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ON CRITERIA FOR UNIQUE EXTREMALITY
OF TETCHMULLER MAPPINGS

EDcAR nrrcr*

1. Introduction

Let EoQ) be a complex-valued measurable function defined in a region O ot
the complex plane C, E,Q)*O a.e., and let k be a constant, 0=k=1. A quasicon'

formal mapping w:f(z), of O, will be said to be of Teichmiiller type2 if/has com-

plex dilatation _
(r.r) x(z):f:nm,z€Q.
We are interested in whether/ is uniquely extremal among the collection of quasi-

conformal mappings of O that are in the same homotopy class asf, and whose point'
wise boundary values are the same as those of/. Let 98(A) be the Banach space

consisting of holomorphic functions Ek) belonging to 9t(9), with norm

For q(EA (O), set

We recall [5]

Theorem A. Suppose there exists a sequence offunctions E"€g(Q),fl:1,2, ...,
such that (1.2) and (1.3) hold; namely,

(1.2) 
lyry-,O,t ): eo(z) pointwise a.e. in d2,

(1.3) Jig ä{E,}: o.

Then f is uniquely extremal.

, lV*t Oone with support from National Science Foundation Grant MCS-7728149, Amend-
ment No. 02.

2 We deviate from the usual terminology in not a-priori requiring p6 to be holomorphic in !-2.

Whether or not non-holomorphic po exist for which the hypotheses of Theorems A or B hold is

an open question.

ilqrll : $ IEQ)I clx d.y - *, E( s(o).

ö{E} - kllEll - ne f I xk) EQ) dx dy.
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While Theorem A enjoys properties of simplicity and rather wide usefulness,
it is not known whether it represents a necessary and sufficient condition for unique
extremality of Teichmiiller-type mappings. In particular, in a certain borderline
case [5, Section 2, a:31 of mappings covered by Theorem A which is known on
other grounds to be uniquely extremal, it is unclear whether or not Theorem A
applies. Our current contributions will include showing that (1.3) can be replaced
by the weaker assumption of boundedness of {ä {e,}}, nrovided (1.2) is strengthened
appropriately. This is done in Theorem B which is stated below. From Sections 4
and 5 it will be seen that Theorem B succeeds in allowing conclusions regarding
unique extremality for classes of mappings like the case referred to above where the
applicability of Theorem A is doubtful.

Theorem B. Suppose there exists asequence offunctions E,(g(e),n:|,2, ... ,
such that (1.4), (1.5), and (1.6) hold; namely,

(1.4)

(1.5)

(1.6), lim

jlg q,(z): Eok) pointwise a.e. in d2, eo(gr!"(o),

ö {E"} E M, n : 1,2, ... ,

- 0, uniformly with respect to n where

Q(n, A) : {z(Q: lq"k)l > Alqr(z)ll.

Then f is miquely extremal.

The computations required for the proofs are elaborate, but it has been possible
to clarify the methods by effectively separating the parts of the proof in which the
analyticity of the gn's play a role from more formal gL aspects. we will reprove
Theorem A in the process (section 3) of proving Theorem B. In fact, all results
of [5] are subsumed in results obtained in the present paper.

After the examples in sections 4 and 5, we turn, in section 6 to the linear
functional, z1r,

ff lE.k)l rtx dv
{2(n,A)

(1.7) A"lEj Ee s8 (p).

Recall the fact [5, Theorem 3] that the hypothesis of Theorem A also implies that
1* has a unique Hahn-Banach extension from o(a) to gt(a). It turns out that
this is no accident. By systematizing the approach we are able to conclude (Theo-
rem c, section 6) that any of a large class of suffi.cient conditions for unique
extremality of quasiconformal mappings is also sufficient for the unique Hahn-
Banach extension of A*. (However, the problem as to whether uniqueness of the
Hahn-Banach extension of 1,, when llr4"ll=llzll_, is necessary and sufficient for
the unique extremality of / is still open.)

---äilforto*. A=0,1g.(z)l=Algok)l,n:1,2,...,2€Q,thentherequirement(I.6)isvacuous.

: 
$xk)Ek)xdy,
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2. Versions anil consequences of the main inequality

Let w:f(z) be any quasiconformal mapping of O (not necessarily of Teich'
miiller type), and let x(z):f-lf, be its complex dilatation. Let h(w) denote the
complex dilatation of f-t(w). fet w:gQ) be a quasiconformal mapping of O

with the same pointwise boundary values asf(z), and in the same homotopy class;

let xr(w) be the complex dilatation of g-1(w). Tf k(w) and xr(w) are evaluated at
w:f(r), then it is known B,6lthatthe "Main Inequality"

l,-x(z)ffi1'(M*) tf tEk)tdxdv = tl tEe)t
1 - lx(r)l'

,-Mffi., t ., xr(w) Ek)ttx\z) Na 'rE(c' r-xerffi
1 - lxr(w)l'

holds for all q€9, ((2). We introduce

(2.1) a(z) - fr(f(r)), P(z) : %L(fk)).

Evident|y, in view of the relation between f and f -',
(2.2) la(z)l - lo(r)i a.e. in O.

dx dy,

Suppose the notation (2.1) is introduced in (M*), and Q2\ is assumed to hold.

We shall then refer to the resultingformal inequality involving Q, and the functions

e, d, %, p, where we suppose that llzll-=1, llpll-=1, E€91(Q\ as the inequality
(M). When referring to this formal inequality we do not necessarily require g to
belong to 0 (Q), nor do we interpret the 9- functions x(z), u(z), 1t(z), in any manner

relating to the mappings/and g, beyond requiring that (2.2) holds.
We will now proceed to rewrite (M) in several ways. The integral on the right

side of (M) is of the form
dx dy

(1 - lxl\(l - lpl') )

where

lr ---

After some simplification, and use of 12,.2), one finds that

$ ^tEt

,-x#+ry#['-,&)|

-2tu- tttz_2RetH - F") (a- ur#).

:1,t-a*-(ry),#\'

;-(1 -lxl\(l -lttl')
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Thus, (M) is equivalent to the inequality

(r) *"#( L* - o,) @ - p) E r#tw = fi w- ut'toftffiw .

Another version of (M) that we shall require contains a grouping of terms
for which E always occurs in the combination

tol-fi'o'

To achieve this we first rewrite the numerator of the integrand on the left side of
(M') as

as) (L*-p,){o-r>*: *o,(1-n )o-ilfiv :frrr -r,"lr a-tifrE.
Thus, (M') can be rewritten as

"" { h e - pa) (a- p>fi*r - fi d 6y*,
=![*6ffiM,

where

7 : Re [å,, -p,ot@-p)J-w-pt : tot [r +rrr,-(r.#)R.0i,)]

-la- pl,: (1 -lal) [tot - trt,-tl -lal) * ffiJ
: (l - lal) [ror,- rrl,*t1- raD (rrr -n.6)]

Therefore, (M) is equivalent to the inequality

(M,) 1,.''-,'ähl31l;**J t@dxdy
a

= "" I I h e - pu) (a - p> |*t - fi r) T-ti# _w
Lemma 2.1. Suppose (M) rs satisfied, with la(z)l=lx(z)l:k, and lp(z)l=k.

Then

Ql) fi to-ul'lol itx dy =- ffiPW!{ t.- ut.lktEt-*cldx ity.
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Proof. We make use of (M)
hand side of (M') is

in the version (M'). An upper bound for the right

(2.5) +t{ l1- ttul .la-pl .iklEl*xElI (l - k)(1 -ltiz)
dx dy1

o

= -(1+t'l- ff la-pl .i klEl-xEldxcty"- (1 -kz)zk a

A lower bound for the left side of (M') is

(2.6) 1-k)k 
t{[r-*.+) wtdxdy.r+k

But, since lol- k=lpl,

la- ttl': lal'+ l,tl'-2Re (tta) - l<2+lpl 2- 2k2R.. (*) = zkz

- 2kz(, -".#)
If we substitute this into (2.6), and use (2.5), we obtain (2.4).

a(z) = lt(z) a.e. in d).

s(z) - la(r)- p(z)l'.

It will be suffi.cient to show that

(,3.2) Iim f f s@)je,{z)l ctx,ly - 0,
n,+@.r,a,l

since by Fatou's lemma, it then follows by either (1 .2) or (1 .4) that

$ 
q{z)lEok)l ctx ,ti" - a,

and this implies (3.1).

-2k2..(*)

3. ProofofTheorem A and Theorem B

Suppose g(z) is a quasiconformal mapping of O competing with 121, and sup-
pose the maximal dilatation of g is no greater than that of/. Then (M*) holds for
all E€%(.a\ with a(z), p(z) as per (2.1). Since we are assuming that /(z) is of
Teichmiiller type (1.1), we have lx(z\l=la(z)l:k,lp(z)l=k. Therefore the hypoth-
esis of Lemma 2.1 is satisfied, and (2.4) holds for all q€fi.(O). To prove Theorem A
we shall apply (2.4) to the sequence {E,} specified by (1.2) and (1.3), while to prove
Theorem B we make use of the sequenc" {E} postulated to satisfy (1.4)-(1.6).
In either case our objective is to show that we must have g:f, ot, equivalently,
g-r:f-r. That is, we must show that k(w):xr(w) a.e., or, equivalently, that

(3.1)

Let us set
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For any complex number ur,

ll,l-'1' : 2lwl1wl-Re w)'

Therefore, Q.4), with e:gn, is equivalent to

(3.3) t! elv"ldx dv = c't' Il 6rz1q,|tzlklE,l-Re Q'tE,)fitz dx ctv,
aa

r _ }k(l +kz)z
- - (l +[')'?(l -k)G 

'

Squaring, applying Schwarz's inequality, and dividing AV [ [ o qlq,ldxdy, yields
the estimate,

(3.4) t{ elv"l dx dy = Cö{E,).
a

Since (1.3) and (3.4) imply (3.2), Theorem A is proved.
To proceed with the proof of Theorem B, we will use (3.3) in a more refined

manner while at the same time applying (3.4) as a preliminary estimate.

Let {A^l be an exhaustion of O by an increasing sequence of compact sets.

For given values of m, n, l, we decompose O into

Q : Q'v d2" v d2"' ,

where
e, : d)(n, A) : {z€e: lE,G)l = Alqo\z)l},

g" : {z(O\Q^: lrp,(z)l -. AlEo@)l},

g2t" - {z(Q*: lE"Q)l -. AIEoQ)l\.

Corresponding to this decomposition, we write

(3.5) t, : [[ eil2lE,l't'lklE,l-Re(zE,)]1/2dxdy : Jr*Jz*ls.
o

Evidently,

fi = il qlq,l dx dy ft [k le,l - Re (xq,)]dx cty = ö{E,) [ [ elv,l dx dy.
{v a@,4)

Since g(z)<Q,k)z, and in view of (1.5),

(3.6) Ji = 4k'tt {[ 1,0,,{41dx dy.
a(n, A)

For "I, we have, similarly,

(3.7) r3=6{v,} t! olq,ldxdy=AM ff ol,ooldxal'.
o\o_ o\o-

Turning our attention to /r, rve note, firstly, that, for ze d)"',

k I E "Q)l - Re lx (z) cp,(z)l : min {k I E "k)l -P.e ltc (z) q,(z)1, k A lE ok)l\.
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Hence, using (3.4), with Schwarz's inequality,

(3.8) Ji = I{ QlE,l dx dy il lklE.l -Re (:*E)l dx dy
d)" {l''

= CM {t min {klE,l -Re (xEn), kA lqo} dx dy.
§lm

Let e >0 be given.

By (1.6) and (3.6), we can choose ,4 so that

Jr - el3

for all n. By Fatou's lemma, and (3.4),

Hence (3.7) shows that we can choose ru so that

Jz' el3

for all a. Having chosen A and m we now apply Lebesgue's convergence theorem
to (3.8). By the second part of hypothesis (1.4),

fi l'ot<,lt clx dY - *.
a^

Thus, the first part of hypothesis (l.a) implies that the right side of (3.8) has limit 0,

as lt + €. Choosing N such that

Jr<ef3, n= N,
we obtain, by (3.5),

fn=E' n> N'

Henoe, by (3.3), the required conclusion (3.2) follows.

4. The affine stretch

If K:(l +k)10-k)=1, and if f(z) is the affine stretch

(4.1) f(r): Kx*iy, z: xliy(Q,

then x(z) has the form (1.1), with qo@):|. Either Theorem A or Theorem B
can be used to give suffi.cient conditions for the unique extremality of (4.1). The
following consequence of Theorem B is useful in a number of situations.

$ elEol dx ctY = cM < .,o.
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Theorem 4.1. Suppose there exists a unifurmly bounded sequence of functions
{E"}, E"($(Q), such that

(4.2) lim tp,(z): I a.e. d),

and such that
(4.3) xe!!llco"k)l-E,Q)ldxdy < M <*, n:1,2, ....

a

Then the affine sffetch @.1) of Q is uniquely extremal.

As a special case, we obtain, for instance,

Theorem 4.2. Suppose Q is a region with the properties,

[[ e'» axa! 1 *, for all t > 0, inf {Im z: z€Q} > - 6.
o

rf

WII ,-,' sin,f, dx dy -*,
t*v A

then the affine stretch @.1) of Q is uniquely extremal.

Proof. Apply Theorem 4.1 with En(z):ei", /:1,\0, where {1,} is chosen

such that

)rI |rl ,-'", sin'tt dx d.t

exists as a filite value.

Example. Q,:{(x,y): y=lxl"}, u=|.

We will see that Theorem 4.2 is sharp.
Consider

r@ : [[ e-', ,in't dx dy : ,:* [ "-, 
(otq)-L ri"'(t-!'24'") aC.

ac

It is easily verifled that

lim 1clcr-r71 0 : * [ {tb-t "*< 
41.

Thus,

[*. l=a=3,I'
l,j1t 

rf,l : 1t 16, q, : 3,

[o' a<3'

On the basis of Theorem 4.2 we conclude that the affine stretch of Oo is uniquely
extremal if u>-3. In fact, it is known [] that the affine stretch of Oo is uniquely
extremal if and only if a=3.
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5. The affine stretch of a punctured plane

In [4] Strebel and the author consider the question of the extremality of the

affi.ne stretch (4.1) for regions o:c\,s consisting of the complex plane c from

which a set ,S of countably many isolated "punctures" has been removed.a Loosely

speaking, if ,S is sufficiently dense at -, while at the same time tending to surround

- in a certain sense then (4.1) turns out to be extremal. Not surprisingly, a further

increase in density of S near - sumces to imply unique extremality of the affine

stretch. We will restrict ourselves here to exhibiting this phenomenon for a relatively

symmetric example: We assume that S contains n equally spaced points on the circles

lz-cnl:pn, n:1,2,..., limR,:-. Under this assumption it is known [4] that

the affine stretch o/ C\,S is extremal.

Theorem 5.1. Let S be the disuete point set defined aboue. If,

Ri , n- 1 ,2, ...,

2e7

is a bounded sequence, and if m,*- lc,llR"-7, then the affine stretch o/ C\^S
uniquely extremal.

Before proceeding with the proof we require two lemmas.

Lemma 5.1. I I"ll-z"l-t dxdy:n:rg711n'r, rt+a.

Proof. Since the integrand is invariant under a rotation of C through

angle 2nfn,

d( drt

,,s

an

(5 1) rn:$ffi-n dxdy _ 1 ff@-"uff
Zn

A<.4192a-

l1l'-Qtn)11-(l

Let F(r) denote the elliptic integral

(s.2)

Evidently,

(5.3)

F(r):r#n r > 0, r" * l.

!e(+) ,.F(r) -- r *0, l.

. If S 
"."sists 

of only finitely many points then the affine stretch cannot be extremal.
5 For the criteria for extremality and unique extremality subsequences suffice. Thus z need

only run over an infinite sequence of positive integer§.
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By (5.1), (5.3),

(s.4) ,,:* i ,r,,r-,F(r)dr:+ i (re/nt-r*r-zt\F(r)drni fro

: + !,etu)-, 
4v a lfj *,,!9:? ** ! r-,t, F(i drl :

: "*+ ! ,zn?*r)F-(r)-2n ar+| i e-ztn-yztn)F(r)dr,

By (5.2), 
n : 3' 4' "' '

#i=F(r)= *, o=r<1.
flence,

(5.5) g-(r*r)F-(r)-2n=fr,0<r<1.

on the other hand, referring, say, to the second expression for ,l', in (5.4) we see that

note

(5.6)

In view

(5.7)

Taking

! ,-zts F(r) dr - *.
andof (5

.6) an

5.5),

of (5

,"

he

t'l

+1)r(r)-(r

rcl

a

n

l1

,11(

(5.6),
1

o

Id (5.7), we cor

Jn: Tc+

dr -*.

last expression for Jnin (5.4) thatlude from t

*o(+) , * >3o,

where a is given by (5.7).

Lemma 5.2. IIr(1 - z") tdxdy:n, n-3,4,....

Proof. The integral converges absolutely.

II#: ,il.(l + zn+zzn+.-.)ctxdv -n,
u]åt lzlol

f f ru {fe-n*z-,n+..)dx,ty:a.,l!, | - z' 
rzr=1

Proof of Theorem 5.1

Let
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where we have assumed, without loss of generality, that the points of ,S on lz - c,l:4
are located at the roots of (z-co):Ri. E,belongs to 0(A), since it has first-order
poles on .S and a pole of at least order 3 at z:-.

We shall use Theorem B, with Eo@)=I. Condition (l.a) is clearly satisfied.

We have, using Lemmas 5.1 and 5.2,

fi t,o.t,l ax ay - ! ! q,@) dx dy : R? I I ##l - N I,l +ry : n: o (1),

Therefore, (1.5) holds.
In order to verify (1.6), assume, say

*=r, n-r,2,....

Given e>0, choose A:A(e)>2 and sufficiently large so that

(s.8) + II ,ffi=ä, n:1,2,....
lw-1lr-7-

Since lw- ll<.llA implies lrl't'=(ZlZ)', rt:|,2, ... , we have

(s.e) II ffi=ä,n:1,2,....
l.-rl=i

Let

e :{ecc,l('-rl = I},
and let E' be the component of E containing the point (:1. Since A>1, E, does
not intersect the rays arg(: fnfn. Hence E1 is the homeomorphic image of the
disk lw-11<.11A under the conformal mapping defined by the principal branch
of (-w11", Re w>0. Transforming the integral accordingly, we have, by (5.9),

(s.10)

Now, E is the union of a (disjoint) replicas of ä. produced by rotating the plane

through multiples of the angle 2nfn. Since the integrand of (5.10) is invariant
under these rotations,(5r1) $ffi:"$ffi
Accordingly, with Q(n, A) as defined by (1.6), and

^{l,,lE.@)ldx'1Y- 
Yffffi

{2(n, A) E

t.<-.
nc-

A(e) deflned by (5.8)

ERl
< : ---= ;.Cn
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6. Hahn-Banach extensions of 21,

Given x(z), z(Q, of the type (1.1), we shall say that F* is an (M)-uniqueness

family for x it 9.cfi(O), and if. in the nomenclature of Sections 1,2, the follow-
ing implication holds:

(6.1) (M) holds for all Ee 4, la(z)l : lx(z)l: k, lp/)l = k + a(z)

= p(z) a.e. in O.

Evidently, if $"is an (M)-uniqueness family for r then a quasiconformal mapping
f lvrrth complex dilatation z is uniquely extremal. In view of the fact that the proofs
of Theorems A and B involved verification of the implication (6.1), one example
of an (M)-uniqueness family 9*isthe famity {q,}, where g, satisfy (1.2) and (1.3).
Another example is tåe family {q,} satisfying (1.a)-(1.6).

Theorem C. Suppose there exists an (M)-uniquelress family for x. Then the
Hahn-Banach extension of A*from 0(O) to gr(A) is unique.

Proof. Suppose A* has the Hahn-Banach extension

where llvll-=k. Then

(6.2) II ,* dx rly : [l ,, dx dy, for all E(s@).

Letc

tO.:l a(z): y7r1, pk): y(z), @(A).

We claim that with the given function x(z), and the above choices of a(z) and
p(z), (M\ holds for all q(@(9). To prove this we use (M) in tlre version (M').
We need to verify that

(6.4) ne//rr -ng@-v)Effi = l[ tt<-vt,wtffi, q€.s(a).

By (6.2),

$ 
vk) Ek) dx cty, E(.s'(o),

-(x-r)J E dx dy-v))(x
E,$

(1
E ctx,ty - Illv)

1

x)(x -
-t P-

v

1

(1 - ix

:_f Irry.-l?: qdxdy.
U I -l'l'

. Alt"r*tively, the somewhat more intuitive choice, a: -k, lt:-v could be used.
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Therefore,

R 
" [l t-Pfft E dx dy 

= ll?p tcpt dx dy

= t f f ll_,"1? 
lEl dx dy,- '" J"J I - lvl'

and (6.4) follows. In view of the postulated existence of an (M)-uniqueness family
9"itfollowsthat a(z):p(z) a.e.,i.e., v(z)=x(z) a.e., as was to be shown.

As corollaries one can use the hypotheses of any of the Theorems 4.1, 4.2, and
5.1, to conclude that the corresponding functions A, have unique Habn-Banach
extensions from fi(A) to 9t(A). So, for example, as an analog to Theorem 4.1

one can state the following generalization of a result obtained in [3].

Theorem 4.1'. Suppose there exists a uniformly bounded sequeilce of functions
{E"}, E"€98(Q), such that (4.2) and (4.3) hold. Then the linear functional

(6.5) [{ vQ)dxdt, E€s(o),

has a unigue Hahn-Banach extension from 98(A) n 9L(A). Moreouer, the formula
(6.5) prouides tlds extension to E€9t(Q).
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