ..., Ay
in LX(Q) such that G{(Dw;,(x))=h(x) a.e. in Q. Consequently,

Gi(Di((v50)y) (x)) = G, (D;v5.(x))+ G, (Di ¥ (x))
= h(x)+Gi(DyY (%)),
Where hl+ Gl(D,lp)ELl(Q) fOI‘ all 120, 1, seey N. Hence Gi(Di((vée)lll))_*Gi(Div)
in L1(Q), by the dominated convergence theorem.
Because (v,), is not necessarily in W**(Q) and therefore not in W, the final

step of the proof is to find for each fixed (vs), an approximation in W. Indeed,
et w=u;€C5(2) be given. For any nc€N we define a function ¢,: R~R by

Diw,(x) = {

0, if ¢

IIA

1
2n’
1 1 1
— 2____ 1 —_ =
@,(t) = nt in t, if = t = ~
3 o1
l t_4—n N if 7 <t
The mollification of ¢, is denoted by ¢,,, where 0<o<1/4n. Then ¢,,€C*(R),

¢,,=0 and @,,=0 for all ¢=1/4n. Moreover, there exists a function o€ C7(€2)
such that 0=¢(x)=1 in Q and ¢(x)=1 in the support of w. Now we can set
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Wao = {@ns(W—)+} 0. Hence it is obvious that w,,€ Wi (Q)n W=(Q), w,,=
Yo=Y, ie. w, is also in K. As ¢, and ¢, are continuous and w—y is bounded
in W%=(Q), we can easily conclude that w,,—~w,o=w, in W>(Q) as ¢—0
and n—e, while g(x)=1 in supp (w,). Since |@,(t)|=|¢t|+1 and |, (t)|=1
for all ¢, we can apply the dominated convergence theorem to conclude that G, (w,,)—~
Go(wy) and Gy(Dw,,)~G{(Dw,) for all i=1,2,...,N in L*(Q). Our proof is
complete if we substitute w,, with w=v,, into (5.12) and let 60, n—>o, £>0
and finally 6—~1. O
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