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ON CRITERIA FOR UNIQUE EXTREMALITY
OF TEICHMULLER MAPPINGS

EDGAR REICH!

1. Introduction

Let ¢,(z) be a complex-valued measurable function defined in a region Q ot
the complex plane C, ¢,(z)=0 a.e., and let k be a constant, 0<k<1. A quasicon-
formal mapping w=f{(z), of Q, will be said to be of Teichmiiller type? if f has com-
plex dilatation

fz ?o(2)
1.1 x(Z) = 22 = k —_—,
(D @ =7 = o
We are interested in whether f is uniquely extremal among the collection of quasi-
conformal mappings of Q that are in the same homotopy class as f, and whose point-
wise boundary values are the same as those of f. Let %#(Q) be the Banach space
consisting of holomorphic functions ¢ (z) belonging to £*(L), with norm

lol = [[lo()ldxdy <=, @€BQ).
2

z€EQ

For ¢c%(Q), set
3{p} = kol —Re [ [ %(2) ¢(2) dx dy.
2
We recall [5]

Theorem A. Suppose there exists a sequence of functions ¢,€%(Q),n=1,2, ...,
such that (1.2) and (1.3) hold; namely,

(1.2) lim 0,(2) = @o(z) pointwise a.e. in &,
(1.3) nlim o{p,} = 0.

Then f is uniquely extremal.

1 Work done with suppoit from National Science Foundation Grant MCS-7728149, Amend-
ment No. 02.

2 We deviate from the usual terminology in not a-priori requiring ¢, to be holomorphic in .
Whether or not non-holomorphic ¢, exist for which the hypotheses of Theorems A or B hold is
an open question.
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While Theorem A enjoys properties of simplicity and rather wide usefulness,
it is not known whether it represents a necessary and sufficient condition for unique
extremality of Teichmiiller-type mappings. In particular, in a certain borderline
case [5, Section 2, «=3] of mappings covered by Theorem A which is known on
other grounds to be uniquely extremal, it is unclear whether or not Theorem A
applies. Our current contributions will include showing that (1.3) can be replaced
by the weaker assumption of boundedness of {5 {go,,}}, provided (1.2) is strengthened
appropriately. This is done in Theorem B which is stated below. From Sections 4
and 5 it will be seen that Theorem B succeeds in allowing conclusions regarding
unique extremality for classes of mappings like the case referred to above where the
applicability of Theorem A is doubtful.

Theorem B. Suppose there exists a sequence of functions ¢, B(Q),n=1,2, ...,
such that (1.4), (1.5), and (1.6) hold; namely,

(1.4) lim ¢,(z) = @o(z) pointwise a.e. in Q, @.€ LL(Q),

(1.5) oo =M, n=1,2,...,

(1.6)> lim f f l@,(2)|dxdy =0, uniformly with respect to n where
A~ 0n,4)

Q(n, 4) = {z€Q: |p,(2)| = Algy(2)I}.
Then f is uniquely extremal.

The computations required for the proofs are elaborate, but it has been possible
to clarify the methods by effectively separating the parts of the proof in which the
analyticity of the ¢,’s play a role from more formal #* aspects. We will reprove
Theorem A in the process (Section 3) of proving Theorem B. In fact, all results
of [5] are subsumed in results obtained in the present paper.

After the examples in Sections 4 and 5, we turn, in Section 6 to the linear
functional, 4,,,

(1.7) A0l = [[ (Do) xdy, 9eB(Q).

Q

Recall the fact [5, Theorem 3] that the hypothesis of Theorem A also implies that
A, has a unique Hahn-Banach extension from #(Q) to £1(Q). It turns out that
this is no accident. By systematizing the approach we are able to conclude (Theo-
rem C, Section 6) that any of a large class of sufficient conditions for unique
extremality of quasiconformal mappings is also sufficient for the unique Hahn-
Banach extension of A4,. (However, the problem as to whether uniqueness of the
Hahn-Banach extension of 4,, when |4, =|x|.., is necessary and sufficient for
the unique extremality of f is still open.)

3 If for some A=0, |p,(2)|=A4|py(2)], n=1,2, ..., zEQ, then the requirement (1.6) is vacuous.
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2. Versions and consequences of the main inequality

Let w=f(z) be any quasiconformal mapping of @ (not necessarily of Teich-
miiller type), and let x»(z)=f,/f, be its complex dilatation. Let 2(w) denote the
complex dilatation of f~1(w). Let w=g(z) be a quasiconformal mapping of Q
with the same pointwise boundary values as f(z), and in the same homotopy class;
let »;(w) be the complex dilatation of g71(w). If 2(w) and »,(w) are evaluated at
w=f(z), then it is known [2, 6] that the “Main Inequality”

o(2) |
S
M*) [[lo@)dxdy = [[lp(2)- Pt
)
—u(2) = e

1 42(2) (W) o(2) Jo(2)|
2 TGl |, 00

|(P(Z)| dxdy,

1 =[5 (W)[?
holds for all @€ %(Q). We introduce
2.1 2(2) = 2(f(2)), 12 = x(f(2).
Evidently, in view of the relation between f and f~1,
(2.2) lx(2)] = |x(2)] a.e. in Q.

Suppose the notation (2.1) is introduced in (M*), and (2.2) is assumed to hold.
We shall then refer to the resulting formal inequality involving Q, and the functions
o, o, %, u, where we suppose that [[xl|_<1, [ul.<1, o€ £(Q), as the inequality
(M). When referring to this formal inequality we do not necessarily require ¢ to
belong to #(Q), nor do we interpret the &= functions %(z), a(z), u(z), in any manner
relating to the mappings f and g, beyond requiring that (2.2) holds.

We will now proceed to rewrite (M) in several ways. The integral on the right
side of (M) is of the form

dxdy
ST s

|
=t Tl (125

After some simplification, and use of (2.2), one finds that

where
2

!('“““) (54

(1= ) (1~ ) = 20—~ 2 Re | (%~ (a—u)%].
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Thus, (M) is equivalent to the inequality

, x dxdy _ o dxdy
a0 Re[f (- cwo i imm =[ S PRI

Another version of (M) that we shall require contains a grouping of terms
for which ¢ always occurs in the combination

o] -2 ¢
%]

To achieve this we first rewrite the numerator of the integrand on the left side of
(M) as

@3) [__’“‘)(“ ”)‘P_|—_|(§—ﬁ%](a—ﬂ)%<o=I—i‘T(1—ﬁa)(a_#)|”7|¢,

Thus, (M’) can be rewritten as
o _ % dxdy
Re!f ar == (o137 0)
- dxdy
=[f Ty
where

= Re [+ (1= o0 )| o = b [ 14 (147 ReGan)]

—Jo—p2 = (1—]|al) [chl —lul*—(1—|al) Re 'I%]

= (1=l [+ (1= (Jol—Re 22

Therefore, (M) is equivalent to the inequality

M”) lpldxdy

(L[ (1 =]ul?

o
i (o= )+ (1 = —Re 25
Q
_ « _ 2 dxdy
—Re{f oy A @=1) @ o 9) (=B TP -
Lemma 2.1. Suppose (M) is satisfied, with |u(z)|=|x(2)|=k, and |u(z)|=k.

Then
2(1+k>
4 [[lenllol drdy = gt s [ la=il- klol —xp) dx dy.
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Proof. We make use of (M) in the version (M”). An upper bound for the right
hand side of (M”) is

@5) T =l ol o] G Py
= =g [ 1o lol—xo|dxdy.

A lower bound for the left side of (M”) is

(2.6) (111'2’” f/(l —Re )|q)| dxdy.

But, since |¢|=kz=|ul,

Rx|‘=|

) 2k*— k2Re(

1=
N’

= pl# = Jeft [ ~2 Re () = k¥ + [t~ 2K+ Re

e [1~Re£].
o

If we substitute this into (2.6), and use (2.5), we obtain (2.4).

3. Proof of Theorem A and Theorem B

Suppose g(z) is a quasiconformal mapping of Q competing with f(z), and sup-
pose the maximal dilatation of g is no greater than that of f. Then (M*) holds for
all e (Q), with a(z), u(z) as per (2.1). Since we are assuming that f(z) is of
Teichmiiller type (1.1), we have |x(z)|=|a(z)|=k, |u(z)|=k. Therefore the hypoth-
esis of Lemma 2.1 is satisfied, and (2.4) holds for all ¢€4%(Q). To prove Theorem A
we shall apply (2.4) to the sequence {¢,} specified by (1.2) and (1.3), while to prove
Theorem B we make use of the sequence {¢,} postulated to satisfy (1.4)—(1.6).
In either case our objective is to show that we must have g=f, or, equivalently,
g '=f"1. That is, we must show that 2(w)=x,(w) a.e., or, equivalently, that

(3.1 o(z) = u(z) a.e. in Q.
Let us set
0(2) = la(2)—u (2
It will be sufficient to show that

(3.2) lim [ 0(2)lg,(2) dxdy =0,
Q

since by Fatou’s lemma, it then follows by either (1.2) or (1.4) that

[ e(2)lgo(2)] dx dy = 0.
0
and this implies (3.1).
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For any complex number w,
[Iwl—w[z = 2|w|(Jw| —Re w).
Therefore, (2.4), with ¢=¢,, is equivalent to
33 [[eleddxdy = [[ 0120, 2 [k]p,| —Re (xp,)] 2 dx dy,
Q
CQ: Ble(1 4k
(T+ k(1 —k)°

Squaring, applying Schwarz’s inequality, and dividing by [ [, ¢l@.|dxdy, yields
the estimate,

(3.4) [[ele.l dxdy = C3{p,}.
Q

Since (1.3) and (3.4) imply (3.2), Theorem A is proved.

To proceed with the proof of Theorem B, we will use (3.3) in a more refined
manner while at the same time applying (3.4) as a preliminary estimate.

Let {Q,} be an exhaustion of Q by an increasing sequence of compact sets.
For given values of m, n, A, we decompose Q into

Q=0 uR"VUQ”,
where
Q, - Q(n’ A) = {ZQQ: E(P,;(Z)I = AKDO(Z)I}’
Q" = {zeQN\Q,.: |9,(2)] = 4|po(2)I},
Q" = {z€Q,: |9, (2)| = 4loo(2)]}-

Corresponding to this decomposition, we write

(3.5) I, = [[ @1, 2 [k|@, —Re (e )2 dx dy = Jy+ Jo+ J5.
Evidently, ?
2= [[ole.dxdy [[Iklg—Re (xp)ldxdy = 5{e,} [[ ele.dxdy.
[o4 [ 4 Q(n, A)
Since 0(z)=(2k)? and in view of (1.5),
(3.6) R=4M [ 1, ()] dxdy.
Q(n, A)

For J, we have, similarly,
(3.7) 13250 [[ eloddxdy=aM [[ cloddxdy.
o\e,, oO\R,,

Turning our attention to J,, we note, firstly, that, for z€Q”,

kl@n(2)] —Re[x(2) 9,(2)] = min {k|p,(2)| —Re[%(2) 9, (2)], kAlpo(2)I}.
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Hence, using (3.4), with Schwarz’s inequality,

(3.8) J2= [[olodxdy [[ ki, —Re (xp,)| dxdy
) )3
= CM [[ min {klg,|—Re (x¢,), kA pol}dxdy.
Qm

Let &¢=0 be given.
By (1.6) and (3.6), we can choose A4 so that

J, < ¢/3

for all n. By Fatou’s lemma, and (3.4),

[ elo dxdy = CM < =,
2

Hence (3.7) shows that we can choose m so that
J, < ¢/3

for all n. Having chosen 4 and m we now apply Lebesgue’s convergence theorem
to (3.8). By the second part of hypothesis (1.4),

S 10s(@) N dxdy < =.

Qm

Thus, the first part of hypothesis (1.4) implies that the right side of (3.8) has limit O,
as n—oo, Choosing N such that

J;<¢/3, n=N,
we obtain, by (3.5),
I,<e n=N

Hence, by (3.3), the required conclusion (3.2) follows.

4. The affine stretch

If K=(1+k)/(1—k)=1, and if f(z) is the affine stretch
4.1 f(z2) = Kx+iy, z=x+iyeQ,

then x%(z) has the form (1.1), with ¢,(z)=1. Either Theorem A or Theorem B
can be used to give sufficient conditions for the unique extremality of (4.1). The
following consequence of Theorem B is useful in a number of situations.
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Theorem 4.1. Suppose there exists a uniformly bounded sequence of functions
{¢n}, (0,.6.%(9), such thatr

“4.2) lim @,(z2)=1 a.e Q,

and such that

43) Re [[ g2 ~@u(2dxdy <M <o, n=12 ....
2

Then the affine stretch (4.1) of Q is uniquely extremal.
As a special case, we obtain, for instance,

Theorem 4.2. Suppose Q is a region with the properties,
ffe"ydxdy <o, forall t=0, inf{lmz: z€Q} > — .
Q

If
liLanfe"ysinztz—xdxdy < oo,

t->0

then the affine stretch (4.1) of Q is uniquely extremal.

Proof. Apply Theorem 4.1 with ¢,(z)=e", t=¢,\0, where {#,} is chosen
such that
. CtypaialnX ‘
Jim [ =t sint = de dy
exists as a finite value.
Example. Q,={(x,y): y=|x|*}, a=>1.

We will see that Theorem 4.2 is sharp.
Consider

o 2 ~ L (- gL
I(t) =ffe””’ sin® 5-dxdy = —sramy f e~8E0/M-1gin? (——2 ¢ ]d&
2, ’ ¢

It is easily verified that
e
i (3/a) -1 —— Bla)—1,-¢
}LI{)]? I(t) 20 6[ f ¢ dé

Thus,
o, 1l <o=<3,
}13)1 I(t)y=11/6, a=3,
0, a<3.

On the basis of Theorem 4.2 we conclude that the affine stretch of @, is uniquely
extremal if «=3. In fact, it is known [1] that the affine stretch of Q, is uniquely
extremal if and only if a=3.
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5. The affine stretch of a punctured plane

In [4] Strebel and the author consider the question of the extremality of the
affine stretch (4.1) for regions Q=C\S consisting of the complex plane C from
which a set S of countably many isolated “punctures” has been removed.* Loosely
speaking, if S is sufficiently dense at o, while at the same time tending to surround
o in a certain sense then (4.1) turns out to be extremal. Not surprisingly, a further
increase in density of S near o suffices to imply unique extremality of the affine
stretch. We will restrict ourselves here to exhibiting this phenomenon for a relatively
symmetric example: We assume that S contains n equally spaced points on the circle®
lz—c,|=R,, n=1,2, ..., lim R,=c. Under this assumption it is known [4] that
the affine stretch of C\S is extremal.

Theorem 5.1. Let S be the discrete point set defined above. If*®

is a bounded sequence, and if Tim,__ |c,|[R,<1, then the affine stretch of C\S is
uniquely extremal.

Before proceeding with the proof we require two lemmas.
Lemma 5.1. [[c|[1—2""tdxdy=n+O0(l/n), n—ce.

Proof. Since the integrand is invariant under a rotation of C through an
angle 2n/n,

O =R e S e

0<argz<———

Let F(r) denote the elliptic integral

o de
(5.2) F(r):ofm, r=0, r=1.
Evidently,
(5.3) F(r):%F[%), r#0, 1.

4 If S consists of only finitely many points then the affine stretch cannot be extremal.
5 For the criteria for extremality and unique extremality subsequences suffice. Thus n need
only run over an infinite sequence of positive integers.
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By (5.1), (5.3),
1 oo l 1
— (2/n)—~1 — (2/n) -1 ~2/n .
(5.9 J, —_—nof r(3/m F(r)dr-——n of (r®m=14 y=2"y F(r) dy

2 ¢ L[ o L. F(r)—2n !
—_ (2/n)—1 _ 2/n —2/n _
== 6fr dr+n [(f i ———— dr-i—of r F(r)dr] =

L foan+DFM=2r 1 & .
= n+70f‘r —r——dr—k—h—&/'(r — 2" F(r)dr,

n=23,4,....
By (5.2),
2n 2n
T r =F(r)= = O=r<1.
Hence,
(5.5) 0= HEDIO2m_ 4 oyl

On the other hand, referring, say, to the second expression for J, in (5.4) we see that

(5.6) [ B F@) dr <.

In view of (5.5), and (5.6),

1
(5.7) 0<a=j(’L)€(’)“_2"dr<w

Taking note of (5.6) and (5.7), we conclude from the last expression for J,, in (5.4) that

J, = n—!—-q——l—o (i], n —oo,
n n
where g is given by (5.7).
Lemma 5.2. [f.(1-z)"dxdy=n, n=3,4,....

Proof. The integral converges absolutely.

f dxdy = ff(]+z”+zz”+...)dxdy =,
|z]=<1

1—2z"

lzj<1

f dxdy =— ff(z‘"—i—z‘z"—i—...)dxa'y =0.
1z]>1

1—2z"

lz|>1

Proof of Theorem 5.1

Let
R;

qon(Z)Zm, n=3,4,..., (ZEQ———C\S)
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where we have assumed, without loss of generality, that the points of Son |z—¢,|=R,
are located at the roots of (z—c¢,)"=R%. ¢, belongs to #(Q), since it has first-order
poles on S and a pole of at least order 3 at z=<o
We shall use Theorem B, with ¢,(z)=1. Condition (1.4) is clearly satisfied.
We have, using Lemmas 5.1 and 5.2,

[ @ axar— [ ouerixas = [ [~ [[ 725 = mo ).

n — oo,

Therefore, (1.5) holds.
In order to verify (1.6), assume, say

2
ﬁ'-éC, n=1,2,....
n

Given &=>0, choose A=A(s)§2 and sufficiently large so that

du dv e
(5.8) ff |w|2|1—w[ = n=12,....

lw— 1]<—

Since |w—1|<1/4 implies |w[*"=(3/2)% n=1,2, ..., we have

du dv £
(5.9 f/ TG 2/”|1——wl =& n=1,2,....

lw—1]<—

Let
={rec: 0-1<4},

and let E; be the component of E containing the point {=1. Since 4=>1, E; does
not intersect the rays arg{= +n/n. Hence E, is the homeomorphic image of the
disk |w—1|<1/4 under the conformal mapping defined by the principal branch
of {=w"" Re w=0. Transforming the integral accordingly, we have, by (5.9),

(5.10) ffl‘fg_dc'j <2, n=lL2...

Now, E is the union of n (disjoint) replicas of E; produced by rotating the plane
through multiples of the angle 2r/n. Since the integrand of (5.10) is invariant
under these rotations,

o [

Accordingly, with Q(n, A) as defined by (1.6), and A (g) defined by (5.8)

[f10.N dxdy = R / [l _ehas,

Q(n, A)
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6. Hahn-Banach extensions of 4,

Given x(z), z€Q, of the type (1.1), we shall say that &, is an (M)-uniqueness
Sfamily for » if Z,c%(Q), and if, in the nomenclature of Sections 1, 2, the follow-
ing implication holds:

(6.1) (M) holds for all ¢c¢%, |a(2)| =[x =k |u@)|=k=oa(z)
= u(z) a.. in Q.

Evidently, if &, is an (M)-uniqueness family for % then a quasiconformal mapping
S with complex dilatation x is uniquely extremal. In view of the fact that the proofs
of Theorems A and B involved verification of the implication (6.1), one example
of an (M)-uniqueness family %, is the family {¢,}, where ¢, satisfy (1.2) and (1.3).
Another example is the family {¢,} satisfying (1.4)—(1.6).

Theorem C. Suppose there exists an (M)-uniqueness family for x. Then the
Hahn-Banach extension of A, from B(Q) to L(Q) is unique.

Proof. Suppose A, has the Hahn-Banach extension

J[v@edxdy, eeL (@),
Q

where |v||..=k. Then

(6.2) ffmp dxdy =ffv<p dxdy, for all @c%B(Q).
- Let? ? ?
(6.3) a(z) = x%(2), w(z)=v(2), (z€Q).

We claim that with the given function x%(z), and the above choices of «(z) and
u(z), (M) holds for all ¢€Z(Q). To prove this we use (M) in the version (M").
We need to verify that

64 Re[f1=506o {1 = [[ 1ol (St 0eA(@),
Q
By (6.2),
(l—v%)(/ V) (l—vx)(% v)
/,; =y TTIopE pdxdy = /f |V]2 (A—v)]godxdy

f (%_IV)IZ_ dxdy.

¢ Alternatively, the somewhat more intuitive choice, a=—x, u=—v could be used.
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Re/f (l‘v")(" dxdy<ff’“ P 'v' lol dxdy

[%—V[?
1— 2

Therefore,

=k lpl dx dy,

2
and (6.4) follows. In view of the postulated existence of an (M)-uniqueness family
Z, it follows that a(z)=u(z) a.e., ie., v(z)=x(z) a.e., as was to be shown.

As corollaries one can use the hypotheses of any of the Theorems 4.1, 4.2, and
5.1, to conclude that the corresponding functions A, have unique Hahn-Banach
extensions from #(Q) to #*(Q). So, for example, as an analog to Theorem 4.1
one can state the following generalization of a result obtained in [3].

Theorem 4.1". Suppose there exists a uniformly bounded sequence of furctions
{0.}, ©.€8(Q), such that (4.2) and (4.3) hold. Then the linear functional

(6.5) [[e(@dxdy, ocB(Q),
Q2

has a unique Hahn-Banach extension from %(Q) to L1(Q). Moreover, the formula
(6.5) provides this extension to @€ L (Q).
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