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QUASISYMMETRIC AND LIPSCHITZ APPROXIMATION
OF EMBEDDINGS

J. LUUKKAINEN and P. TUKIA
Introduction

This paper is concerned with the following concepts. Let (X,d) and (Y, d’)
be metric spaces and let f: X—Y be an embedding. Then f'is said to be bilipschitz
(or L-bilipschitz) if, for some L=1,

d(x, pIL = d'(f(x), () = Ld(x, )

for all x, yeX. It is called quasisymmetric (or n-quasisymmetric) if, for some homeo-
morphism #n: R, >R,

d'(f(@), f(x)) = n(®)d'(f(b), f(x)

whenever a, b, xc X, t=0, and d(a, x)=td(b, x). The above condition is motivated
by the properties of quasiconformal maps: For instance, a homeomorphism of R*
is quasiconformal if and only if it is quasisymmetric. Like bilipschitz embeddings,
quasisymmetric embeddings form a category: The composite of two quasisymmetric
embeddings is quasisymmetric, and so is the inverse of a quasisymmetric homeo-
morphism (cf. [38]). Every bilipschitz embedding is quasisymmetric.

A map Jf* X—7Y is called an LQS immersion if every point of X has a neigh-
borhood on which f is quasisymmetric. It is called a LIP immersion if every point
of X has a neighborhood on which f'is bilipschitz. We let CAT denote either LQS
or LIP. A CAT embedding or a CAT homeomorphism is a CAT immersion which
is an embedding or a homeomorphism, respectively. It is obvious that the inverse
of a CAT homeomorphism is a CAT homeomorphism. Every LQS embedding of
a compact space is quasisymmetric by [38, Theorem 2.23], and every LIP embedding
of a compact space is bilipschitz. A piecewise linear (PL) embedding between
polyhedra in Euclidean spaces is a CAT embedding. We call a separable metric
space a metric CAT n-manifold, n=0, if every point has a closed neighborhood
CAT homeomorphic to the cube [—1, []* in R".

There is a familiar and apparently more general alternative way to define CAT
manifolds and CAT immersions based on atlases; see 1.3. As LQS atlases are the
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same as locally quasiconformal atlases, LQS manifolds are also called quasiconformal
manifolds. The two definitions of LIP or Lipschitz manifolds were proved to be
(essentially) equivalent in [26, Theorems 3.5 and 4.2]. J. Véisdld raised the ques-
tion whether this also holds for LQS manifolds. Our main result implies that such
is really the case.

Section 1 is preliminary except for Theorem 1.14, where it is proved that every
LIP embedding between LIP manifolds is locally flat if the codimension is at least
three. Lemma 1.9 recapitulates known results about PL approximation of
embeddings from dimension # into dimension ¢. It is valid if either g=n=1 or
n=2, g=n+3 or (1, q)c{(2,2), (2,3),(3,3)}. We call these pairs (7, q) admissible.

In Section 2 we prove that if (1, g) is admissible, YCXCR", and Y is open
in R", then every quasisymmetric embedding f: X—~R? can be approximated by
quasisymmetric embeddings which coincide with f on X\Y and are PL on Y.
In fact, we consider here more general, if quite special, polyhedra Y these are open
in X and have a certain decomposition into n-cubes. In the case n=¢g=3 similar
but simpler problems for bilipschitz or quasiconformal embeddings are studied in
[41, Theorem 2.4] and [18, Theorems 2.1 and 3.1]. Our proof is similar to the ones
in [41] and [18]. It is based on Lemma 1.9 and the finiteness idea of Carleson in
[10], which can be used by virtue of a compactness property of quasisymmetric
embeddings.

In Section 3 we apply results of Section 2 and obtain analogous results for
bilipschitz emteddings.

Using these theorems we prove in Section 4 the main result of this paper,
Theorem 4.4. In a simplified form it states (cf. 4.14.4) that if M and N are CAT
manifolds of dimensions 7 and ¢, respectively, such that (#, ¢) is admissible, then
every embedding f: M —~N can be approximated by CAT embeddings in the source
majorant topology. A special case of Theorem 4.4 for CAT=LIP and n=q=3
is given in [37, Theorem 2], and our proof is a modification of the proof in [37].
As a corollary we get the result that M can be CAT embedded into R*** (n=0),
from which it follows that the two definitions of CAT manifolds are equivalent.
Further, by recent results about topological embeddings, R*"** can here be replaced
by R* (n=1) and, if the target majorant topology is used and g=2n+1, it suffices
to assume that f is only a continuous map.
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pitality he enjoyed during the completion of this paper. We are grateful to J. Dancis,
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1. Terminology and preliminary results

1.1. Notation. The letters n, q denote non-negative integers. Let R" be the
Euclidean n-space, R" ={x€R"[x,=0}, R'"'=0R%, I"=[-1,1]", J'=(—1, 1),
J"=J"nR", I"(r)=rl" and J"(r)=rJ" for r=0, and I=[0,1]. Let ¢,=
(1,0, ...,0)€R". If S is a topological space, let C.(S)={f|/f: S—(0, =) con-
tinuous}. If Sis aset and f, g: S—R", we write d(f, g)=sup {|f(x)—g(x)||x€ S}

1.2. Weakly quasisymmetric embeddings. An embedding f of a metric space
(X, d) into a metric space (Y, d’) is called weakly quasisymmetric if there is H=1
such that d’(f(a), f(x))=Hd'( f(b), f(x)) whenever a,b, x¢X and d(a, x)=d(b, x);
then fis also said to be weakly H-quasisymmetric. This concept, too, was considered
in [38]. Every quasisymmetric embedding is weakly quasisymmetric. Every weakly
quasisymmetric embedding f: S—R?, SCR’, has a unique extension to a closed
embedding f: S§—R% If fis L-bilipschitz, this is well-known, and fis L-bilipschitz.
If f is n-quasisymmetric, this follows from [38, Theorems 2.24 and 2.25], and f is,
n-quasisymmetric. The general case follows from [33, Lemmas 2, 4, and 5] (the
case n=qg=2 considered in [33] can be generalized in the obvious way). Moreover,
in [33] one does not assume that f is an embedding but only that fis injective. (For
a similar definition for quasisymmetric embeddings, see [38, Theorem 2.21].) We
do not know whether f is always weakly quasisymmetric. (However, it is easy to
see that if S is open and convex and if fis weakly H-quasisymmetric, then fis weakly
H-quasisymmetric.)

1.3. Atlases. We give the definition of CAT manifolds in the atlas sense. Let
CAT (n) be the category whose objects are open subsets of R" and of R’} and whose
morphisms are CAT homeomorphisms. Then CAT () is a pseudogroup of trans-
formations in a slightly more general sense than in [20, p. 1]. Consider a homeo-
morphism f: U—V, where U, V are open either in R" or in R’,. By [38, Theorem
2.16], [43, Theorems 2.3 and 2.4], and [40, Theorem 35.2], the following conditions
are equivalent for a point x€U: (1) fis quasisymmetric on a neighborhood of x
in U; (2) fis weakly quasisymmetric on a neighborhood of x in U; (3) (for n=2)
there is an open neighborhood W of x in R" such that f|Wnint U is a quasicon-
formal embedding; (4) (for n=2) there is an open neighborhood W of x in R
such that f|Wn U extends to a quasiconformal embedding of W into R".

A CAT (1) atlas </ on a topological space M is a family of pairs (U, h), called
charts, such that the U’s are open sets of M covering M, h is a homeomorphism
of U onto an open subset of R" or of R" , and for charts (U, A), (U ’, "), the homeo-
morphism A h~': h(Un U)K (UnU’) belongs to CAT (n). If M is a separable
metrizable space and if .« is a CAT (n) atlas on M which is maximal with respect
to inclusion, we call the pair (M, /) a CAT n-manifold and o/ a CAT structure
on M. The terms quasiconformal structure and Lipschitz structure are also used.
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(We could also define a CAT structure as an equivalence class of CAT () atlases,
two atlases being equivalent if their union is a CAT () atlas.)

Let (M, ) be a CAT manifold. The underlying space M is a topological

manifold, whose interior int A and boundary ¢M inherit a CAT structure from &/
in a natural way. If 4 and B are subsets of CAT manifolds and if X is a metric space,
we can define CAT immersions 4—B, A—~X, and X—A in a familiar way using
charts (cf. [42, 1.8]). One defines similarly CAT emteddings and CAT homeomor-
phisms. If (N, %) is a CAT manifold such that NcM and that the inclusion of
N, %) into (M, s7) is a CAT embedding, we call (N, %) a CAT submanifold of
M. Suppose that ¢M=0. Then a CAT ¢-sutmanifold N of M is said to te locally
CAT flat if for each x€N thereis (U, i)/ suchthat xéU and hH(UnN) equels
hUAR" or hUnRY%. A CAT embedding is called locally CAT flat if its image is
locally CAT flat.

Every metric CAT n-manifcld M (in the sense of the Intrcduction) has a natural
CAT structure consisting of all pairs (U, ) where U is open in M and /& is a CAT
homeomorphism of U onto an open set in R" or in R",. Moreover, if AcM, the
two definitions of CAT immersions of A or into A coincide. We consistently define
a subset N of M to be a CAT submanifold of M if it is a metric CAT manifold in
the induced metric.

In 4.7 we will see that every CAT manifold has a metric which induces the
original CAT structure.

In 4.11 we will need the fact that every CAT n-marifold can be CAT embedded
into a CAT n-manifold without toundary. For this reason we construct the double
of a CAT manifold.

1.4. Lemma. Let (M, /) be a CAT n-manifold. Then there exists a CAT
n-manifold (DM, %), called the double of M, with the following properties: DM
contains CAT submanifolds M,, M, such that DM=M,0M,, M,nM,=¢M,=
OM,, and there are CAT homeomorphisms f;: M—~M,; such that fil0M=fl0M.
The triple (DM, f1,f3) is unique up to a CAT homeomorphism except possibly
whent CAT=LQS, n=1, and ¢M#0, in which case, however, (DM, My, M,) is
unique up to a CAT homeomorphism. Moreover, 0DM =0, and the submanifolds
M, My, M, M, are locally CAT flat in DM.

Proof. We only consider CAT=L1QS, tecause for CAT=LIP ocre can give
a similar but slightly simpler proof and because one has already proved this case
by another method in [26, Theorem 3.13]. It is well-known that the lemma holds
for topological manifolds and homeomorphisms (i.e., if CAT is replaced by TOP).
This gives us the manifold DM and the homeomorphisms f;. We construct an LQS
structure on DM as follows. Define p: R'">R" by p(x)=(x1, .y Xyo1, —Xy).
For each chart (U, A€o/ with UndM =0 we have the charts (f;U, hf;7 1, U),
i=1,2, of DM. For each chart (U, h)éo/ with UnoM=0 we define a chart
(U*, k") of DM as follows. Since /U is open in R",, the set V=hUuphU is open
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in R". Let U*=f,Uuf,U; then U*is open in DM. We define a homeomorphism
h*: U~V by h*(xX)=hf7(x) if x€fLU and h*(x)=phfy '(x) if x€fU. These
charts form an atlas %, on DM. One can use [40, Theorem 35.2] for n=2 and
[24, I, Lemma 7.1 and (7.2)] for n=1 to see that %, is an LQS (#) atlas. The LQS
structure # determined by %, depends only on /. The sets M,;, M,, and M;nM,
are locally LQS flat LQS submanifolds of (DM, %), and the homeomorphisms f;
are LQS.

To show the uniqueness, let (D'M, M;, M,, f].f,) have the properties of
(DM, My, M,. f;, f;) listed in the first part of the lemma. Let g: DM—~D"M be
the unique homeomorphism with gf;=f;, i=1,2. Since M;n M, is locally LQS
flat in DM, it follows from [40, Theorem 35.1] that g is LQS if »=2. If n=1
and M =0, then trivially g is LQS. If n=1 and 0M=0, the classification
of LQS 1-manifolds in 4.8 implies that there exists an LQS homeomorphism
h: DM—~D'M with hM,=M;. The existence of an LQS homeomorphism of
(DM, M,, M,) onto (D'M, M/, M;) implies that the submanifolds M, M;,
MM} of D' M are locally LQS flat (this can also be proved directly). O

1.5. Example. Define a homeomorphism g: J1-J! by g(x)=x if x=0
and g(x¥)=x% if x=0. Then g|(—1,0] and g|[0,1) are quasisymmetric, but g
is not LQS. This implies that in 1.4 the uniqueness of (DM, f;, f;) does not hold
for n=1.

1.6. Function spaces. Let C(X, Y) denote the set of all continuous maps of
a metrizable space X into a metrizable space Y. Let feC(X, Y). We call f proper
if the inverse image of every compact set is compact. An embedding of X into
Y is closed if and only if it is proper. Let d be a metric for Y. The sets

Uy(f, & = {g€C(X, IV x€X, d(f(x), g(x)) < ()}

for e€C,(X) form a neighborhood basis of f in the source majorant topology of
C(X, Y), which is independent of d. If X and Y are locally compact and fis proper,
there is a neighborhood U,(f, &) whose elements are proper. The sets

N(f,%) = {gc C(X, Y)|Vx€ X JUEU, f(x), g(x)€U},

where % is an open cover of Y, form a neighborhood basis of fin the target majorant

topology of C(X, Y). For every N(f, %) thereis U,(f, ey N(f, %). Conversely,

if fis proper, every U,(f, €) contains an N(f, %). It is easy to prove that if X, ¥,

and Z are metrizable spaces, then the map C(X, Y)X C(Y, Z2)~C(X, Z), (f, &—&f.

is continuous whenever each function space has the target majorant topology.
These facts are well-known; some references are given in [25, 1.2].

In the next three lemmas we have collected known PL approximation results.

1.7. Lemma. Let (#, q) be admissible, M a PL n-manifold, N a PL g-manifold
with ON=O, f: M—~N an embedding, d a metric for N, and e€C,(M). Then
there is a PL embedding g: M—~N in U,(f, ¢).
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Proof. The set fM is locally compact and thus closed in an open set N, of N;
hence replacing N by N, we may assume that f'is closed. One can give an elementary
proof in the case g=wn=1. The case n=2, g=n+3 follows both from [28, Theo-
rem 3] and [6, Theorem 1] (or [13, Theorem 8.1]). For the case n=g=2, see [30,
Theorem 6.4]. The case n=¢g=3 is proved in [4, Theorem 9]. Consider finally
the case (n, ¢)=(2, 3). By each of [3, Theorem 7], [4, Theorem 5], and [4, Theorem
10], there is an embedding 4: fM—~N such that Af€U,;(f, ¢/2) and such that
M’=hfM is a subpolyhedron and thus, by [30, Theorem 4.9], a PL submanifold
of N. Hence there is a PL homeomorphism g,: M—~M" in U,(hf, ¢/2); cf. [30,
Theorem 6.4] or [S5, Theorem 4.6]. Then the PL embedding g: M —N defined by
g isin Uy(f,e). 0O

1.8. Lemma. Let n, q, M, N, and d be as in 1.7 with n=2, let f: M—~N
be a closed embedding, and ¢€C_(N). Then there is 5¢C (M) with the following
property: If g M—N, i=0, 1, is a PL embedding in U,(f, 5), there is a PL homeo-
morphism h: N—-N in U,(idy, &) such that hgo=g;.

Proof. The case n=2, g=n+3 follows from each of [7, Theorem 1], [28,
Theorem 2], and [13, Corollary 6.1], the case 2=n=¢=3 from [11, Theorem 7.1],
and the case n=¢=2 from [l1, Theorem 7.2]. (These results give, moreover, a
PL ambient ¢-isotopy from idy to £.) O

1.9. Lemma. Letn,q, M, N, f, d, and € be as in 1.7. Then for each PL n-sub-
manifold M, of M which is closed in M, there exists ¢ C, (M,) with the following
property: If g: M,—~N is a PL embedding in U,(f|My, o), there is a PL embedding
g M—N in Uy(f, &) which extends g.

Proof. If M;=0, the lemma reduces to 1.7. We may assume that f is closed;
cf. the proof of 1.7. An elementary proof can be given if g=n=1. Suppose that
n=2. By 1.6 there are 6,6 C,(M) and g€C(N) such that if fo,€U,(f, d,) and
ho€ U,(dy, &), then 7y focUy(f, €). Let 0€C.(M;) be the function which 1.8
gives if we substitute M—M,, ff|M,, e—¢,. Now let gcU,(f|M,,5) be a
PL embedding. Choose 6,€C.(M) with 6,|M;=6 and set &'(x)=min (J,(x), &, (x))
for xe M. By 1.7 we can choose a PL embedding g’c€ U,(f, 6"). Then there is a PL
homeomorphism %€ U,(idy, &) with A(g’|M,)=g. Hence g*=hg’: M—~N is a
PL embedding in U,(f, &) with g*|M,=g. O

1.10. Remarks. 1. For n=1, g=2n+1, Lemma 1.9 also follows from PL
general position results ([16, Lemma 4.8, p. 102]; cf. [25, Lemma 3.5]). Moreover,
the manifold pair (M, M;) can now be replaced by a pair (X, X;), where X is a
polyhedron with dim X=# and X; is a closed subpolyhedron of X.

2. We will only need 1.9 in the case where M,= M\ M, is a PL n-manifold
and M;nM, a PL (n—1)-manifold. If n=g=2 or 3, there is the following proof
for this special case of 1.9. Suppose first that M is compact. Then, if #=3, the
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proof is given in [29, Lemma 4] (cf. [2, Theorem 1’]), and for n=2 the result cer-
tainly also holds with a simpler proof. The general case can easily be deduced from
this special case; for example, one can proceed as in the proof of [2, Theorem 3].

3. For n=2, g=n+3, Lemmas 1.7, 1.8, and 1.9 also hold if M and (M, M)
are replaced, respectively, by a polyhedron X or a polyhedral pair (X, X;) as in
1.10.1 above; this follows from the results quoted in the proofs. However, we do
not know whether this holds for 1.9 if 2=rn=g=3 (or if n=1, ¢=2).

4. Lemma 1.9 holds trivially if g=n=0. For n=¢=5, Lemma 1.7 fails by
[19], and 1.9 is not true even if N=R? (cf. [41, 2.3]). By [27], 1.7 does not hold if
g=n+2=4, butif n=2, g=4, and M=I? it holds by [45, Theorem 1]. The case
qg=n+1=4 seems to be unsettled.

1.11. We need the rest of this section only for applications in Section 4. We
now give some definitions. A set 4 in a metric space X is called a Z"-set in X if
every continuous map of /* into X can be uniformly approximated by continuous
maps into X\ 4. An embedding of a space into X is called a Z"-embedding if its
image is a Z"-setin X. Let (X, d) and (Y, d’) be metric spaces. A map f: X—Y
is said to be LIP if for every point p of X there is a neighborhood U of p and L=0
such that d’( f(x),f(»))=Ld(x,y) for all x,ycU. If A, B are subsets of LIP
manifolds, the definitions of LIP maps 4-B, 4—~X, and X—A are obvious;
cf. 1.3

1.12. Lemma. Let n=0, g=2n+1, X a separable metrizable space with
dim X=n, N a topological q-manifold, f: X—N continuous, C a locally compact
closed subset of X, f|C a closed Z"-embedding, and U an open cover of N. Then
N(f, %) contains an embedding g with g|C=f|C.

Proof. The case C=0 is proved in [25, Theorem 5.6]; if, in addition, N
can be embedded into RY, a simpler proof is given in [25, Theorem 2.1]. The general
case is due to Heisey and Torunczyk; see [25, Theorem E of the Introduction]. [J

1.13. Lemma. Let X be a separable metric space, N a metric LIP g-manifold,
f: X—N LIP, and the q-dimensional Hausdorff measure #(XXI"=0, where
n<gq. Then fX is a Z"-set in N.

Proof. Let g: I">N be continuous and U a uniform neighborhood of g.
Using a topological collar of JN in N we may assume that g/"Cint N ([25, Lemma
2.3]). By [26, Corollary 5.18] we may further assume that g is LIP. Then
AU fXXgI")=0. Hence by a slight generalization of [26, Theorem 6.9] there is
heU with Wl"nfX=0. 0O

The following theorem is related to Theorem 4.4. For ¢=35 it is an observa-
tion of L. Siebenmann.
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1.14. Theorem. Let n=0, g=n+3, M a LIP n-manifold, N a L1P q-mani-
fold, 9N=0, and f: M—~N an embedding which is a LIP map. Then fis locally flat.

Proof. We may assume that M=I" and N=R? The case n=0 is trivial.
For g=3n+1 the theorem follows from [44, Theorem 3.8]. This implies the case
n=1. Let n=2. By [7, Theorem 2], 1.7, and [35, Theorem 1.7.2, p. 34], it suffices
to prove that if x¢fI", e=0, and B={y€R%||x—y|<e}, then U=B\fI" is simply
connected. By [17, Corollary 1, p. 48], U is connected. Let g: dI*~U be contin-
uous. There is a continuous extension g;: I2—~B of g. Choose a LIP approxima-
tion h: I*~B of g;. By [26, Theorem 6.5], (h[*+y)nfI"=0 for almost all
yeRY If d(gy, h) and |p| are small enough, g’=h+y is a map I*-~U such
that g and g’|¢I* are homotopic in U. (The existence of g’ also follows from 1.13.)
Hence g is null-homotopic in U. [

1.15. Lemma. Let X be a locally compact separable metrizable space with
dim X=n=0. Then there is a closed embedding of X into R*™**.

Proof. This follows easily from 1.12. We can also reduce it to a classical special
case of 1.12. Choose a compact metric space Y containing X as a subspace with
YN\X={p}. Then dim Y=dim X by [17, Corollary 2, p. 32]. Hence [17, Theorem
V 2] gives an embedding f: Y—~I*"*1x {1}. Then fX is closed in oI*"**\ {f(p)}~
R2n+1. D

The following lemma is due to J. Viisdld.

1.16. Lemma. Let n=4, and let X be a locally connected locally compact
separable metrizable space with dim X=n—2 such that for each component X; of
X there is a closed embedding f;: X;—~R". Then there is a closed embedding f: X —-R".

In addition, if X is a topological manifold and each f; is locally flat, f can also be
chosen to be locally flat.

Proof. We show first that if X is connected, there is a closed embedding
g: X=J" with 0J "¢ gX. Choose a closed embedding f: X—R". There is a closed
PL embedding o: R, —~R" with aR,nfX=0. By [35 Theorem 3.4.3, p. 109],
o is flat. Thus we get a closed embedding h: X—~J" with /XN JL=0. Obviously,
there is a homeomorphism ¢: J"—=J" with e 6 ohX. Then g=¢h is the
required map.

In the general case each component X; of X is open and we may assume that
je{l,2,...}. Let H'=int R, ~R* and U;=J"NH"+3je;. The first part of the
proof implies that there is a closed embedding g;: X;—U; with g;X;n0U;COH".
Then f=J; g;: X~H" is a closed embedding.

The assertion concerning local flatness can be proved similarly. [

1.17. Lemma. Let M be a topological n-manifold, n=1. Then there exists
a closed locally flat embedding of M into R*.
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Proof. Replacing M by its double, we may assume that dM=@. The case
n=1 istrivial. Suppose n=2 or 3. By the tubular neighborhood theorem it suffices
to prove that M is homeomorphic to a closed C=-diiferentiable submanifold of R?".
By [30, Theorems 4.8, 8.3, 23.1, and 35.3], M is homeomorphic to a PL manifold.
Hence, by [8, Theorem III], M is homeomorphic to a C!-differentiable manifold N.
Thus, by [31, Theorem 4.8], it suffices to show that if N is connected, there exists
a closed C*-embedding f: N—~R™ with fNCJ* *XR. If N is compact, this
follows from [46, Theorem 5]. If N is non-compact, there is a C!-embedding
fo: N=J?~1 by|[15, Theorem 4.6]. Choose a proper C!-differentiable function
fit N—R'; then f=(f,,f,) is the required map.

Suppose now n=4. By 1.16 we may assume that M is connected. Only the
case of compact M can be found in the literature: If M is orientable, the lemma
follows from [23, Theorem 1, p. 11]. If the orientability is not supposed, define
fi M—~R* by f(x)=0. Then fis simply connected, i.e., o(f)=mn,(f)=0, where
n(f)=n(C;, M) with C, the mapping cylinder of /. By [32, Theorem 7, p. 445],
J'1s homotopic to a locally flat embedding (even for n=3). Cf. also [12, Embedding
Theorem 3] (for n=2). For the case where M is non-compact a proof has been
sketched by J. Dancis (written personal communication, 1980) and L. Siebenmann
(oral personal communication, 1981). [

2. PL approximation of quasisymmetric embeddings in Fuclidean spaces

2.1. In this section we prove first the main result of the section, Theorem 2.16.
Then we give two corollaries of it. These results concern PL approximation of
quasisymmetric embeddings in Euclidean spaces. We close the section by a similar
theorem about weakly quasisymmetric embeddings.

We begin by defining cubical decompositions.

2.2. Let n=1. For k€Z let %,(k) denote the family of closed n-cubes in R"
with side length 2* and with vertices in 2¥Z". Let %,= U {%,(k)|k¢ Z}). For Q¢%,
let z, denote the center and 22, the side length of Q. Define ag: R'>R" by ay(x)=
Zg+4gx; then Q=a,l"

2.3. Lemma. Let XCR" andlet Y be an open subset of X such that Y is the
union of a subfamily of %, which is locally finite in Y. Then there exists a subfamily
1 of &, with the following properties:

1) Y=Uy.

(2 If Q,Rcy, OnR=0, and Q#R, then int Qnint R=0 and

Aolix€{1/2, 1,2},
() apI"G)nX=U{REL,|RNQ=0, lx=1y, RCY} for Qcy.
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Moreover, if ¢ is a continuous map of Y into a metric space (Z,d) and if
e€C . (Y), then y can be chosen in such a way that

4) d(pQ)=e(x) if xc0¢<y.

Proof. We construct y which satisfies (1), ..., (4). For Q€%, let Q" denote
the right side of (3). Let

={0eZ|0 C Y, 0pI"B)nX = Q’, d(pQ") = min eQ’}.

Let y,=%n%,(0). For i=1 we define y; inductively as the family of all cubes
0c#n%,(—i) such that for no j<i there is R€y; containing Q. Define
x= U {1li=0}. To prove (1), let x€ Y. There are i=0, k=1, and Py, ..., P& £, (1)
such that P=P,u...UP, is a neighborhood of x in Y. For each j=i there is
Q;€%,(—j) with x€Q;cY. If jis large enough, then %, I”(3)mXCP which
implies %o, I"3)n X=0j, and d(9Q})<mineQ}. Thus Q;€ %, whence x¢€ Ui o (V).
The first assertion in (2) is clear. In the second we may assume that Q€y; and
Rey;, with j=i. Let ={ScZ(—i—-D|SnO=0, S¢0, SC Y}. Then
wyRININX=UZ. If Sc&, we have S'=uasI"(3)nXcQ" and, hence,
d(pS")<min eS’, which implies S€%. It follows that j=i or i41; consequently,
JolAg€{1,2}. The conditions (3) and (4) are satisfied by construction. [J

2.4. Let X and Y be as in 2.3 and let y be any subfamily of %, satisfying
1), ..., (3). Dividing each cube of y into 2" cubes by bisecting the sides we get a
new cube family . Obviously, the conditions (1), ..., (3) are satisfied also by j.
If y satisfies (4), 7 satisfies it, too. A cube family ¥ obtained in this manner is called
a cubical decomposition of Y with respect to X.

2.5. From now on and up to the end of the proof of 2.16, we suppose that X
and Y are as in 2.3 and that & is a cubical decomposition of Y with respect to X.
Let ¢=0 and let f: X—~R? be an n-quasisymmetric embedding, where (n, g) is
admissible. Finally, we assume that Y is a manifold and thus a PL manifold.

For QcA we set gp=|f(zg)—flzg+4ge))| and QF=0,1"(9/8)nX. Then
0*nagJ"(15/8)=0 if Q, R€A and QnR=0.

2.6. Lemma. There are constants c¢;=1 and c,=1 depending only on n and
n with the following properties:

) If Q,REA, QA R#0D, and Q#R, then oy/c;=|f(z9)—f(zr)|=c100-

Q) If Q,ReA and QN R#0, then gylog=ci.

(3) If Qcx, xcQ* and yeX\unJ"(15/8), then |f(x)—f(»)|=golcs-

Proof. (1): We have (3/2)Ag=<l|z9—zz|=3Vn/y. Hence

00/M(23) = | f(20)—f (z0)| = n(3Vn)oq-

(2): This follows from (1).
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(3): Since  (15/8)2o=l|zo—y|, we have 0,=%(8/15)|f(zg)—f(»)|. Since
20— X|=(9/8)Vnip=(3/2)Vn|x—y| and thus |zo—p|=t|[x—y|, where t=(3/2)Vn+1,
we have |f(zo)=f(N|=n(®)| f(xX)—f(»)]. Hence 0,=n@/15n®)|(x)—f(»]. O

2.7. Let x,, %5, and x be the least natural numbers such that
29=2Vq, 22=23, and x=249t%(2e,+)qg2% ")
These numbers depend only on #, ¢, and 5. Define
E, = {24 k€Z, |k| =),
Ey= {277 % (ky, ..., k)| K€Z, |k ==}

Foreach Q€. let i, be the integer with 2#e=g,<2#e*!, and define s5,=2"e.
Then gy/2<sy,=0,. We choose b,c2#e™*1Z% such that }bQ—f(zQ)lél/azﬂe"‘l“1
(=s50/4). The following lemma can now be proved by the aid of 2.6(1) and 2.6(2)
exactly as [18, Lemma 2.4].

2.8. Lemma. If Q,RcA", QnR+#0, then

(1) so/srE€Ey,

() (bp—br)/sg€Ey. O

2.9. We express & as a disjoint union A =H#;uU...UH;,, where each family
A; is disjoint and where M =M (n). In fact, this can be done with M(#)=2" as
follows. Number the cubes of %,(0) in I" by Sy, ..., Sy, Let A =F. If QeA,
let R be the unique cube in y with 7,=21, and QCR; then set S,=o0y'Q. Define
Hi={0c A |Sy=S;}. It is obvious that the families 3, ..., #),, satisfy the
requirements. We set A *=2ju...uH; and F;=u {Q*|0c A}

2.10. Let J,={0cZ,0)|Qc2I™\J"}. If Q€g, and t€{1,2,3}, we set
Q) =upI"(14+27"). Let 7, te the finite set consisting of manifolds which can be
expressed as a union ["u(u.f), S 4, If TcT,, let Z(T) denote the finite set
of pairs (P’, P) of the form

P =(I"09/8) U Qi(t)u...u Q) N T,
P =(0:(t)v...u Qi (1)) N T,

where Q€4,, 0;,cT, and t€{1,2,3} for i=k=0. It is obvious that the sets
P’, P,and P\ P are PL n-manifolds and that Pn P\ P isa PL (#—1)-manifold.
Let 1=i=M(n) and Q€. Since Y is a manifold, we have T,=I"(2)n
ag'X€T,. We set
Py = (U{ug R REAE 1, RNQ # B) Ty,

P’Q:aélQ*UPQ.

Then (P, Po)E P (Ty).
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2.11. Let TeZ,, let g: T-R? be an embedding, and ¢,>0. Let
(P, P)e2(T).

Then by 1.9 (or also by 1.10.2 if n=g=2 or 3) there exists 5¢(0, g] such that if
gt P~R%* is a PL embedding with d(g;, g|P)<4, there is a PL embedding
gf: P’—~R? with g¥|P=g, and d(g}, g|P’)<e&,. Welet (g, &) denote the greatest
o0 satisfying this for all (P’, P)c 2 (T).

2.12. For T¢Z, let H,(T) be the set of all n-quasisymmetric embeddings
g: T—R* with |g(0)|=1/4 and 3/4=|g(e;)|=3. In the topology of uniform con-
vergence H,(T) is compact by [38, Remark 3.6 and Theorem 3.7]. Let H,=
U{H,(D)\|Te7,}. We set 6*(s))=inf {5(g, ¢))|g€ H,} (=&, for g=0. Then as
in [41, Lemma 2.6], we get §*(g)=0, and 6*(e,) depends only on n, g, n, and &,.

For each Qc#" we define f,: R?>R? by f,(x)=(x—by)/se and set f,=
Bof2g|To. Then fo€H,, because a, and f, are similarities and because | fo0)|=
If(ZQ)_bQVSQ§1/4a IfQ(el)légQ/sQ+1/4<9/4a and |fQ(€1)|§QQ/SQ_1/453/4-

2.13. We choose positive numbers 6;=...=0,, such that

S < min (8/2, 1/dcies, 1/4cin(2)n (2Vn))
and 8;<6*(6;11)/(2**"*+1). The numbers §; depend only on #, g, 1, and &.

2.14. Lemma. For every i€{l, ..., M(n)} there exist a finite set A; of PL
embeddings g: I"(9/8)nT—RY, where T€Z,, such that A; depends only on n, q, 3,
and ¢, and an injective PL map ¢;: F;~R? with

(1) ﬂQQ’i“QlaélQ*EAi lf QE%/E*,

() d(f1Q7%, @lQ") = 20;so if Q€A™

Proof. The proof is by induction on i. Let T€J,. We choose a finite subset
H(T,6)cH,(T) such that for every h€H,(T) there is W€H(T,5,) with
d(l’', h)=6,. By 1.7 we choose for every h¢H(T, §;) a PL embedding g;: I"(9/8)n
T—R* with d(gy,, h{I"(9/8)nT)=0,. We define 4,={g,/hc H(T, s,), T€J,}. If
QcA", we choose hycH(T,, ;) with d(hy, fy)=0d, and set 20=8n,-

We define a PL map ¢,: F;—~R? by ¢,|0"=f;"gy05"0" for Q€. Then
(1) is satisfied. We have d(f|0%, ¢:|0")=s,d(fplug' O, go) =205, if Q€.
If Q, ReA:, Q#R, sy=sg, x€Q*, and y€R*, then, since y§ayJ"(15/8), we get
by 2.6(3)

(2.15) l0:(0) = 1| = | f() == 1S () = 01 () =1 f() — o1 (V)]
= gfcy—26,(sg+sg) = 5o(1/c;—46;) = 0.
Hence ¢, is injective.
Suppose now that A;_; and ¢;_, satisfying (1) and (2) have been constructed.

Let Qcx;. Consider the PL embedding y,=f,¢;-1%y|Py- If xEP,, there is
ReA*, such that «,(x)€R* and RN Q=0. Then y,(x)=pyBz Vg ay(x),
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where Y =fr0;_j0gl0g R*€A4;_;. It is easy to see that the maps ag'a, belong
to a finite set depending only on n. The sets I"(2)nay,*R* are among the sets P
considered in 2.10. Thus the sets Pynog 1R* telong to a finite set depending only
on n. Since By (»)=sr¥/so+(br—by)/sy, by 2.8 the maps BoBg* belong to a
finite set depending only on 7, ¢, and 7. Hence the maps 7, telong to a finite set
C; depending only on n, ¢, n, and ¢. If x and R are as above, we have

70 () = fo ()| = |@:-1 (0 (%) —f (2o (¥))|/s0

= 25i—ISR/SQ = 2x3+15i_1

by 2.8, which implies that d(yy, hplPg)<6%(5;). Hence there is a PL embedding
g5 Pp~R! with gf|P,=7, and d(g}, holPy)=<d;. We can choose the maps
g5 such that the maps g7 log 10* belong to a finite set G;, depending only on 7, g,
n, ar.l e, of PL embeddings g: I"O/8)nT—~R%, T T,.

We set ¢;|Fi_y=¢;_; and ¢,|0*=p5'g} 0" Q" for Qe ;. Then ¢;: F;—~R*
is 2 weil-defined PL map and (1) is satisfied with 4,=4, ;0 G;. If Qcx;, then
d 0%, 00" =s,d(fplog Q% g lug Q") =235, which implies (2). We prove
that ¢ is injective. Observe first that ¢, is the embedding By ghug’ on oy P,
o1 every Q€. Thus it suffices to show that A=|p(x)—@(»)|=0 if Q€A
REAT, x€QF, yER*, and either (a) ONR=0 or (b) ONR=#P and y¢ayI"(2).
We proceed as in (2.15). If either (a) holds or (b) holds with s,=sg, we get 4=
5o(1/c;—48)=0. If (b) holds with s,=<sg, we use the fact 0o = 0g/c}, implied by
2.6(2), and get A=sp(l/cic,—40)=0. O

2.16. Theorem. Let (n,q) be admissible, let n: R, —~R% be a homeomor-
phism, and let ¢=0. Then there exist a homeomorphism n*: R, ~R% and a finite
set D of PL embeddings g: T—R9, T€Z,, with the following property: Let XCR",
let f: X—~R? be an n-quasisymmetric embedding, let Y be an open subset of X which
is the union of a subfamily of %, locally finite in Y and which is a manifold, and let
A be a cubical decomposition of Y with respect to X. Then there exists an n*-quasi-
symmetric embedding f*: X—~R? such that

(D) fAIXNY=fIX\Y,

) f*|Y is PL,

(3) d(f*10, flQ)=eoq for every Q€N

@ PofFaglTyeD for every Qe

Proof. We define f*=¢,,,,0(fIX\\Y). Then (1), (2), and (3) are satisfied.
One can find D and prove (4) in the same way as one obtained the relation y,€C;
in the proof of 2.14. Two auxiliary results will be proved next. The first one, (2.17),
implies that f* is an embedding.

Let M=M(n). Define a,=40,c3¢,£(0,1) and a=(l—ay)~*. We show that

(2.17) /) —fW)lfa = 1f* () —=f* O] = alf(x) —f)l
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if x€QeA and yeX\2oJ"(2). Let A=||f*(x)—f*(3)|—|f(x)—f())|]. Suppose
first that y€RE€A. Then A=26y(so+sg). If QN R0, this implies, by 2.6,
A=26,,(14¢)0p=26,, (14 cs| f(X)—f(»)|, whereas if QNR=0, then A=
4651 ¢5] f(x)—=f(»)|. Suppose now that y€ X\ Y. Then 4=26,, 0,=26,,¢,|f(x)—f(»)|.
Thus 4A=a,| f(x)—f(»)| in all cases. Hence (2.17) holds.

Define b,=48,,¢21(2)n(2Vn)€(0, 1) and b=(1—b,)~'. We show that
(2.18) L) =fOIb = 1) —f* )] = bl fx)—f)
if e, x,y€a,1"(2)n X, and |x—y|=/,. Let 4 beas above. Then A4=45,clo,.
We may assume that [x—z,|=2,/2. Then ¢,=n(2)|f(x)—f(zp)]. Since |x—z,|=
2nig=2Vnlx—yl, we have |f()—f(z)|=n(2Vn) [)—f()]. Thus A=
bo| f(x)—f(»)|, whence (2.18).

Now we prove that /* is quasisymmetric. Since every g€ D is quasisymmetric
and since o, and B, are similarities, (4) implies that f*|o,I"(2)NX is #,-quasi-
symmetric for every Q¢ # for some 7, depending only on 7, g, , and &. Set #,(t)=
sup {no(s)n(s)|s, s’€l, ss’=t} for tel. Then n,: I-R. is bounded and non-
decreasing. If =0, there is 0€(0,1) such that #,(8)=e/n(1) and n(d)=
&/Mm,(1), whence #5,(6%)=¢,. Thus #n,(t)-0 as z—0. It follows that there is a
homeomorphism #,: R, —~R', with n,=n,|L

Let u,v, x€X, v#x, t=|lu—x|/lv—x|, and t'=|f*@W)—*)|/|f*©)—f* ).
We need an estimate ¢'=n*(t). We divide the consideration into four separate
cases.

Case 1. Let xeQeX and u, v€ayI"(2). Then t'=n,(t).
Case 2. Let x€ Q€A ucoyI"(2), and vdayI"(2).
Subcase 2a: |u—x|=A,. Then, by (2.18) and (2.17),

Lf* @) —f*()| = bl fw)—fx)] = bn(@)| f(v) =1 ()|

= abn()1f* @) —f*)I.
Subcase 2b: |u—x|<2Z,. Choose y€Q with |[x—y|=2,. Then [u—x|<

|y—x|<|v—x|. Hence by Subcase 2a,
_ @0 1 O) )

WO Rt A G0 I VA ) Ry A €3]
_ (lu—x] y—xI) _
Al [ly—xl] alay (Iv—xl] = abiy(®).
Case 3. Let x€QeX, ugayl™(2), and vEayl"(2).

t/

Subcase 3a: |v—x|=1,. Now

Lf* @) =) = al fw)—f(x)| = an()] @) )|
= abn()1f* @) —* ).



Quasisymmetric and Lipschitz approximation of embeddings 357

Subcase 3b: [v—x|<4y. Choose y€Q with [x—y|=2,. Then by Subcase 3a
and since |v—x|<|y—x|<|u—x|,

@@ 10— @)
RO RCNTECRAES)

= abn (=21 g (2221) = abwynoto)

ly—x[) o —x
Case 4. Let either x€QcA" and u, v¢o,I"(2) or x€X\Y. Then by (2.17),
Lf*@)=f* ()] = al f(u) —f(x)] = an ()| f(0) —f(x)|
= a1 @)

Thus there exists a homeomorphism #*: R, ~R' which depends only on
n, q, n, and ¢ such that t’=»*(¢), i.e., such that f* is #*-quasisymmetric. [

t/

2.19. Remark. In Theorem 2.16 we assumed that Y is a manifold only in
order to te able to use the PL approximation results 1.7 and 1.9. However, for
g=n=1 this assumption is redundant, and for n=2, g=n+3 we could omit
it by 1.10.3 (cf. also 1.10.1). This remark also applies to 2.20 and 3.2.

2.20. Corollary. Let n, q, and n be as in 2.16. Then there exists a homeo-
morphism n*: R —~R% with the following property: Let X, f, and Y be as in 2.16
and let e€C.(Y). Then there exists an n*-quasisymmetric embedding f*: X—-R?
such that

() fHXNY=IX\Y,

(2) f*|Y is PL,

3) [f*()—=f(x)|<e(x) for every xcY.

Proof. This follows from 2.16 (choose e=1) and 2.3. 0O

2.21. Corollary. Let (n,q) be admissible and let n: R.—~R". be a homeo-
morphism. Then there exists a homeomorphism n*: R, ~R'. with the following
property: Let UCR" be open, let f: U~R? be an n-quasisymmetric embedding,
and let ¢ C.(U). Then there exists an n*-quasisymmetric PL embedding g: U—~R?
such that |g(x)—f(x)|<e(x) for every xcU, gloU=f0U, and, if 1=n=g=3,
gU=fU. Here fand g are the closed embeddings U-R? extending f and g, respec-
tively (cf. 1.2).

Proof. Let n* be the homeomorphism of 2.20. It is easy to see that U is the
union of a subfamily of %, which is locally finite in U. Thus 2.20 gives an n*-quasi-
symmetric PL embedding g: U—R? with |g(x¥)—f(x)|<e(x) and |g(x)—f(x)|<
d(f(x), foU) for every xcU. Then glaU=f|0U. Suppose that n=g. If V is a
component of U, we have gV =gV =foV=0ofV and gV cfV, whence gV=fV.
Thus gU=fU. 0O
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2.22. Theorem. Let (n,q) be admissible and let H=1. Then there exists
H*=1 with the following property: Let XCR", let f: X—~R? be a weakly H-quasi-
symmetric embedding, let UCX be open in R", and let € C(U). Then there exists
a weakly H*-quasisymmetric embedding f*: X—~R? such that

) FAXN\U=f1X\U,

2) f*|U is PL,

Q) | f* ) —fX)|<e(x) for every xeU,

4) F*OU=F0U, where f and f* are the closed embeddings U-—~R? extending
fIU and f*|U, respectively (cf. 1.2),

5) f*U=fU if 1=n=q=3.

Proof. It suffices to prove the modification of Theorem 2.16 in which 7 is
replaced by H, n* is replaced by H*, the embedding f'is only assumed to be weakly
H-quasisymmetric, ¥ is assumed to be open in R”, and the embedding /™ is only
required to be weakly H*-quasisymmetric. To this end, we modify the proof of
2.16 (in 2.5—2.18). We first observe that in this proof, with two exceptions, one
actually used, instead of the assumption that the embedding f is #-quasisymmetric,
only the assumption that f|Q’ is n-quasisymmetric for every Q€ where Q'=

ao1"(3) " X. The exceptions were (a) the proof of 2. 6(3) and (b) the estimation of ¢’
m Cases 1—4. Now let £ and Y be as in the present modification of 2.16, and let
A be a cubical decomposition of Y with respect to X. Then Q'=a,I"(3)CY
for every Q¢ . Tt follows from [38, Theorem 2.16] that f]Q” is n-quasisymmetric
for every Q€ with 5 depending only on n, ¢, and H. Hence it suffices to re-
examine (a) and (b).

For (a) let Q€ x€Q*, and y€X\o,J"(15/8). Choose ucdo,J"(15/8)c X
with |x—u|=|x—yl. Then | f(x)—f(w)|=H| f(x)—f(»)|. On the other hand, the
proof of 2.6(3) shows that |f(x)—f(u)|=0,/c, where c=11(8,/15)n((3/2)1/;+1).
Therefore ¢,=He| f(x)—f(»)|. Hence 2.6(3) holds.

For (b) suppose that ¢t=1. Then, proceeding as earlier, we get ¢'=ny(1) in
Case 1, t’=abH in Subcases 2a and 3a, t’=n,(1)abH in Subcase 2b, and t'=a*H
in Case 4; Subcase 3b does not occur. This implies that the embedding f* is weakly
H*-quasisymmetric with H* depending only on n, ¢, H, and &. O

3. PL approximation of bilipschitz embeddings in Euclidean spaces

3.1. In this section we apply 2.16 to proving bilipschitz analogues of 2.20 and
2.21. Both [41, Theorem 2.4] and [18, Theorem 3.1] are special cases of Corollary
3.3 for 1=n=¢g=3.

3.2. Theorem. Let (n,q) be admissible and let L=1. Then there exists
L*=1 with the following property: Let XCR", let f: X—~R? be an L-bilipschitz
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embedding, let Y be an open subset of X which is the union of a subfamily of %, locally
finite in Y and which is a manifold, and let ¢€C,(Y). Then there exists an L*-bilip-
schitz embedding f*: X—~R? such that

(M) FHIXNY=/1X\Y,
() f*|Y is PL,
@) [f*()—fx)|<e(x) for every xcY.

Proof. Every L-bilipschitz embedding is #;-quasisymmetric, #,(#)=L%r. Let
D be the finite set of PL embeddings g: T—R%, T€J,, given by 2.16 with substitu-
tions (1, q)—(n, q), n—ny, e—~1/3L% Let now X, f, ¥, and ¢ be as in 3.2. By 2.3
there is a cubical decomposition " of Y with respect to X such that J,=e(x) if
x€Q€eA. Then 2.16 gives an emtedding f*: X—R? such that (1) and (2) hold
and such that d(f*(Q,f|Q)=0y/3L*=/y/3L and f,[f"ay|TycD for every Q€.
It follows that also (3) holds.

There is Ly=1 depending only on #, ¢, and L such that each g€D is L,-bilip-
schitz. We show that f* is L*-bilipschitz with L*=max (2LL,, 3L). Let x, ycX,
x#y, and set A=|f*X)—f*()|, d=|x—y|. If x,yeX\Y, then 1/L=A4/6=L.
If x,y€anl"(2) for some Q€4 then A/6=s,Lo[ig=LL, and A[5=sy/Lyly=
12LL,. If xcQcA, yeREA, xqagl"(2), and y¢oa,l"(2), then /iy, Jx=0,
whence A=|f(x)—f(y)|+(Ao+2x)/3L=(L+2/3L)6 and

A = | f()—f(0)| =g+ 2/BL = §/3L.

Finally, let either x€Y, y¢Y or x¢7Y, y¢Y. We may assume that xcQ€c.#" and
v¢Y. Then i,=0 and thus 2/3L=4/0=L+1/3L. Hence f* is L*-bilipschitz.

3.3. Corollary. Let n, q. L, and L* be as in 3.2. Let UCR" be open, let
f: U~R? be an L-bilipschitz embedding, and let e¢€C,(U). Then there exists an
L*-bilipschitz PL embedding g: U~R* such that |g(x)—f(x)|<e(x) for every
x€U, gloU=foU, and,if 1=n=q=3, gU=fU. Here fand g are the closed embed-
dings U—~R4 extending f and g, respectively. [J

4. CAT approximation of embeddings in manifolds

4.1. Recall that CAT denotes either LQS or LIP. An immersion of a topological
space into another is a continuous map which is locally an embedding. The follow-
ing lemma for CAT=LIP and 1=wn=¢=3 is very similar to [37, Theorem 1].

4.2. Lemma. Let (n,q) be admissible, let (A, B) be either (2J",J") or
QJ%, L), let f: A—RY be an embedding which is a CAT embedding on a neigh-
borhood in A of a closed subset C of A, and let £€ C,(B). Then there exists an embed-
ding f*: A-~R* such that
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(D) fHANB=f|A\B,

(2 f*|B is PL,

(3) f*|U is a CAT embedding for some open neighborhood U of C in A,
@ | fF(x)—f()|<e(x) for every xeB.

Consequently, f*|BuU is a CAT embedding.

Proof. We may assume that Cc(4A\B)nB. Then there exists a compact
polyhedron X which is a neighborhood of C in 4 and such that f|X is a CAT
embedding, Y=Xn B is the union of a subfamily of %, locally finite in Y, and ¥

is a PL manifold. Then also Y;=BnB\Y and YnY; are PL manifolds. Let
A, =ANI"(3/2); then & =d(fB,fA)/2=0. Define ¢cC,(B) by

go(x) = min (s(x), &1, d(f(x), f(A\B))).

By 1.9 (or also by 1.10.2 if n=g=2 or 3) there exists 0€C.(Y) such that if
gcU,(f1Y, ) is a PL embedding, there is a PL embedding g*c U,(f]B, &,) extending
g. Here d(x,y)=|x—yl.

Now f|X is quasisymmetric if CAT=LQS or bilipschitz if CAT=LIP.
Hence 2.20 and 3.2 imply that there is a CAT embedding f;: X—R? such that
fi)=f(x) if x€X\Y,A]Y is PL, and [fi(x)—f(x)|<d(x) if xcY.

Let ¢* be the extension of g=f;|Y given above. Define f*=(flA\B)ug*.
Then f* is a continuous injection, and f* satisfies (1), ..., (4) since f*|X=f;. Since
d(f*B,f*A,)=¢,, we conclude that f* is an embedding. [

43. Remarks. 1. Suppose that 1=n=¢=3 and (4, B)=(2J",J") in 4.2.
Then obviously f*B=fB. Moreover, Alexander’s trick [34, Proposition 3.22(1)]
gives an isotopy H rel ANB from f to f* (i.e., an embedding H: AXI—>R*XI
of the form H(x, t)=(H,(x),t) such that H,=f, Hy=f* and H,(x)=f(x) if
(x, 1)E(ANB)XI); then H,B=fB for every tcl.

2. It is easy to see that if n=g=1 and (4, B)=(2J},J}) in 4.2, one can
choose f/* in such a way that f*B=fB. '

4.4, Theorem. Let CAT=LQS or LIP, let M and N be CAT manifolds
with ON=0 such that M is n-dimensional and N q-dimensional with either n=1,
g=n or n=2, q=n+3 or 2=n=q=3, let UCM be an open neighborhood of a
closed set Cc M, let f: M—~N be an immersion such that f|U is a CAT immersion,
let &2 MN\.C—(0, =) be continuous, and let d be a metric defining the topology of N.
Then there exists a CAT immersion g: M—~N such that

(M glC=fIC,

(2) d(g(x), f(x))<e(x) for every xe M\C,

B) gM=fM if n=g=3 and OM=0,

(4) g is a CAT embedding if f is an embedding.
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Proof. In the case n=0 we can choose g=f since M is discrete. For the
rest of the proof we assume that n=1, i.., that (v, g) is admissible. Let &/ and %
be the CAT structures of M and N, respectively. Replacing ¢ by a smaller function
we may assume that for every x€M\C there is a chart (Z,})€# such that
[YeNd(y, f(x))<e(x)}cZ and YyZ=R".

Let k=(n+1)M(n), where M(n)=2" is the number given in 2.9. We con-
struct a locally finite family ¥~ of open relatively compact sets in M and functions
Fou Frs ooy 1ECL(MN\C) with the following properties:

(@) f1V is an embedding for every Vev

(b) For each V¢¥" there is a chart (V, ¢, )€/ such that ¢,V is either 2J"
or 2J". We set V*=q;'J" or V*=¢;'J}, respectively; observe that Vcr.
Let 7%= ey,

() M\Uc vy *cu?v cM\C.

(d) ¥ =7 u...u¥, where each ¥ consists of disjoint sets.

) ro+...+r_1=r,=¢.

) d(fV)=infr,V for every Vev .

(2) If Vey™ and i<k, then 3supr,V=infr, ,V

To find ¥ and the functions r;, we choose first a closed neighborhood C,cU
of Cin M. It is easy to find an open cover % of M\ C consisting of chart neigh-
borhoods relatively compact in M\ C and functions 7y, ..., € C.(M\C) such
that (e) holds, (a), (f), and (g) hold if " is replaced by %, and such that V' nC,=0
whenever Ve« and V& U. By [31, Lemma 2.7] there is an open refinement %~
of % locally finite in M\ C such that # =#ju...u¥, with the members of each
#; being disjoint. Then for each i=n there is a CAT homeomorphism ¢; of U}
onto an open subset W; of R%. By 2.3 choose a cubical decomposition #; of W;
with respect to W;, and let A} 1, ... %}y, be its partition as in 2.9. For Q¢X%;
define Q*CW, by Q*=x,"(9/8) if QR =0 and by Q*=a,I"(9/8)NR}
if QR 1'=0. Then QFnQi=0 if Oy, 0,64 and 0;nQ,=0. For Q€
choose a PL embedding o¢: Q*—~R" such that ¢Q*=2I" and oQ=I"(1/2) i
QAR '=0 and such that ¢Q*=2I"nR., ¢(Q*nR"H)=2I""", and ¢Q=
(/)R if QAR'20. Let Vo=¢; a2 2" or Vo= e (2J71)
respectively, and let Py, =0Pi Vo Then (¥, Py, Yeof satisfies (b). Let
{F;|0=i=n} be a closed cover of M\ C with F,c u“/// Define

Vimy+j = VolQEH, ;s Qg Fi=0, Von C, =0}
Then ¥ =%;u...u¥; is the required family (observe that each V€7 is contained
in some WeW), presented in such a way that (d) is satisfied.

By (c) there is a closed cover {C,|[Ve¥}u{Cy} of M such that C,cV*
for each Ve#" and such that CcCycU. Let #;={U}, and define a closed set
Ci=u{C,lVetu...u?;} for 0=i=k.

We prove Theorem 4.4 by showing that there is a sequence f=f;, f1, ... fi of
continuous maps M —N such that



362 J. LUUKKAINEN and P. Tukia

() f; is a CAT immersion on a neighborhood of C¥if 0=i=k,
@ii) f£;|V is an embedding if V¢¥" and 0=i=k,

(iii) f; is an embedding, 0=i=k, if fis an embedding,

(iv) d(f;V)=infr,V if VEy and O0=i=k,

V) d(f.(x), fima(0))<ri—y(x) if x€EM\C and 1=i=k,

(Vi) fi(xX)=fi_1(x) if xe M\ O{V*IVEeY;) and 1=i=k.

We have already set f,=f; this satisfies (i), ..., (iv). Assume that l=m=k
and that we have defined f; for 0=i=m—1 satisfying (i), ..., (vi). Let Ve,
and &,>0; we specify g, later. If x,peV, by (iv), (v), and (e), we have
A( fr-1(0), f(X))<ro(x)+...4+7,_1(x)=e(x). Hence there is a chart (Z, y)€# such
that f, ,VCZ and YZ=R" Set A=¢,V, B=¢,V*, h=yf,_,0;': AR,
and X=¢,(VnC™ 1. Then k is an embedding by (ii), X is closed in 4, and 4 is
a CAT embedding on a neighborhood of X in 4 by (i). Let 6=0. Then 4.2 gives
an embedding /#*: A—~R? suchthat A*=h on A\ B, h*|BUE is a CAT embedding
for some open neighborhood E of X in 4, and d(h*, h)<é. It follows that f; =
Y h*¢,: V—N is an embedding which is a CAT embedding on a neighborhood
of VnC"=FnC" YHuC, and coincides with f,,_; on FV\JF*. We choose ¢
so small that d( f;(x), f,,—1(x))<e, if x€V. We now require that &, =min r,,_, V'*.
Since {Wev'|WAV 0} is finite, we can also require, by (ii), that

&y = 5 d(fuea WAV, £, (WN\V)) if WEVP and WAV = 0.

By (iii) we can require the stronger condition

ey = 5 d(fuot V5 fum s (MND)
if f'is an embedding.
We choose a map f;7: ¥V'—~N as above for each V¢ ¥,,. Then we can define a
continuous map f,,;: M—~N by

v if Vs
fm(x)Z{f (x) if xeVe

Sw—1(x) otherwise.

Clearly f,, satisfies (vi), (i), (v), and, by (g), also (iv). To prove (ii) and (iii), assume
first that f is an embedding. If Ve, x€V*, and ye(M\V)\ v {W*|Wev,),
then

(0 £ ) = d(fur (0, fro-1 () — 2
= 2d(fuar (9 fruma ()-
If V,Wet,, V=W, xcV*, and yeW*, then
(), S () = (s (0, fro—a (1)) &1 — 2y
= 2d(f-1 (). fruma ).
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It follows that f,, is an embedding. In exactly the same way one sees that f,,|W
is an embedding for every W¢¥  if fis only assumed to be an immersion. We
have now constructed the sequence f;, ..., f;-

Consider g=f,. By (i), g is a CAT immersion of C*=M into N. Further,
(vi) implies (1), (v) and (€) imply (2), and (iii) implies (4). Finally, suppose that
I=n=¢g=3 and dM=0. Then in the above construction f;¥V=f, ¥ for each
Ve, whence f,M=f,_M. Thus gM=fM. O

4.5. Remark. Theorem 4.4 holds for n=g=1 even if the supposition IN=0
is omitted, and we can choose g in such a way that gM=fM even if OM=0.
By 4.3.2 this follows from the proof of 4.4, the only modification being that one
also allows the possibility Yy Z=R" in addition to yZ=R"

4.6. Corollary. Every CAT n-manifold, n=0, is CAT homeomorphic to a
closed subset of R***1,

Proof. This follows from 1.15 and 44. O

4.7. Remark. We give a stronger embedding result in 4.11. Corollary 4.6
implies that for every CAT manifold (M, &) there is a metric d on M such that
id: (M, &)—~(M,d) is a CAT homeomorphism, in which case (M, d) is a metric
CAT manifold. This shows that the two definitions of CAT manifolds are essentially
equivalent. (To get full equivalence, we should identify two metric CAT manifolds
M;=(M, d), i=1, 2, whenever id: M;—~M, is a CAT homeomorphism.) It follows
that the category of metric spaces and CAT immersions is a natural category in the
sense of [42, 1.9].

4.8. Corollary. Every component of a CAT 1-manifold is CAT homeomorphic
to exactly one of the following CAT 1-manifolds: (0, 1), [0, 1), [0, 1], 072, O

4.9. Corollary. Let M and N be homeomorphic CAT n-manifolds, n=3,
and suppose that OM=0=0N if n=2 or 3. Then M and N are CAT homeomor-
phic. 10O

4.10. Corollary. If n=2 or 3, every CAT n-manifold without boundary is
CAT homeomorphic to a closed C-differentiable submanifold of R™.

Proof. This follows from the proof of 1.17 and 4.9. O

4.11. Corollary. Every CAT n-manifold, n=1, can be closedly CAT embedded
into R®".

Proof. The case n=1 follows from 4.8 and the case n=2 or 3 from 1.4 and
4.10. If n=4 (or, in fact, if n>2), then 4.11 follows from 1.17 and 4.4. O

4.12. Corollary. If M is a LIP n-manifold, n=1, there is a closed locally
LIP flat LIP embedding f: M—~R™.
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Proof. This follows from 4.11 and [26, Corollary 4.8]. (O

4.13. Corollary. Let n=0, g=2n+1, and let M be a LIP n-manifold, N
a LIP g-manifold, f: M—~N continuous, CCM closed, U a closed neighborhood
of C, flU a closed LIP embedding, fCcint N, and U an open cover of N. Then
N(f, %) contains a LIP embedding g: M—~int N with g|C=f|C.

This also holds if LIP is replaced by 1.QS and C=0.

Proof. We may assume that fM cCint N by [25, Lemma 2.3 and 1.2]. By 1.13,
flU is a Z"-embedding. Hence we may assume by 1.12 that f is an embedding.
The corollary now follows from 4.4. O

4.14. Remarks. 1. Consider the case CAT=LIP. The special case of 4.4
in which #=¢=3 and fis a homeomorphism is [37, Theorem 2]. There the result
is stated for manifolds with boundary, but the proof is only valid for manifolds
without boundary. However, the first-named author could reduce (using 4.14.6)
the case with possibly dM =@ to the case dM=0. Another proof will be men-
tioned in 4.14.3. Corollary 4.6 solves affirmatively [26, Problem 9.1(1)] and with
4.11 improves [26, Theorems 4.2 and 4.5], which only give a closed LIP embedding
of a LIP n-manifold into R***® (n=1). Similarly 4.12 improves [26, Theorem 4.9].
In [41, Theorem 3.8], 4.9 is proved for 2-manifolds with boundary. In fact, [41,
Theorem 3.7] and PL approximation results imply a (stronger) special case of 4.4
for these manifolds.

2. Theorem 4.4 for CAT=LQS, n=¢=3, and f a homeomorphism was con-
jectured in [37, §4, p. 138]. Corollary 4.6 for CAT=LQS solves a problem in
[44, 4.3]. The result that every compact metric LQS manifold can be quasisym-
metrically embedded into a Euclidean space also follows from [l, Remarque 2,
p. 732, and Proposition 2 (h), (i)] by [38, Theorem 2.10] (cf. also [38, Remark 3.20]).
Kuusalo [21] and Cannon [9] have considered orientable quasiconformal 2-mani-
folds. They did not assume that these are metrizable, but they supposed there to
exist a locally quasiconformal atlas the dilatations of whose coordinate changes
have certain boundedness properties. They proved that these manifolds have a
locally quasiconformally equivalent conformal structure and, hence, are metrizable.
In particular, a corollary of [21, Satz 3] is that, in our terminology, every orientable
connected LQS 2-manifold without boundary is LQS homeomorphic to a Riemann
surface; cf. 4.10. The metrizability result is generalized for #=2 in [22].

3. Tukia and Viisdla [39, Theorems 4.4 and 4.8] have recently proved, using
Sullivan’s methods [36], that if M, N are CAT manifolds with dim M %4 =dim M,
every homeomorphism of M onto N can be relatively approximated by CAT homeo-
morphisms. Sullivan proved this in [36, Corollary 3] for LIP manifolds without
boundary. In [14, Theorem 3.11] one proves that every CAT manifold satisfying
the above dimension condition and homeomorphic either to R", S" or I" is CAT
homeomorphic to it. Earlier this was proved for CAT=LIP in [26, Section 8].
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4. We can omit the hypothesis dN=0 (but still have gMcint N) in the
weaker form of 4.4 where C=0 and (3) is omitted, provided that the map M —~fM
defined by fis proper (which is satisfied if /' is an embedding). To see this, observe
first that since fM is locally compact, we may assume that fM is closed in N, in
which case by [19, Lemma, p. 47] there is 6€ C,(N) with (f()=e()/2 if xeM.
Then, using a collar of JN in N, we can construct an embedding #: N-N in
U,(idy, 6) with hANcint N ([25, Lemma 2.3]). Hence 4.4 gives a CAT immersion
g M—~N such that gMcintN, 4.4(4) holds, and gcU,(if,¢/2), whence
geU,(f, ).

5. Let (n, g) be admissible, M a CAT n-manifold, N a PL g-manifold, f: M—N
an embedding, ¢€C,(M), and d a metric for N such that id: N—(N, d) is a LIP
homeomorphism. Then U,(f, &) contains a CAT embedding g: M~—~N such that
there is a closed subset Y of gM whose n-dimensional Hausdorff measure is zero if
CAT=LQS or whose Hausdorfl dimension is =#n—1 if CAT=LIP and for
which gM\Y is a PL submanifold of N. In fact, since we may assume that N=0
by 4.14.4, the proof of 4.4 gives the required g if one chooses U=@ and each
(Z,y) such that  is PL. To see this for CAT=LQS, one can use the fact ([43,
Theorem 4.1]) that every quasisymmetric image in R" of an open set in R?, p<n,
has zero Lebesgue measure.

6. Suppose that 1=n=¢=3, )M=0, and that f is an embedding in 4.4.
Then the construction of g allows one also to construct, by 4.3.1, an isotopy H
rel C from f to g such that H.M=fM if tcI and d(H,(x), f[(x))=e(x) if
(x, )EMN\C)X L.
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