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ON THE COITIYERGENCE OF THE FINITE ELEMENT
APPROXIMATION OF EIGENI-IREQUENCIES

AND EIGEI§VECTORS TO MAXWELL'S BOLiNDARY
YALUE PROBI,EM
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0. Introduction

This paper can be regarded as a supplementary to the work [10]. There the finite
element approximation of the time.harmonic Maxwell's equations

(0.1) GcR2

with homogeneous boundary condition

(0.2) nnEly*O,

f ::0G, n n E::nrEz-frzEr, was considered under the assumption that at is not an
eigenvalue of the system. Here G is a bounded smooth domain in the plane, z denotes
the outer unit normal on the boundary f , E and,Fl are vector and scalar functions
and the operators curl and curl* are in two space dimensions formally given by
carlE:|rEz-\rEr, cnrl*H:(0rHl-0LH). (The indices refer to the respective
components.) Moreover, in system (0.1) e is a function that takes positivo definite
bounded matrix values, pr is a strictly positivo bounded real valued function and J
and K are force densities. In the case where there aro no nontrivial solutions of
problem (0.1), (0.2) with "I:0, K:0, the approximation of the electric field ä
is handled by Saranen in [17] for smooth and in [18] for polygonal domains of the
plane. The approximation of the whole solution (ElH) of problem (0.1), (0.2) for
polygonal GcRz has been studied by Neittaanmäki and Saranen in [12].

In this paper we consider the flnite element approximation of the eigenvalue
problem arising from equation (0.1), (0.2) in smooth domains. We denote

(0.3) h{U :- f (e -t curl* H l- p-L curl E), (J ;- (E lH)

and our problem can be written

(0.4) (M - @)U - 0, n AfILtr : 0.

[curl E-iapH - J

f curl* H+icoeE - K

koskenoj
Typewritten text
doi:10.5186/aasfm.1981.0613
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It is well known ([8], [9], [10], [14D that the resolvent of M, interpreted as an opera-

tor in a certain Hilbert space, is compact so that the spectrum of M is purely discrete.

We shall, in fact, flrst consider the approximation of eigenvalues and eigenvectors

of the operator il:: M2* 1 and reduce the situation back to the original problem
(see Chapters 3 and 4).

Our method to prove error Estimates for the approximation of eigenvalues is

based on the use of the min-max-principle. This idea has been presented by Strang

and Fix in [19] and has been developed later on to cover conforming and noncon-
forming schemes by many authors (see [1], [6], [7]). Our method follows partly
the works of Kikuchi [7] and Ishihara [6] combined with some projection methods of
Hilbert spaces presented in [10], [14] and [15]. In this form our method can be

applied e.g. to the eigenvalue approximation of boundary value problems arising

in [11]. For other general treatments of eigenvalue approximation we refer to [2],

[3], [4], [13] and [20].
In the approximation of eigenvectors of Maxwell's equations with boundary

condition of total reflection there arise some special difficulties. As the first aspect

we mention that the electric field component .E of the eigensolutions is solenoidal

(divergence free). For the approximation of eigensolutions we use piecewise linear
continuous vector fields such that the first components satisfy the condition (0.2) at
boundary nodes of the triangulation, but are solenoidal only asymptotically. In
order to use regularity results we need to use smooth domains. Therefore the special

boundary condition makes the nonconformal method necessary. Because of this,
care should be taken especially in the evaluation ofthe lower bounds ofeigenvalues.
The reduction of the bilinear form problem (connected with il:M2*1) back to
the original question of the eigenvalue problem of M leads to difficulties, which are

treated in Chapters 4.2 and 4.3.

Let us remark that the abstract methods of Chapters 3 and 4 are, with the

exception of Lemma 3.1, independent of the dimension of the space. The reason

why we restrict our discussions to the two dimensional case is that up to now the
finite element approximations for the resolvent of M are known only in the two
dimensional case.

After submitting this paper the article [21] appeared. There finite element

approximation of vector fields given by curl and divergence was considered in the

three dimensional case.

1. The eigenvalue problem

1.1. In order to use variational methods we formulate the eigenvalue problem

in a weak sense. The familiar Sobolev spaces Ho(q (/c€N, Ho(G):tr27G)) and

Htp)areneededforthepreciseformulation. Theinnerproductofäft(6)isdenoted
by (., .)au«cl with corresponding norm ll.llnurc), k:0,1,2. The subscript
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will be omitted in the case /c:0. We will write Ho(q, (', ')au<cl and Il'llaorcl
also for the product spaces Ho(qX...Xäk(G) without indicating the number of
components which will always be clear from the context. Furthermore, we introduce

in the same manner as in [9] the following special conventions

D 
" 
:: {V€ Ho(G)ldiv eV( H o (G)},

Do,,i: {Ve»"1aiv ev :0},
and

fr ;: {VQ H o(G)lcurl VQ H o (G)},

R,, i: {E ( Ho (G)lcurl* (p € H o (G)},

Ao ;: {Z€Ål(curl* E, V) : (E, otrlY) for all 9€Å*}.

The derivates div eV, curlV and curl* E appearing above are deflned distribu'

tionatly in an obvious way corresponding to the formulae div eV:fl{e;iV), curlV:
\LVz-02V1and curl* a:(\zal-\rQ), where å,::å f \xi,i:|,2, and (' | ') denotes

the ordered pair.
With this terminology, we will need to make use of the Hilbert space

ff*.":: (RnD"X.R*l(., .)*,")
with the inner product

(U, V) *, 
" 
:: (U, l/) 

"+ 
(MU, M V),

where
(U,V):: (Ur, eVr)*(Ur, ltVr),

and
(u,v),:: (t/, z)*s(div eur, div evr)

with a real parameter s>0. Moreover, we denote

lf :: (Ho(qxäo(G)l(., .))

lf," :: (D 
"x 

Ho(c)l( ., . )J
and

afo:: {V<//"\VL(Do,}.

1.2. Using the formal differential operator M, we now deflne the (symmetric)

Maxwell operator
.4: D(..//)cffo -ffo, U*MU,

where D ("/l) :: (Ro X R*) n tro.
We denote by N(,//) the kernel of ,.& andby W(,,/A) the range of "//. Accotding

to [8], [10] and [14] one has the results

(i) .,& is selfadjoint in .*0 so that the spectrum o(-//) of .// is rea7.

(ii) The resolvent of ,.6 is compact, which implies the spectrum of .// consists

of isolated points.
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(iii) I.et P. be the projection of *o onto the space of eigenfunctions of .,il
corresponding to «l. Then

(l.l) p_Lpt a*).
in the sense of the scalar product (., . ).

We shall prove an important

Theorem l.l. If a,€o(-//z), then a€o(-d/) and -ofto(&). Let e^ be the
projectiononthespaceof eigenfunctionsof .ili:/{z+l correspondingto ).::a2*1,
a>0. Then

Q7: P.*P-- for a * 0
and

Qr: Po.

Proof. A. If a2(o(.//2), then a€o(,il) or -ctt(o(.fr). If the ordered pair
(UrlUr) belongs to W(P.):u(/(-a), it is easily seen that (al-U)€W(P-.):
N("//+@). Thns a€o(-{/) and -a€o(../4).

B. In order to prove the second assertion of Theorem 1.1 let U belong to
N (.il - 11 : 17 ('//2 - .,2). Then

(r.2) F - (..,/t *a)u<N(..// -a).
Because ,/{ is selfadjoint,

tro : N(.4/ + @) @W ("// + @),

and it holds for all U(lf,o that

(1.3) U: (Jr*Uz(N(il *ar)e W(.//*a),

where the indices refer to the projection on the respective subspace. Thus, by (1.2),

(1.4) P:(.d/la)U2.
On the other hand, it holds by (1.2) that

(1.5) (..U +ot) F : (.d/ -,uo) F*2cttF

:2aF.

According to (1.4) and (1.5) we haye for a*0, Ur-(2.a1-tpEN("d/+@). But (1.3)
and (1.O imply Ur-Q@)*tF€W("d+(D). Th.us

Ur: (2ctt)-r F(N(.d -uo),

and therefore Q1:P--lP-., according to (1.3).
Thecase o:0 istrivial: If "/,{2 U:0, then //UcN("//)nW(.d/):{0}. Thus

Qt:Po. n

According to Theorem 1.1 it is obviously suffi.cient to study the spectrum of
-&2 in order to obtain exact information as to the spectrum of .//. Without loss of
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generality we can move the spectrum to the right so that we can, in fact, study the

properties of the spectrum of
.il :: "//2 +1.

In what follows we are interested in the spectral points of *r' which lie between

1 and .lo, where .to is any fixed constant larger than 1.

We shall give a variational formulation to this eigenvalue problem, which is

based on the following theorem:

Theorem 1.2. Let

ld : min {llv Ell' I ll qll' |,r e r; 1o11,

s:2/d-L(),s-l), and let ).€U,).o1. Then UeN(d-)') if and only if the equation

' (o' U)*,": )'(a'U) for all o<D(/{)
holds.

Proof. we note that, if u<N(d-|), diveQ:g and e-1curl* u2€-1R0. BY

partial integration we find that U satisfies (1.6).

Conversely, the argument follows the same lines as in the proof of Theorem 1.3

in [12] (see also [10]). D

6t us remark that we can indeed determine the "elliptization parameter" §,

singe tr is the first eigenvalue of the (negative) Laplacian and its evaluation is well

known in many respects (see [5], [19]).
We are now in a position to define our problem in variational form:

problem (EP). Findtheeigenualues 1€ll,),ol andtheeigenfunctionsusuchthat

(1.6) (Q,U)*,": ).(Ö,U) for all O€D(-//).

The Problem (EP) admits a finite sequence of positive eigenvalues {2;}; each

of finite, even multiplicity {v;}i (we agree that eigenvalues are ordered and repeated

according to their multiplicity) and a corresponding sequence of eigenfunctions

{U,}, wittr the normalization condition

(1.7) (Ui,U): öii.

Lat EQ) be the spectral family of ,il and let

Q^:: E().*)-E(1-).

We define on /f,*,o-{0} the Rayleigh quotient

(1.8) q(o):Jflå'
ll@ll'

The eigenvalues of the Problem (EP) can be characterizedby the Rayleigh principle:

The stationary points of A are precisely the eigenfunction of the Problem (EP) and
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the values of @ at such points are the corresponding eigenvalues:

(1.e) L:min{ag110Ew(r1t,_r*))r, a *o}.
Moreover, q(O):l for every @€W(QA) and dim W(Q,,):vi, Z<ttr<- for all
Li: )* with t< : 2)_l,v r+ 1.

By the regularity results in [10], Theorem 3.2, and by (1.7), it holds for every
eigensolution Ulof (1.6)that UleHz(d) and that

(1.10) lluÅla,ot< d,

Note that, as above, we adapt the usual convention that c, c!, cz, ... always
denote positive generic constants, which may vary from context to context.

2. Finite element approximation of problem (Ep)

To approximate the eigenfunctions and eigenvectors of (1.6) we introduco a
family of finite dimensional subspaces ./lhc,zf*," depending on a djscretjzation
parameter 0<h<.1 going to zero. Tho idea is to solve (1.6) on these subspaces.

For a precise formulation, let {1, be a family of regular triangulations of G in
the usual sense ([10])

G : v{Tn Vo<gol.

Let Kl be the set of all nodes of gilying on the boundary. Denoting c(G)::
{q:GtClq continuous} we define, as in [10],

Sf :: {@:(aDloXC(G)XC(G-)l @,lrn linear, (nn@)(x):0, x(Kn},
and

s! :: {qqc(G)l Elr, linear}.

We define lf,h:: SIX,S| as a subspace of af*,".

The discrete analogue of Problem (EP) reads:

Problem (EP)h. Fiildthe eigenualues )"hq1l, *1 and the eigenfunctions U,ezrh
such that

Q.D (Q, uh)*," : ).h (iD, uh) for all i\e lf,n .

since afh+D(-/{), (2.1) is a nonconforming finite element model for solving
Problem (EP).

In order to write (2.1) as an equivalent operator oquation, we recall some defini.
tions from [0]. r-Et P* be the orthogonal projection on RonD,XÅ* defined
through tho decomposition

ff*,s _ Ä0 n D,XA* O l/(div p-t curl* *e) X {0}.
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We introduce tho operators

S: ff - P*ff*,r, T: 2€ * **,"
aD *{t$) O *{/Q)

by equations

(2.2) (4, *('))*," : Qt,O) for all n(P*23*,,
and, respectively,

(2.3) (q,rl,@)*," : (6 - f *14, O) for all iD€ff*,".

I',et Ph be the orthogonal projection of ff*," on Jf,h. It is easily seen that equation
(2.1) is equivalent to

Q.4) (r-)"h Ph(S+T))uh : o.

According to [10], Theorom 2.6, the pseudoinverse

.iln:: (rh(S+Q)-t. ffh * ffh
exists and Problem (EP)å corresponds to the problem

(.il,- ),h)(Jh : 0.

We note that with respect to lf, .il 1, is a symmetric, finite dimensional operator and
let EhQ) bo its spectral family.

Following the same lines as in p9l it can be proved:

Theorem 2.1. Problem(EP)h admits Nn::dintffh real, possibly repeated,
eigenualues {}ri\yLt (arranged in increasing order l=)'!=Lf;<...=),'iy^=.-) and cor-
responding eigutfunctions {Url}f:r with the normalization condition

(2.s) (u!, u!) : 5,,.

Moreouer, the following characterizations hold :

(2.6) 1! : min{ag11ocw@o(X!-r+))1, iD * 0},

q(U!) : ).! and (min-max-principle )
(2.7) ,!: 

$»^max 
fl(<D),

where t3! is an i-dimensional subspace of ffh.

6t AX" be the projection on the eigenspace of ,il1,rclative to eigenvalue ph.

Then

(2.8) Eh(l): 
.e^ob

and it holds that

(2.9) (<0, Q,i,^(I)*,": tth(iD, Q,;,"U) for all o</fh.
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3. Error bounds for eigenvalue approximation

l-otmbe the number of the eigenvalues of .4 lying in [l,,to]. In this section

we shall give error bounds to approximation of the eigenvalues ,[, (i: l, ..., m) by

the eigenvalues ,lf in [1,,10*l].
At flrst we prove as a corollary to the abstract approximation results given in

Section 3 of [10].

Lomma 3.1. Let

A\:: Ph+Phr.a: w(z(1,+)) *W(A\) c tru.

Then the asymptotic estimates

(3.1) ll(I-A\)ull = chzlluils,sl

(.3.2) ll(I-A\)ull*,"= chllullszpl

hold for U(W(EU"+)). Furthermore,

for sfficientry smalr h. 
dim(w(Ab): dim(w(E('t+)))

Proof. A. By [10], Section 3,

(3.3) ll(I-PhY/ll+hllg-Ph)vll*,,= ch'llvllppl

holds for all V€P*/f*,"nIl2(d) and

(3.4) llPhTYll+hllPhTYll*,"= ch'llYll

for all Y€/(.
Using the regularity (1.10) we have U(HL(O for every U€n(f(1+1). fnus

the estimates (3.1) and (3.2) follow from (3.3) and (3.4).

B. To have the last assertion, taking into account that dim Ab^(W(E(1+))):
dimW(E(A+))-dim N(Ao^), we only have to prove that A\: W(EQ'+))-W(A\^)
is injective.

If AI^(J:O, we have ry:(I-P)U-PhTd. Estimates (3.3) and (3.4) yield

llUll = chzllUlln,<et.

Bytheregularityargumentweobtain llUll=clt'llUll. Therefore U:0 ifåissmall
enough. n

Using the min-max-principle and Lemma 3.1 we can prove the error estimate

for the approximations of eigenvalues:

Theorem 3.2. Let Äti be the approximate eigenualue of ),i Q:1,...,m). Then,

Jor sfficiently small h, it holds that

(3.5) l1'-I?l = d.flhz.
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Proof. A. We shall first prove

(3.6) 1! = ).t+cl\h'.

Using the definitions of § and 7, given in Q.2) and Q.3), respectively, and tåe ortho-
gonality QtLQ*, ).*p, we obtain for 4€W(E(A*)), Fr:Zr=^=^.Q,.Fi,

(3.7) llA\,F,ll'*,": (A\,Fi,U+7.il)F),,,"

: (A\, F r, (S + T).il Fr) *, " 
: (A\, Fi,,il F )

= llA\,F)lll.ilFtl.

Inequality (3.1) implies A\,F.*O and. llAl,,Fll-t>2-a, for suffi.ciently small å.
By (3.7), (3.1), and by regularity,

ll A\, F,ll'*, 
" = 1 ll A1, F ll (ll,tk, p,fi + ll (I - A\) F ll)
< 1 tll A\, F ll2 (t + d, thå) ll Fll

holds. Helce
g(A\,F) = )i-lcÄ\hz 4Lt+c)"Ahz.

By Lemma 3.1 dim W(A\,):o1,, or,i:Z!:rnt, Zl:lvr*l=i<)k:rv7 and using
the min-max-principle, we get i!= ),I*=),,+ dihr.

B. By (3.6) we only have to prove

(3.8) )-,-d,!hz = ).!
for suffi.ciently small å.

Let (.IhEtr! 
^w(E(Ä"u-,+))r(H! 

c trh with dim(/f,!):6 :r§ vr+t; the

intersection is indeed nonempty, since the condition (Uh,Ui):6:'j:r, ...,oo-r,
contains oo-, restrictions (unknowns), oo-1 and i as above). Since for all
F$w(E()4_1+))

(,SUr, .r')*," : ,=^4.- (S[Jh, Q,.F,)*,": Z ),-r(Uh, erFr) :0,
-"-"cu-r L=j'=J'ak-r

we have SUh€W(E(1,u_,)),. By (2.2) and Rayleigh's principle (1.9) we obtain

)'?llsuhll4 = llSUelll,": (^SUr, SUo)},,

< 
Il Uå ll, ll ^§U 

hllz 
= llU 

hll2 )",-' ll SUå ll ?, 
",which implies

(3.9) ll^St/frll'= ),;zllUhllz and llsuoll?," = lt Lll(Ihllr.

Since, according to [0], Section 3,

IJ,SU' - P"(.S + T) Uhll = chzllUhll,
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we conclude by the formulae (2.2), Q.3) and (3.9)

lluolln : l(uo, rols+ T)uo)*,"|'

= il urll ?, 
" 
llPå(s+ r) utll'*,"

: 
ll urll?," l(ph § + r)uh, uh)l

= ll Uhll?,"11 U'11,1,-'(1 * d,ihz).
lf d"rhz=I, this implies

(3.10) q(Uo) = lll*d",hz)-t > ).i-c1!h2-

Using the min-max-principle we obtain (3.8), since A2=l'!. Estimate (3.5) follows

if we combine (3.6) and (3.8). n

We now want to obtain an approximation for the corresponding eigenvalue «r

of operator d/. We recall that
a:*ICII.

Let
(3.10) @h i: +l[F=.

We conclude by Theorem 3.2 for a*0 and sufficiently small å=0

lot-a.ul = claz-(.,h)'l

: c\.-lhl = d'ohz.
Thus we have

Theorem 3.3. Let o be an eigenualue of .4, lrrl=fi'ra, and let coh be its

finite element approximation defined through equations Q.1) and (3.10). Then

la-c,t^l : 0(h'), for h *0.

4. Error bounds for eigenfunction approximation

4.1. Let )"'(1) be the greatest (smallest) eigenvalue witt^ L'-). (with )"'=)",
respectively). According to Theorem 3.2 it holds for all eigenvalues .1 of Problem

(EP) with l<),=Äo and for the corresponding ,t' (i.e. the eigenvalue with the same

index) of Problem (EP)r with l<),h<)'o+l that

(4.1) )' -. i-cLfih'= )"0 = )"+d"\hz < 1",

for sufficiently small å.

We abbreviate
)"(h):: )'+cÄ?ohlhl

and define

(4.2) 9\:: Eh()'(h))-Eh()'(-h)).
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By (a.1) it holds that
Q\-- 

^r-orä=^ruraf;'

Using Lemma 3.1 as an essential tool we prove

Theorem 4.1. The asymptotic error estimates

(4.3) ll1-Qo^)Q^ull = d'\h'llull,

$.0 llQ-QDQ^ull*',= d'Stzhllull

holdfor all eigenualues 1, l<)'=lo, of operator ,il.

Proof. A. Let A', ). and )." be three eigenvalues such that l=)t<)<)(=)o,
l:)"=)," or that 1'<),:1o, satisfying (4.1). Using relation

(4.s) r: Eh(1'(h))+a\+(t-no( "(-h))),

Lemma 3.1 and the regularity estimate (1.10) we conclude

(4-6) llU-QDQ^u11 =11Q-A\)Q,,ull+ll@\-8\)Q^ull

= d,hz llu ll + llEh (1' (h)) d\ Q 
^u ll

+ll(r - zh1t " (h))) A\o 
^ull

::d,hzllull+O+@.
We will prove that

(4.7) ,= #ilQ-A\)Q^ull
and that

(4.8) q 
= # !r-A\)Q^ull.,L -A

If we combine (4.6), (4.7) and (4.8) with Lemma 3.1, the inequality (4.3) follows.

B. Let us first prove (4.7). BV Q.9)

(4.e) ((r-Eh('(h)))A\Q^U, Eh()"(h))A\Q^U)*,"

: z (A\Q^U, QhU)p(tr-Eh();(h)))A\Q^u, ahu) : o,
r=p51'(h)

using this with the identity eah(1'(h))+(I-Eh(1'(h))) we find

(4.10) llEh(^'(h))A\Q^ull1,"
: (Eh (1' (h)) A\Q 

^U, 
A\Q 

^U) 
*, 

"
: )"(Eh (); (h)) A\Q 

^u, 
Q 

^U).Moreover,
(4.r1) (Eh('(h))A\Q^(l, a\Q^u) : llEh(L'(h)),t\Q^all'.



266 Pprra Nrrrr,q.aNluÄrr and RaTNBR Prcano

On the other hand, we obtain by Q9) and by the orthogonality Ah^ t/L,
l#p,(4.12) : , ,,r;ryry::; 

åJrl;;ra, o,;,u)
l=p=1'(h)

= ); (h) 
llEh Q; (h)) A\ Q 

^u ll'.
A combination of (4.10), (4.11) and (a.12) yields

a - ); (h)) llEh (Ä' (h)) A\ Q 
^ 
u ll,

= ),(Eh Q&)) A\Q 
^U, 

A\Q 
^a - Q p),

which implies @.7) for suff.ciently small å.

C. In order to prove (4.8) we first flnd by arguments similar to (4.10) that

(4.r3) llQ-znq,";h))A18^ull?,,"
: A((I - Eh ()," (- h))) A\Q 

^U, 
Q 

^U).
Since .I-Eå Q," g. n11: 7 - Eh()"(h)), we have

(r - Eh ()," (* h))) A\e 
^u 

<w (Eh (), (h))) L,
and so by (2.6)
(4.14) thll(r-nhg""(-h))»A\Qpll,

= llQ - eh p," (- h))) A\e 
^u lll, ",

where iå is the smallest eigenvalue for which i!=)"(h) holds. Also ),h=A"(-h).
The orthogonality yields

ll(r - z, 1t " 1- h))) A\ e 
^u ll,: ((r - Eh (1" (- h))) a\Q 

^(r, 
A\Q 

^U).
Thus we obtain from (4.13) and (4.14)

1lh - t1ll? - ah e," e D)) A\ e 
^ull,

= 1((r - Eh (1" (- h))) A\e p, e 
^u - 

Ao e 
^u),

which implies (a.8) for sufficiently small å.

D. We now prove the second assertion of Theorem 4.1. Again, by Lemma 3.1

and by regularity it holds that
(4.r5) llQ^u-Q\g,ull*,"

= c ),,h llQ 
^u 

ll + ll A\ Q 
^U 

- Q\ Q 
^U 

ll *. ".
Using Theorem 3.1, regularity and the fact that

ll Qk u 117,, 
" - (A\ Q,"u, Q\ Q 

^a)
. . Z . 

p(Q\Q^U- A\Q^U, A,;,Q^u),
^(-h)=ae).(h)
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we conclude

llA\Q^u-Q\Q^ull?,"

= cJ" hz llQ tU ll + c J,2 1(h) llQ rU ll'.

This and inequality (a.15) yield (a.a). tr

4.2. Using our result for .il:,d/2+1 we now want to obtain error estimates

for the eigenfunctions of operator ,y'{ corresponding to the eigenvalue co. We shall

first reformulate Theorem 4.1 with the help of Theorem 1.1.

According to Theorem l. 1 it holds that Q ;P.U : P.U and Q 7P -.U : P -,. Let

(4.16) Z!:: Q\P,, a€o("//), ).: a2*1.

By Theorem 4.1 we have that

(4.17) llP.U-ZIUll+ 16r'Orr-U -ZLUll,*,"= ca|hzllP,Ull

holds for all -cor=1pso)q, o)el: {E=.
4.3. Theorem 4,2 gives an approximation result for the spaces of eigenfunc-

tions of operator ,,&. But unfortunately Zlis not constructive, because in order to
know Z\ we in fact should know P.. On the other hand, W(O» is constructive.

One way to overcome this difficulty is to decompose W(O» in a suitable way. To
do this we must find appropriate orthogonal projectors P[ and Pl. such that

(4.18) Q\: PL;P\*.

In order to construct P\ and Pl. we first remark that, since

(4.L9) ./{Pr.U:tc»P*.U
holds, we have

(4.20) Re (P. U, "y',|P-U) > O and Re (P-. U, i/P-. U) - 0.

Let

å(a\,:Re(o.llo)
il@lt'

and let

(4.21) p! :: min{d@)lo€w(Q\), a * o, (a, al): 0, i : 0, 1, ..., i-l},
i=1, ..., y:dim (W(Q»):dim(W12)). Here @f€ W(Q\), i:1, ..., v, are the sta-

tionary points of å w*, (iD'!, A!\:ö4.
We define for crr>0

(4.22) PL(I : § g, r!)*!
i:1
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and

(4.23) PL.() : ; (U, ab.D!.
i:v12.tl

Obviously, it holds that PlaP\.. For ar:0 we set Pt:Zt.
It will be shown that projections P|, aCo(-/4), are "approximations" of P.

in a certain sense (similar to the connection between Qh^ and Q).
We shall first give asymptotic upper and lower bounds to p!. For this purpose,

let us remark that according to the min-max-principle (max-min-principle, respec-

tively) we have

(4.24) p!: .min . muxå1O1
*?cw(O» @€ttti

: *l -I?!* rr\r r rHtl,., 
å (a)'

Using Theorem 4.2 we find

(4.25) llP+,öll = d,2hzllPx*a[ll+llQ\Pr-All.

Thus for sufficiently small å

(4.26) llPr.@ll = cllQ\Psoll.
l-et B: ff*,"*ff*,", (D*B(D, be an operator defined by

(/, B@)*." : (M{/, O)-QL, MiD) for all {t(tr*,".
It holds that
(4.27) UPhBa[llllltzllPhBiPll*.,= chzfiall

for sufficiently small å (see [0], Section 3).

Since
Re (P-, U, "d/P-.U) : -';ollP-.Ull',

we obtain, using in turn Theorem 4.2, (4.24) and inequalities @.2fl-@.27) for
o:Q\P-.(I
(4.28) Re(Ö,.,/{iD)

: Re (P-, 4 ",//P -.U) + Re (O - P-, U, .// (ip - P -.a))
+Re(P-, U, "{/(iD-P-. U))+Re (a-P-.(J, d{-.P-.U)
: -coll@llr+ 0 (hLt\llallz, h * 0.

In a similar way, it can be proved that

(4.29) Re(@, 'l/a[): colläll'+O(htl')ll@ll', h -0, for all @ : Q\P.U.
By the min-max-principle and by (4.28) we obtain

(4.30) p!= _ g?,x_ å@»:-a*0(hlt2), h*0,
@€w(Q\P__')
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for i:vl2*1,...,! and, respectively, by the max-min'principle and by (4.29)

(4.31) p! = rrffit r-rkt*) 
: a*o(hst2), h * 0,

for i: l, ...r,112.

As a corollary to Theorem4.2 and to estimates (4.30) and (4.31) we can prove

Theorem 4.3. The asymptotic error estimate

(4.32) llP,(I-PLP.Ull*," E c(a)hst2llP-Ull

holds for all - rcl.o=o1<1io.

Proof. The case o:0 is trivial. At first let ar>0. Using decomposition
(4.18) and Theorem 4.2 we frnd

(4.33) llp,(r-pLp.ull*,"= c(<os)h2llp.ull*,"*llP\-P.ull*,".

Since (d/*a)P.U:2aP.(J, we obtain by @.23) and by estimate (4.27)

(4.34) llPL,P-Ullz

1v< ---. Z (Qtt +at1r.U, Oy)z- (2af i:vE+r'' -')

I ( v 
- ..,\ öblz J- ?hr,, , ,r,,u )

= 6 ll P. u ll' 
l, : å * rll 

(-/t + a) al ll2 + c hs ll P - a ll'". 
" )'

Using (4.30) we conclude for @f€ W(Q\), i:v12, ..., v,

(4.3s) ll("{/ +@)alll'z

: ll"4{ otillz + 2orylllolll, + rozllolll,

= ll..//o!ll+(0(hst2)-co') llofll', h * 0.

Since by (2.9) for all i|(lf,
llQ\@ll'*,"= LhllQ\aV

and since ),h=otz+l+d,2h2, we obtain

(4.36) lLfrQ\aY+llQ^oll' = (az+r +0(h»llQ\oll'z, h * 0.

Moreover, recalling that div e(Q7U)1:0, we have by Theorem 4.1

(4.37) lldiv(O1o)rll2: CI(hz)lliä?ll', h *0.
Accordingly, by (4.35) and (4.36),

(4.38) ll("6 +@)Otillz : CI(h3t)llo!112, h * 0.

Hence, by @3a)
(4.39) llPh-.Plullz: CI(hst\llP-all2.
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Using the same arguments as in the deduction for inequality (4.34) together with
(4.37) we obtain
(4.40) ll-// PL .P.Ull' : 0(h't')llP.Ull2llÖ'ill2.

If we combine (4.33), (4.37), (4.39) and (4.40), the assertion of Theorem 4.3 follows
for al>0.

The case o=0 follows in the same way if we use (4.31) instead of (a.30). tr
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