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ON THE CONVERGENCE OF THE FINITE ELEMENT
APPROXIMATION OF EIGENFREQUENCIES
AND EIGENVECTORS TO MAXWELL’S BOUNDARY
VALUE PROBLEM

PEKKA NEITTAANMAKI and RAINER PICARD

0. Introduction

This paper can be regarded as a supplementary to the work [10]. There the finite
element approximation of the time-harmonic Maxwell’s equations

o1 {curlE—icoyH=J G e R
©.1 curl, H+iweE = K - -
with homogeneous boundary condition

0.2) nAEr=0,

I':=0G, nA E:=n, E,—n, E,, was considered under the assumption that w is not an
eigenvalue of the system. Here G is a bounded smooth domain in the plane, n denotes
the outer unit normal on the boundary I', E and H are vector and scalar functions
and the operators curl and curl, are in two space dimensions formally given by
curl E=0, E,— 0, F,, curl, H=(0,H|—0,H). (The indices refer to the respective
components.) Moreover, in system (0.1) ¢ is a function that takes positive definite
bounded matrix values, u is a strictly positive bounded real valued function and J
and K are force densities. In the case where there are no nontrivial solutions of
problem (0.1), (0.2) with J=0, K=0, the approximation of the electric field E
is handled by Saranen in [17] for smooth and in [18] for polygonal domains of the
plane. The approximation of the whole solution (E|H) of problem (0.1), (0.2) for
polygonal GcR? has been studied by Neittaanméki and Saranen in [12].

In this paper we consider the finite element approximation of the eigenvalue
problem arising from equation (0.1), (0.2) in smooth domains. We denote

0.3) MU :=i(e tecurl, H|—p tcurl E), U:= (E|H)
and our problem can be written

0.4 (M—w)U=0, nAUyr=0.
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It is well known ([8], [9], [10], [14]) that the resolvent of M, interpreted as an opera-
tor in a certain Hilbert space, is compact so that the spectrum of M is purely discrete.
We shall, in fact, first consider the approximation of eigenvalues and eigenvectors
of the operator &/:=M2+1 and reduce the situation back to the original problem
(see Chapters 3 and 4).

Our method to prove error estimates for the approximation of eigenvalues is
based on the use of the min—max-principle. This idea has been presented by Strang
and Fix in [19] and has been developed later on to cover conforming and noncon-
forming schemes by many authors (see [1], [6], [7]). Our method follows partly
the works of Kikuchi [7] and Ishihara [6] combined with some projection methods of
Hiltert spaces presented in [10], [14] and [15]. In this form our method can be
applied e.g. to the eigenvalue approximation of boundary value problems arising
in [11]. For other general treatments of eigenvalue approximation we refer to [2],
[3], [4], [13] and [20].

In the approximation of eigenvectors of Maxwell’s equations with boundary
condition of total reflection there arise some special difficulties. As the first aspect
we mention that the electric field component E of the eigensolutions is solenoidal
(divergence free). For the approximation of eigensolutions we use piecewise linear
continuous vector fields such that the first components satisfy the condition (0.2) at
boundary nodes of the triangulation, but are solenoidal only asymptotically. In
order to use regularity results we need to use smooth domains. Therefore the special
boundary condition makes the nonconformal method necessary. Because of this,
care should be taken especially in the evaluation of the lower bounds of eigenvalues.
The reduction of the bilinear form problem (connected with &/ =M2+1) back to
the original question of the eigenvalue problem of M leads to difficulties, which are
treated in Chapters 4.2 and 4.3.

Let us remark that the abstract methods of Chapters 3 and 4 are, with the
exception of Lemma 3.1, independent of the dimension of the space. The reason
why we restrict our discussions to the two dimensional case is that up to now the
finite element approximations for the resolvent of M are known only in the two
dimensional case.

After submitting this paper the article [21] appeared. There finite element
approximation of vector fields given by curl and divergence was considered in the
three dimensional case.

1. The eigenvalue problem

1.1. In order to use variational methods we formulate the eigenvalue problem
in a weak sense. The familiar Sobolev spaces H*(G) (k€ N, H°(G)=L?*(G)) and
H}(G) are needed for the precise formulation. The inner product of H*(G) is denoted
by (-, *)uxe Wwith corresponding norm | -[lyxqy, k=0, 1,2. The subscript
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will be omitted in the case k=0. We will write H*(G), (-, Vure and |-l gxe
also for the product spaces H*(G)X...X H*(G) without indicating the number of
components which will always be clear from the context. Furthermore, we introduce
in the same manner as in [9] the following special conventions

D,:= {Ve HY(G)|diveVe HO(G)},

Dy, = {VeD,|diveV = 0},
and
R:= {Ve H(G)|curl V€ H*(G)},
R, = {p€ H°(G)curl, o H(G)},

R°:= {VeR|(curl, @, V) = (p, curl V) for all p€R,}.

The derivates div eV, curl ¥ and curl, ¢ appearing above are defined distribu-
tionally in an obvious way corresponding to the formulae div eV"=0,(¢;;¥)), curl V'=
0,Vy—d,V, and curl, ¢=(dy|—0,0), where 9;:=9/0x;,i=1,2, and (-|-)denotes
the ordered pair.

With this terminology, we will need to make use of the Hilbert space

Hy o= (RADXRI(+, )sys)
with the inner product
U, V)y,s:= (U, V)+(MU, MV),
where
U, V)= Uy, eV)+(Us, us),
and
(U, V)= (U, V)+s(diveUy, div ely)

with a real parameter s=0. Moreover, we denote
#:=(H(GQ)XH (G-, +))

% = (szHO(G)l( N )s)
and
HO = (VEHIV,€D,, ).

1.2. Using the formal differential operator M, we now define the (symmetric)

Maxwell operator
M: DMy H—~H°, U—~MU,

where D(AM):=(R°XR,)nH°.
We denote by N(.#) the kernel of # and by W (.#) the range of .#. According
to [8], [10] and [14] one has the results

(i)  is selfadjoint in #° so that the spectrum o (%) of ./ is real.
(ii) The resolvent of .# is compact, which implies the spectrum of .# consists
of isolated points.
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(iii) Let P, be the projection of s#° onto the space of eigenfunctions of .#
corresponding to w. Then
(LD P,1P, wl

in the sense of the scalar product (-, -).

We shall prove an important

Theorem 1.1. If w*€a(M?), then wEo(M) and —w€o(M). Let Q, be the
projection on the space of eigenfunctions of sf:=.M*+1 corresponding to A:=w?*+1,
w=0. Then

Q,=P,+P_, for w=#0
and
0, = Py.

Proof. A. If w?€o(#?), then w€o (M) or —wco(M). If the ordered pair
(U4|Us,) belongs to W(P,)=N(.4#—w), it is easily seen that (Uy|— Uy)E W(P_,)=
N(# +w). Thus we€a(#) and —wco(MH).

B. In order to prove the second assertion of Theorem 1.1 let U belong to
N(L—)=N(M*—w*. Then

(1.2) F = (M+0)UENM—w).
Because . is selfadjoint,
HO = N(M+0)DW (M +w),

and it holds for all Ues#° that
1.3) U= U+ UEN(M +0) D W(M+w),
where the indices refer to the projection on the respective subspace. Thus, by (1.2),
(1.9 F = (M +w0)U,.
On the other hand, it holds by (1.2) that
(1.5) (M +w)F = (M—w)F+20F
= 2wF.

According to (1.4) and (1.5) we have for w0, U,—(2w) 1 FEN (4 +w). But (1.3)
and (1.4) imply U,—Qw) "t FEW (M +w). Thus
U, = 2w) *FEN(AM —w),

and therefore Q;=P,+P_,, according to (1.3).

The case w=0 is trivial: If .#2U=0, then .#UEN (M) W (AM)={0}. Thus
0,=Py. O

According to Theorem 1.1 it is obviously sufficient to study the spectrum of
/* in order to obtain exact information as to the spectrum of .#. Without loss of
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generality we can move the spectrum to the right so that we can, in fact, study the

properties of the spectrum of
oA = MPH+1.

In what follows we are interested in the spectral points of &/ which lie between
1 and J,, where /, is any fixed constant larger than 1.

We shall give a variational formulation to this eigenvalue problem, which is
based on the following theorem:

Theorem 1.2. Let
o = min {|Vol¥/| ¢|?| p€ Hy (D)},
§=24""1(1o—1), and let J€[1, A]. Then UEN(sZ/—1) if and only if the equation

(@, U),,s = AM(P,U) for all dcD(M)
holds.

Proof. We note that, if U€N(sf/—42), diveU;=0 and e~ curl, U,€R’. By
partial integration we find that U satisfies (1.6).

Conversely, the argument follows the same lines as in the proof of Theorem 1.3
in [12] (see also [10]). 0O

Let us remark that we can indeed determine the “elliptization parameter” s,
since " is the first eigenvalue of the (negative) Laplacian and its evaluation is well
known in many respects (see [5], [19]).

We are now in a position to define our problem in variational form:

Problem (EP). Find the eigenvalues 1.€[1, A] and the eigenfunctions U such that
(1.6) (P, U)y,s =A@, U) for all ®cD(M).

The Problem (EP) admits a finite sequence of positive eigenvalues {/;}; each
of finite, even multiplicity {v;}; (we agree that eigenvalues are ordered and repeated
according to their multiplicity) and a corresponding sequence of eigenfunctions
{U,}; with the normalization condition

(1.7) Us Uj) = 5ij-
Let E(J) be the spectral family of &/ and let
Q,:=EQA+)—EQ(—).
We define on #, ,—{0} the Rayleigh quotient

1913,

(1.8) 2@ =gt

The eigenvalues of the Problem (EP) can be characterized by the Rayleigh principle:
The stationary points of £ are precisely the eigenfunction of the Problem (EP) and
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the values of £ at such points are the corresponding eigenvalues:
(1.9 4; = min {R ()| PEW (E(J;—, 1)L, & = 0}.

Moreover, Z(®)=/ for every € W(Q,) and dim W(Q;)=v;, 2=v;<< for all
)-:i:;vk Wlth k= ;;i V[‘I-l.

By the regularity results in [10], Theorem 3.2, and by (1.7), it holds for every
eigensolution U, of (1.6) that U,€ H2%(G) and that

(1.10) ”UA.”Hz(G) = c/.

Note that, as above, we adapt the usual convention that ¢, ¢, c,, ... always
denote positive generic constants, which may vary from context to context.

2. Finite element approximation of problem (EP)

To approximate the eigenfunctions and eigenvectors of (1.6) we introduce a
family of finite dimensional subspaces A", , depending on a discretization
parameter O<h<1 going to zero. The idea is to solve (1.6) on these subspaces.

For a precise formulation, let 7, be a family of regular triangulations of G in

the usual sense ([10]) B
G = U{T, |T,c7,}.

Let K, be the set of all nodes of , lying on the boundary. Denoting C(G):=
{¢:G—~Clp continuous} we define, as in [10],

St = {P = (P,|D,)€e C(G) X C(G)| |7, linear, (n A P)(x) =0, x€K,},
and
Ski= {p€C©G)| olr, linear).

We define #":=SiX St as a subspace of #, ,.
The discrete analogue of Problem (EP) reads:

Problem (EP)". Find the eigenvalues \"¢[1, o) and the eigenfunctions U"c #"
such that
@.1) (@, U, = 1D, UM forall &,

Since #" ¢ D(4), (2.1) is a nonconforming finite element model for solving
Problem (EP).

In order to write (2.1) as an equivalent operator equation, we recall some defini-
tions from [10]. Let P, be the orthogonal projection on R°n D, XR, defined
through the decomposition

Hy,s = R0 D, X R, ® N(div ™ curl, +¢) X {0}.
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We introduce the operators

S:H P H,,, T:H ~KH,,

® - ym @ —y®
by equations
2.2 1, YD)y, =, ®) for all neP, #,
and, respectively,
(2.3) YD), = ((1=PYn, @) for all PeH, .

Let P" be the orthogonal projection of H, son #". 1t is easily seen that equation
(2.1) is equivalent to
2.4 (I-2P"(S+T))U"* =0.

According to [10], Theorem 2.6, the pseudoinverse
oty = (P"(S+T))™1: #* > "
exists and Problem (EP)" corresponds to the problem
(e, — AU =0.

We note that with respect to # 7, is a symmetric, finite dimensional operator and
let E"(2) be its spectral family.
Following the same lines as in [19] it can be proved:

Theorem 2.1. Problem (EP)* admits N,:=dim s#" real, possibly repeated,
eigenvalues {A;}}», (arranged in increasing order 1=M'=)i=...=)%, <o) and cor-
responding eigenfunctions {U}}Y, with the normalization condition

(2.5) UL UH =4,;.

Moreover, the following characterizations hold:

(2.6) At = min {2 (®)| DWW (E"(Jh_,+))*, & =0},
RUN=2} and (min—max-principle)

2.7 ¥ = min max %#(®P),

HrCH weHt
where #" is an i-dimensional subspace of #".

Let Q~,'j;. be the projection on the eigenspace of </, relative to eigenvalue u”.
Then

(2.8) E"(}) = hzl Ol
=
and it holds that
(2.9) (@, §hnU), , = (P, 0'U) for all ™.
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3. Error bounds for eigenvalue approximation

Let m be the number of the eigenvalues of &/ lying in [, 4]. In this section
we shall give error bounds to approximation of the eigenvalues 2; (i=1, ..., m) by
the eigenvalues A in [1, 4,+1].

At first we prove as a corollary to the abstract approximation results given in
Section 3 of [10].

Lemma 3.1. Let
At = P' 4 P"Tof: W(E(M+)) —~W(AY) < #™
Then the asymptotic estimates
3.1 |~ 4DV = ch*|U )
(32 I(T—=ADUlls,s = ch |Ulla2cs)
hold for U< W(E().+)). Furthermore,

dim (W (4})) = dim (W (E(+)))
for sufficiently small h.

Proof. A. By [10], Section 3,

(3.3) [(I=PYV | +h|I=P")V iy, = ch® Vg
holds for all VeP, #, ;nHy(G) and

(3-4) [P"TY || +h|P*TY|,,s = ch®|Y]|

for all Yex#.

Using the regularity (1.10) we have U¢ H2(G) for every Uc W(E(L+)). Thus
the estimates (3.1) and (3.2) follow from (3.3) and (3.4).

B. To have the last assertion, taking into account that dim 4%4(W(E(A+)))=
dim W(E(A+))—dim N(4%), we only have to prove that A}: W(E(Z+))—~W(4})
is injective.

If A"U=0, we have U=(I—P"YU—P"Ts/. Estimates (3.3) and (3.4) yield

1U] = ch®[[U | 26

By the regularity argument we obtain |Ul||=ch*|U|. Therefore U=0 if /2 is small
enough. [

Using the min—max-principle and Lemma 3.1 we can prove the error estimate
for the approximations of eigenvalues:

Theorem 3.2. Let A" be the approximate cigenvalue of 2; (i=1, ..., m). Then,
for sufficiently small h, it holds that

3.5) = M| = ciZhe.
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Proof. A. We shall first prove
3.6) M= A+ cAih

Using the definitions of S and 7, given in (2.2) and (2.3), respectively, and the ortho-
gonality Q,1 0,, A#u, we obtain for Fi€ W(E(A;+)), F;=1 0, F;,

1=as=i
3.7 1A% Fill%,s = (4%, Fi, U+ T) Fy),
= (A% F;, (S+T)ALF),,, = (4% F;, oF)
= |4}, Fl| F.

Inequality (3.1) implies A’}liFiyﬁO and |4} Fy||7=>271, for sufficiently small 4.
By (3.7), (3.1), and by regularity,

4%, Fill%, s = 2043, Fl (145, Fll +1(I—4%) F)

= Al A%, FlP(1+cAh)| F|
holds. Heuce
R(AY F)) = J;+clih? = A+ cAZh
By Lemma 3.1 dim W(A’,‘li)zak, ak::Z};l Vi, L‘: v{+1§i§25=1 v, and using
the min—rax-principle, we get i=7" =/;+cigh®
B. By (3.6) we only have to prove

(3.8) Ji—CcA2h? = b
for sufficiently small A.

k—1
Let U'e AW (E(Jy, ,+))* (HEc #" with dim(#")=0= 5 v,+1; the
=1

intersection is indeed nonempty, since the condition (U, U)=0, j=1, ..., 0;_1,
contains ¢y, restrictions (unknowns), ¢,_; and i as above). Since for all

F€ W(E(i—1+))
(SUh, Fi)*,s = > (SU}l, Q/‘. Fi)*,s = A~1(Uha Q}. E) =0,

1=si=i 1=i=2
EAS sAS
SA=4, BASAg

we have SU"¢W(E(J,_))*. By (2.2) and Rayleigh’s principle (1.9) we obtain

ANSUM* = |SUM,s = (SU, SUME

A

ITHRSUME = | U7 I SUME, 5
which implies
(39 ISUM* = A7® UM and [|SUMIE, = 47| U2

Since, according to [10], Section 3,

[SU"—PHS+T)U"| = ch?|U"|,
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we conclude by the formulae (2.2), (2.3) and (3.9)
Ukt = [(U", PHS+T)UY),
= U5, 1P (S+ T UL
— |UHI8,[(PH(S+T) U, U™

= |UME NUM AT (1 e h7).
If cip2=1, this implies

(3.10) AU = 4(1+cAh) ™ = J—cith?.

Using the min—max-principle we obtain (3.8), since A% =41!. Estimate (3.5) follows
if we combine (3.6) and (3.8). O

We now want to obtain an approximation for the corresponding eigenvalue @
of operator .#. We recall that
w== l/}——_f
Let

(3.10) o' =1V —1.
We conclude by Theorem 3.2 for w0 and sufficiently small 2>0
lo—o"| = clw?—(w")?

= c|A—I" = cigh?
Thus we have

Theorem 3.3. Let w be an eigenvalue of M, |w|<Vi,—1, and let o" be its
finite element approximation defined through equations (2.1) and (3.10). Then

|o—aw" = O0(h?, for h —0.

4. Error bounds for eigenfunction approximation

4.1. Let /(") be the greatest (smallest) eigenvalue with A'</ (with A">1,
respectively). According to Theorem 3.2 it holds for all eigenvalues A of Problem
(EP) with 1=1=4, and for the corresponding A" (i.e. the eigenvalue with the same
index) of Problem (EP)" with 1=2"=J,+1 that

(4.1) N < h—ci3h? =t = A+ci2h® < ),

for sufficiently small /.
We abbreviate

A(h):= A+clih|h|
and define

2) 0} = EF(A(W) ~ E*(A(~h).
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By (4.1) it holds that .
o= 2 O

M—my=p=ih)

Using Lemma 3.1 as an essential tool we prove
Theorem 4.1. The asymptotic error estimates
(4.3) II-0D QU = c23h*|U ],
(4.4) I(T—=0%Q:Ully,s = cA3*h| U]l
hold for all eigenvalues 4, 1=A=Jy, of operator /.

Proof. A. Let ', ) and A” be three eigenvalues such that 1=V <i<lA"=/,,
1=A=<J2” or that ’<JA=1,, satisfying (4.1). Using relation

(4.5) I=E"X(h)+04+(I—E"("(=h)),
Lemma 3.1 and the regularity estimate (1.10) we conclude
(4.6) -9, Ul = [(I-45) Q. Ul +1(4h—-0) Q.U

= b U || +||E"(¥ (h) 440, U ||
+|[(I—-E*Q (h) 450, U ||

=AU+ D+ D.
We will prove that

@7 D= 2 |- 490, U]
and that
“9) @= T |- A) Q.U

If we combine (4.6), (4.7) and (4.8) with Lemma 3.1, the inequality (4.3) follows.
B. Let us first prove (4.7). By (2.9)

49) (I—E" (W) 450,U, E* (2 () 450;U). s

= 15,,52 (450, U, OLU) p((I—E"(X (W) 430,U, 01 U) = 0.
Using this with the identity I=E"(A'(h))+(I—E"(?'(h)) we find
(4.10) |E#(2 (h)) 450, U I3,

= (E"(X () 44Q,U, 450,U),s

= J(E"(% (1) 440,U, 0, V).
Moreover,

(4.11) (E"( (h) 420,U, 450,U) = ||E"(¥ (b)) 450, U|*



266 PEkKA NEITTAANMAKI and RAINER PICARD

On the other hand, we obtain by (2.9) and by the orthogonality Q% 10",
AN,
(4.12) [E"2 () 450, U3
= Eug(h)#(/i'inU, OLUP(0LU, 0LU)
= ' (h) ”E"(}L’(h))A’;QzUHz.
A combination of (4.10), (4.11) and (4.12) yields
(A—/l’(h))”E"(/I’(h))A’,{Q,lUH2
= A(E"(A(h) 450,U, 450,U—Q,U),
which implies (4.7) for sufficiently small 4.
C. In order to prove (4.8) we first find by arguments similar to (4.10) that
(4.13) [(1—E"(2"(—h) 440, U2,
= A((I—E"(2"(—h)) 440,U, Q,V).
Since 7—E"(A”(—h))=I—E"(A(h)), we have

(I—E"(2"(—h))) 45,0, UeW (E*(A(R))*,
and so by (2.6)
(4.14) 7."|i(1—E”(}.”(—h)))A’,{Q,lUH2

= H(I_Eh()"”(_ h)))Ali‘.Ql U i,s»
where 1" is the smallest eigenvalue for which 1*=A(h) holds. Also A"=1"(—h).
The orthogonality vyields
(1~ E"@"(~hp) 450, U *
= (I~ E*( (W) 410, U, 410, U).
Thus we obtain from (4.13) and (4.14)
=) |(I-E"(" (— 1) 450,U|?
= MU—E"Q"(—h)440,U, Q,U—4"Q,U),

which implies (4.8) for sufficiently small /.

D. We now prove the second assertion of Theorem 4.1. Again, by Lemma 3.1
and by regularity it holds that

(4.15) 10,U—040, Ul
= cih|Q,Ull+]450,U-040,Ul,,,-
Using Theorem 3.1, regularity and the fact that
IQ4UIE,s—(450,U, 040,0)
= 2 w040,U-440,U, 010,U),

M—h)=pu=4h)
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we conclude
1450, U—040,U|3

= ¢ 22h*Q, Ul + ¢ 224 (MWIQ, U
This and inequality (4.15) yield (4.4). O

4.2. Using our result for o/ =.#2+1 we now want to obtain error estimates
for the eigenfunctions of operator . corresponding to the eigenvalue w. We shall
first reformulate Theorem 4.1 with the help of Theorem 1.1.

According to Theorem 1.1 itholds that Q,P,U=P,Uand Q;P_,U=P_,. Let
(4.16) Zh:=QUP,, o (M), 4= w?+1.
By Theorem 4.1 we have that
4.17) |P,U—ZEU| +A2h|P,U—-ZEU||, ;= cwih?|P,U|
holds for all —wy=w=w,, Wy:=V15—1.

4.3. Theorem 4.2 gives an approximation result for the spaces of eigenfunc-
tions of operator .#. But unfortunately Z" is not constructive, because in order to
know Z" we in fact should know P,. On the other hand, W(Q}) is constructive.
One way to overcome this difficulty is to decompose W(Q"%) in a suitable way. To
do this we must find appropriate orthogonal projectors P: and P"  such that

(4.18) ot =P+ Pt .

In order to construct P® and P" , we first remark that, since

(4.19) MP, U=+wPy, U
holds, we have
(4.20) Re (P, U, #P,U)=0 and Re(P_,U, #P_,U)<D0.
Let

. Re (&, M D)

R(D) =
(@)=

and let

(4.21)  pb:= min{%(9)|PEW (QL), ® 0, (B, &) =0, j=0,1, ..., i—1},

i=1, ..., v=dim (W(Q%))=dim (W(Q,)). Here ®!cW(Q"), i=1, ..., v, are the sta-
tionary points of # with (&F, #%)=0,;.
We define for w=0

v/2
(4.22) PLU= 3 (U, &%) P}
i=1
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and

(4.23) P U= 3 (U oo
i 1

i=v[2+4+

Obviously, it holds that P! | P* . For w=0 we set Pi=2Z!

It will be shown that projections P!, w€o (), are “approximations” of P,
in a certain sense (similar to the connection between Q"% and Q,).

We shall first give asymptotic upper and lower bounds to u!. For this purpose,
let us remark that according to the min—max-principle (max—min-principle, respec-
tively) we have

h— i 7
“24 M= o S 7@

= max min ﬁ((b).

HL_ 1 1CWQD PEH_ 4y
Using Theorem 4.2 we find
(4.25) [Pio®ll = cA®h?| Py @]+ Q4 Psy®ll.
Thus for sufficiently small &
(4.26) 1P1o®@] = cll Q4 Py ®.
Let B: #, >, ;, P—~B®d, be an operator defined by

, BD), ;= (My, ®)—(, M®) for all yeit, .
It holds that
(4.27) | P" BO| +h'2| P"BO|, , = ch?|| P

for sufficiently small 4 (see [10], Section 3).
Since
Re(P_, U, MP_,U)=—ow|P_, Ul

we obtain, using in turn Theorem 4.2, (4.24) and inequalities (4.25)—(4.27) for

¢=0!P_,U

(4.28) Re (&, 4 D)
= Re(P_, U, #P_,U)+Re (d§ —P_, U, M(D —P-wU))
+Re (P_m U, #(P—P_, U))+Re (o—-P_,U, M_,P_,U)
=—o|2[*+0(h*?)| 2|2 h 0.

In a similar way, it can be proved that

(4.29) Re (P, AP) = w|P|2+0(h3?)|®|2, h >0, for all & =QLP,U.

By the min—max-principle and by (4.28) we obtain

4.30 b= 2(D) = — 8/2 -
(4.30) ul M;lg%xp_w)%(@ o+0(h3?), h-0,
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for i=v/2+1,...,v and, respectively, by the max—min-principle and by (4.29)
(4.31) ph=  min AP = w+0Hh*?), h-0,
PEW(QLP,)
for i=1, ...,v/2.
As a corollary to Theorem 4.2 and to estimates (4.30) and (4.31) we can prove
Theorem 4.3. The asymptotic error estimate
(4.32) |1P, U—=PhP, Ul = c(wp) h**|| P, Ul
holds for all —wy=w=w,.

Proof. The case w=0 is trivial. At first let »=0. Using decomposition
(4.18) and Theorem 4.2 we find

(4.33) [P, U=PtP,U|, s = c(@)) B2 Py Ully, s+ PL o Po Ully, s
Since (A +w)P,U=2wP,U, we obtain by (4.23) and by estimate (4.27)
4.39) P, P,U|?

1

- (2(0) i= v/2+1((.///+a))P v <P")2

12,013 10+ o+ PUIR,).

- (2 )2 i=v/2+1
Using (4.30) we conclude for ®'¢ W(Q%), i=v/2, ..., v,
(4.35) (A + ) P2

= |4 DY+ 200pt | P+ w* | P
= || Pl +(0(h*?) —w?) | B1]%  h—0.

Since by (2.9) for all ¢c#
104 @113, = A" 0% 2|

and since A'=w?+1+cA2A2, we obtain

(4.36) 404 @240, 92 = (0*+1+0(h)) 04 P2, h 0.
Moreover, recalling that div &é(Q,U);=0, we have by Theorem 4.1
(4.37) Idiv (@4 @)ll* = O(h?) || ®F|*, k0.
Accordingly, by (4.35) and (4.36),

(4.38) (A +w) DU = O*F)| H2, b~ 0.

Hence, by (4.34)
(4.39) [P, P U| = O(h*®)||P, U



270 PEkKKA NEITTAANMAKI and RAINER PICARD

Using the same arguments as in the deduction for inequality (4.34) together with
(4.37) we obtain
(4.40) I AP, P U|* = Oh®*®)| P, U|*| P

If we combine (4.33), (4.37), (4.39) and (4.40), the assertion of Theorem 4.3 follows

for w=0.
The case w<0 follows in the same way if we use (4.31) instead of (4.30). O
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