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QUASISYMMETRIC AND LIPSCHITZ APPROXIMATION
OF EMBEDDINGS

J. LUUKKAII\EN{ and P. TUKIA

Introduction

This paper is concerned with the following concepts. Let (X, d) and (Y, d')
be metric spaces and let f: X* I be an embedding. Then/is said to be bilipscltitz
(or L-bilipschitz) if , for some I> 1,

d(x, y)lL = d',(f(x),f(y)) = Ld(x, y)

for all x, yQX. It is called quasisymmetric (or 4-quasisymntetric) if, for some homeo-
morphism ry: Ä1**41*,

d' (f(a), f(x)) = ,r Q) d' (f(b), f(x))
whenever a, b, x(X,l>0, and d(a, x)<td(b, x). The above condition is motivated
by the properties of quasiconformal maps: For instance, a homeomorphism of R'
is quasiconformal if and only if it is quasisymmetric. Like bilipschitz embeddings,
quasisyrnmetric embeddings form a category: The composite of two quasisymmetric
embeddings is quasisymmetric, and so is the inverse of a quasisymmetric homeo-
morphism (cf. [38]). Every bilipschitz embedding is quasisymmetric.

A map f: X*Y is called an LQS immersion if every point of Xhas a neigh-
borhood on which/is quasisymmetric. It is called aLlP immersion if every point
of X has a neighborhood on which/is bilipschitz. We let CAT denote either LQS
or LIP. A CAT embedding or a CAT homeomarphism is a CAT immersion which
is an embedding or a homeomorphism, respectively. It is obvious that the inverse
of a CAT homeomorphism is a CAT homeomorphism. Every LQS embedding of
a compact space is quasisymmetric by [38, Theorem 2.23], and every LIP embedding
of a compact space is Lrilipschitz. A piecewise linear (PL) embedding between
polyhedra in Euciidean spaces is a CAT embedding. We call a separable metric
space a metric CAT n-mandold, n>A, if every point has a closed neighborhood
CAT homeomorphic to the cube [-1. l]' in R'.

There is a familiar and apparently more general alternative way to detine CAT
manifolds and CAT immersions based on atlases; see 1.3. As LQS atlases are the
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same as locally quasiconformal atlases, LQS manifolds are also called quas'iconformal

manifulds. The two deflnitions of LIP or Lipschitz maniftlds were proved to be

(essentially) equivalent in 126, Theorems 3.5 and 4.21. I. Väisälä raised the ques'

tion whether this also holds for LQS manifolds. Our main result implies that such

is really the case.

Section I is preliminary except for Theorem 1.14, where it is proved that every

LIP embedding between LIP manifolds is locally flat if the codimension is at least

three. Lemma 1.9 recapitulates known results about PL approximation of
embeddings from dimension z into dimension q. lt is valid if either qzil:l or

n=2, q>n+3 or (n, q)({(2,2), (2,3), (3, 3)}. We call these pairs (n, q) admissible.

In Section 2 we prove that if (n, q) is admissible, YcXcR", and )Z is open

in ,?, then every quasisymmetric embedding f: X*Rq can be approximated by

quasisymmetric embeddings which coincide with / on X\I/ and are PL on L
In fact, we consider here more general, if quite special, polyhedra I; these aro open

in X and have a certain decomposition into r-cubes. In the case n:Q<-3 similar

but simpler problems for bilipschitz or quasiconformal embeddings are studied in

[4], Theorem 2.4] and [8, Theorems 2.1 and 3.1]. Our proof is similar to the ones

in [al] and [8]. It is based on Lemma 1.9 and the finiteness idea of Carleson in

[10], whilh can be used by virtue of a compactness property of quasisymmetric

embeddings.
In Section 3 we apply results of Section 2 and obtain analogous results for

bilipschitz embeddings.
Using these theorems we prove in Section 4 the main result of this paper,

Theorem 4.4. In a simplified form it states (cf. 4.14.4) that if M and N are CAT

manifolds of dimensions a and q, respectively, such that (n,4) is admissible, then

every embedding f: M*N can be approximated by CAT embeddings in the source

majorant topology. A special case of Theorem 4.4 fot CAT:LIP and n:q=3
is given in 137, Theorem 2f, and our proof is a modification of the proof in 1371.

As a corollary we get the result that M can be CAT embedded into R2"+1 (rt>O),

from which it follows that the two definitions of CAT manifolds are equivalent.

Further, by recent results about topological embeddings, Ä2'+1 can here be replaced

by R'n (n=-l) and, if the target majorant topology is used and q>2n* 1, it suffices

to assume that f is only a continuous map.
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1. Terminology and preliminary results

l.l. Notation The letters n, q denote non-negative integers. Let .r( be the

Euclidean n-space, R! : {x€R' I xn=-}}, .R'-1 =åÅi, I" :l- l, ll", J' : (- l, 1)',

J\:Jn aR"+, I"(r):fl" and J"(r):71" for r=0, and 7:[0, 1]' Let €t:
(1,0,...,0)€Ä'. If S is a topological space, let C+(§):{,fl"ft S*(0, -) con-

iirruoos). If S is a set and f, g: StR", we write d(f, g):wp {l"f(')-g(')ll'e s1'

1.2. weakly quasisymmetric embeddings. An embeddine f of a metric space

(X, d) into a metric space (Y, d') is called weakly quasisymmeffic if there is 11> I

suchthat d'(f(a),f(x))=Hd'(f(b),/(x)) whenever a,b,x€X and d(a,x)=-d(b,x);

then/is also said tobe weakly H-quasisymmetric. This concept, too, was considered

in [3S]. Every quasisymmetric embedding is weakly quasisymmetric. Every weakly

quasisymmetric embedding f: ,S*Äa, ScR', has a unique extension to a closed

embedding l: s*no. If/is z-bilipschitz, this is well-known, andlis L-bilipschitz.

If / is 4-quasisymmetric, this follows from [38, Theorems 2.Vl and 2.25), and J is,

rJ-quasisymmetric. The general case follows from [33, Lemmas 2, 4, and 5] (the

case fl:ql:2 considered in [33] can be generalized in the obvious way). Moreover,

in t33l one does not assume thatf is an embedding but only that/is injective. (For

a similar deflnition for quasisymmetric embeddings, see [38, Theorem 2.21].) We

do not know whether f is always weakly quasisymmetric. (However, it is easy to

see that if S is open and convex and iflis weakly ä'quasisymmetric, then f is weakly

ä-quasisymmetric.)

I.3. Atlases. We give the definition of CAT manifolds in the atlas sense. Let

cAT (a) be the category whose objects are open subsets of "P and of ,Ri and whose

morphisms are CAT homeomorphisms. Then CAT(n) is a pseudogroup of trans'

formations in a slightly more general sense than in 120, p. ll. Consider a homeo-

morphism f: U*Y, where U, V ate open either in Å'or in Ai. By [38, Theorem

2.161,143, Theorems 2.3 and 2.4f, and [40, Theorem 35.2], the following conditions

are equivalent for a point x€ t/: (1) / is quasisymmetric on a neighborhood of x
in u; (2) fis weakly quasisymmetric on a neighborhood of x in u; (3) (for z>2)
there is an open neighborhood W of x in Rn such that fllVnint U is a quasicon-

formal embedding; (a) (for n>-2) there is an open neighborhood w of x in rR'

such that .flwnu extends to a quasiconformal embedding of lv into N.
A CAT (n) attas ,il on a topological space M is a family of pairs (u, h), called

charts, such that the U's are open sets of M covering M, his a homeomorphism

of U onto an open subset of Ä' or of Å!, and for charts (U, h), (U', h'), the homeo-

morphism h'h-r'- h(UnU')*h'(Uau') belongsto CAT(n)' If M isa separable

metrizable space and if ,il is a CAT (rt) atlas on M which is maximal with respect

to inclusion, we call the pair (M,,il) a cAT n-manifuld and ,il a cAT structure

on M. The terms quasiconformal structure arrd Lipschitz structure are also used.
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(We could also define a CAT structure as an equivalence class of CAT (rz) atiases,

two atlases being equivalent if their union is a CAT (r) atlas.)
Le+" (.h!, ,il) be a CAT manifold. The underlying space M is a topological

manifoid, whose interior int M and boundary AM inherit a CAT structure fram d
in a natural way. If I and B are subsets of CAT manifolds and if X is a metric space,

we can define CAT immersions A*8, A*X, and X-A in a familiar way using

charts (cf. [42, 1.8D. One defi.nes similarly CAT embe<idings and CAT homeomor-
phisms. lf (N, #) is a CAT manifold such that Ncl{ and that the inclusion of
(N, g) into (M, d) is a CÄT embeciding, we call (N, Sr) a CAT submcnfold of
M. Suppose that AM:A. Then a CAT 4-submanifold 1/ of M is said to te locally
CATflat if foreach x€N there is (U,h)e,& suchthat x(U and h(UnN) equals

hunRq or hUnR\. A CAT embedding is called locallv CAT flat if its image is
locally CAT flat.

Every metric CAT ir-manifold M (in the sense of the Introduction) has a natural
CAT structure consisting of all pairs (U,h) where [/is open in M and /z is a CAT
homeomorphism of [/ onto an open set in Ä' or in Å!. Moreover, if AcM, the
two definitions of CAT immersions of ,4 or into A coincide. We consistently define

a subset N of M to be a CAT submanifold of M if it is a metric CAT manifold in
the induced metric.

ln 4.7 we will see that every CAT manifold has a metric which induces the

original CAT structure.

In 4.11 we will need the fact that every CAT r-manifold can be CAT embedded

into a CAT n -manifold without boundarv. For rhis reason we construct ttre double
of a CAT manifold.

1.4. Lemma. Let (M,.d) be a CAT n-manifuld. Tlrcn there exists a CAT
n-manifold (DM, g), called the double of M, with the following properties: DM
contains CAT submanifulds Mr, M, such that DM:MrvMr, MrnMr:flllfr-
0M2, and there are CNI homeomorphisms fr: M-.M, such that f1l0M:f2l8M.
The triple (DM,fr,fr) is unique up to a CAT homeomorphism except possibly

when CAT:LQS, zl:1, and AM*O, in v,hich case, howeaer, (DM,MyM2) is

unique up to a CAT homeomorphism. Moreouer, \DM:fr, and the submanfolds

Mr, Mr, M1oM, are locally CAT flat in DM.

Proof. We only consider CAT:LQS, because for CAT:LIP one can give

a similar but slightly simpler proof and because one has already proved this case

by another method in p6, Theorem 3.131. It is well-known that the lemma holds

for topological manifolds and homeomorphisms (i.e., if CAT is replaced by TOP).
This gives us the manifold DM and the homeomorphismsf . We construct an LQS

structure on DM as follows. Define p: N*R" by p(x):(xr,...,xn-r, -xn).
For each chart (U,h)€.d with UIAM:0 we have the charts (frU,hfllftU),
i:1,2, of DM. For each chart (U, h)€,il with UoEM*0 we define a chart
(U",h*) of DM asfollows. SinceåUisopenin-R|,theset V:hUvphU isopen
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in Å'. Let (J*:frUvfzU; then U* is open in DM. We define a homeomorphism

h*: (J**V by h*(x):tuf;1(x) if xefrU and h*(x):phf;'(x) if x(fzU. These

charts form an atlas Oo on DM. One can use [40, Theorem 35.2] for n>2 and

l24,ll, Lemma 7.1 and (7.2)l for il:l to see that fiois an LQS (n) atlas. The LQS

structure fi determinedby @o depends only on .il. The sets Mr, Mr, and MraM,
are locally LQS flat LQS submanifolds of (DM,0), and the homeomorphisms I
are LQS.

To show the uniqueness, let (D'M,Mi,M;,fi,f;) have the properties of
(DM,Ma,Mr,.fr,fr) listed in the first part of the lemma' Let g: DM*D'M be

the unique horneomorphism with Bfi:f.', i:1,2. Since MroM, is locally LQS

flat in DM, it follows from [40, Theorem 35.1] that g is LQS if n>2. If n:l
and 0M:0, then trivially g is LQS. lf n:l and |Mlg, the classiflcation

of LQS l-manifolds in 4.8 implies that there exists an LQS homeomorphism

h: DM*D'M with hMr:14;. The existence of an LQS homeomorphism of
(DM, ML, Mz) onto (D'M, M;., M;) implies that the submanifolds Mi, M;,
M'rn M!, of D' M are locally LQS flat (this can also be proved directly). tr

1.5. Exarnple. Define a homeomorphism g: JL*Ja by g(x):;s if x<0
and g(x):v2 if x>0. Then gl(-1,01 and cl[0, 1) are quasisymmetric, but g
is not LQS. This implies that in 1.4the uniqueness of (DM,fr,fr) does not hold

for n:1.
1,6. Functiotx spaces. Let C(X, Y) denote the set of all continuous maps of

a metraable space X into a metrizable space Y. Let f(C(X, f. We call f proper

if the inverse image of every compact set is compact. An embedding of X into
I is closed if and only if it is proper. I*t d be a metric for Y. The sets

Uo(f, e) : {g(C(X,Y)l\ xCX, d(f(*), g(x)) = e(x»

for e(C*(X) form a neighborhood basis of/in the source maiorant topology of
C(X, Y), which is independent of d. If X and Y are locally compact and/is proper,

there is a neighborhood U/f, e) whose elements are proper. The sets

N(f,,?t) : {g€C(X,Y)lV xcx=U(4t, f(x), c@)(U},

where 4t is an open cover of I, form a neighborhood basis of/in the target maiorant

topology of C(X,I). For every N(f,alt) thereis Uo(f,e)cN(f,Qt). Conversely,

if/isproper,every Uo(f,e) contains an N(f,0ll). ltiseasytoprovethatif X,Y,
and Z are metrizable spaces, then the map C(X, Y)XC(Y, Z)*C(X,Z), (f, g)-gf,
is continuous whenever each function space has the target majorant topology.

These facts are well-known; some references are given in 125, 1,21.

In the next three lemmas we have collected known PL approximation results.

1.7. Lemma. Let (n, q) be admissible, M a PL n-manifuld, N a PL q'manifuld

with lN:Q, f: M-N an embedding, d a rnetric for N, and e€C*(M). Then

there is a PL embedding g: M*N in Uo(f,e).
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Proof. The set.f M is locally compact and thus closed in an open set tr[o of tr/;
hence replacing i[by Ne we may assume thatf is closed. One can give an elementary
proof in the case Qzn:l. The case n>-2, q>n*3 follows both from [28, Theo-
rem 3l and [6, Theorem 1] (or [l3, Theorem 8.1]). For the case il:Q:2, see [30,
Theorem 6.41. The case n:{l:3 is proved in [4, Theorem 9]. Consider finally
the case (n, q):(2,3). By each of [3, Theorem 7],14, Theorem 51, and f4, Theorem
101, there is an embedding h: fM*N such that hf<UaU,el2) and such that
M'-hfM is a subpolyhedron and thus, by [30, Theorem 4.91, a PL submanifold
of -ly'. Hence there is a PL homeomorphism go: M*M' in Uo(hf,d2); cf. [30,
Theorem 6.41or [5, Theorem 4.6]. Then the PL embedding g: M*N defined by
go is in Uo(f, e). n

1.8. Lemma. Let n, Q, M, N, and d be as in 1.7 with n>2, let f: M-N
be a closed embedding, and e(C*(N). Then there is ö<C+(M) witlt the following
property: If g;: M*N, i:0, 1, is a PL embedding in Uo(f, ö), there is a PL homeo-

morphism h: N-N in Ua(idy,e) such that hgo-g1.

Proof. The case n>2, q>n*3 follows from each of [7, Theorem l], [28,
Theorem 21, and [13, Corollary 6.17, the case )=n=q-t from [11, Theorem 7.1],

and the case n:q:2 from [], Theorem 7.2]. (These results give, moreover, a

PL ambient e-isotopy from id, to ft.) tr
1.9. Lemma. Let n, q, M, N,f, d, and e be as in 1.7, Thmfor each PL n-sub-

manifold Mt of M which is closed in M, there exists 6CC*(M) with the following
property: If g: Mr-]1 is a PL embedding tu Uo(flMr, ö), there is aPL embedding

g*: M*N in Ua(f,e) which extends g.

Proof. lf Mr:fi, the lemma reduces to 1.7. We may assume that f is closed;
cf. the proof of 1.7. An elementary proof can be given if q=n:l. Suppose that
n=2. By 1.6 there are ä6(C*(M) and eo(C*(N) such that if fo(Uo(f, äo) and
hs(Ua(id*,er), then hofoqUo(f,e). Let öQC*(M') be the function which 1.8

gives if we substitute M*Mu f*flMr, e*eo. Now let CQ.Ud(flMb ä) be a
PLembedding. Choose öL(.C*(M) with örlMr:ä andset ä'(x):ry1in (»01x1, ar1xl)
for x(M. By 1.7 w€ can choose a PL embedding g'€Ur(f, ö'). Then there is a PL
homeomorphism å€Ud(id,N, eo) with h(g'lMr):g. Hence g*:hg': M-N is a
PL embedding in Uo(f, e) with g*lMr:g. tr

1.10. Remarks. l. For n=1, q>?n*|, kmma 1.9 also follows from PL
general position results ([16, Lemma 4.8, p. 102]; cf. [25, Lemma 3.5]). Moreover,
the manifold pair (M,Mr) can now be replaced by a pair (X,Xr), where Xis a

polyhedron with dim X=n and X, is a closed subpolyhedron of X.

2. We will only need 1.9 in the
and Mt^ Mz a PL (n- l)-manifold.
for this special case of I.9. Suppose

case where Mz- M\/l1l
If n-Q:2 or 3, there is
first that M is compact.

is a PL n-manifold
the following proof
Then, if n-3, the
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proof is given in B9, I*mma 4) (cf . B, Theorem l'l), and for n:2 the result cer-
tainly also holds with a simpler proof. The general case can easily be deduced from
this special case; for example, one can proceed as in the proof of [2, Theorern 3].

3. For n>2, q>n13, Lemmas 1.7,1.8, and 1.9 also hold if M and (M,M)
are replaced, respectively,by a polyhedron X or a polyhedral pair (X,X) as in
l.i0.l above; this follows from the results quoted in the proofs. However, we do
not know whether this holds for 1.9 if 2=n=q<3 (or if n:1, q:2).

4. Lemma 1.9 holds trivially if q>n:O. For fl:g25, Lemma 1.7 fails by
[19], and 1.9 is not true even if N:Äq (cf. [4], 2.3]). By 1271, 1.7 does not hold if
q-n{2>4, butif n:2, e:4, and M:12, it holds by 145, Theorem l]. The case
q:il+ l>4 seems to be unsettled.

1.11. We need the rest of this section only for applications in Section 4. We
now give some definitions. A set I in a metric space X is called a Z,-set in X if
every continuous map of f into X can be uniformly approximated by continuous
maps into \,4. An embedding of a space into X is called a Z'-embedding if its
imageis aZn-setinX. Let (X,d) and (Y,d') bemetricspaces. Amap f: X-y
is said to be LIP if for every point p of X there is a neighborhood U of p and Z>0
such that d'(f(*),f(y))=t-,i(*,y) for all x,y€U. lf A, B are subsets of LIp
manifolds, the definitions of LIP maps A*8, A*X, and X-A are obvious;
cf. 1.3.

1.12. Lemma. Let n>0, q>2n*1, X a separable metrizable space with
dim X<n, N a topological q-manifold, f: X*N contifluous, C a locally compact
closed subset of X, flc a closed Z"-embedding, and % an open couer of N. Then
N(f, rll) contains an embedding g with glc:flc.

Proof. The case C:0 is proved in 85, Theorem 5.61; if, in addition, N
can be embedded into Rq, a simpler proof is given in [25, Theorem 2.1]. The general
case is due to Heisey and Toruriczyk; see [25, Theorem E of the Introduction]. g

1.13. Lemma, Let X be a separable metric space, N a metric LIP q-manifuld,

f: X*N LIP, and tlte q-dimensional Hausdorff measure Jfq(X:/.I"):O, where
n-<q. Then fX is a Z"-set in N.

Proof. Let g: In*N be continuous and U a uniform neighborhood of g.
Using a topological collar of åN in N we may assume that gl"c.int N (12,5, Lemma
2.31). By 126, Corollary 5.181 we may further assume that g is LIP. Then
ffq(fxxgl'):0. Hence by a slight generalization of [26, Theorem 6.9] there is
h€U with hI" nfX:0. tr

The following theorem is related to Theorem 4.4. For q>5 it is an observa-
tion of L. Siebenmann.
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1.14. Theorem. Let n>0, q>n*3, M aLlP n-manifuld, N aLIP q-mani'

fold, 0N:0, and f: M*N an embedding which is aLIP map. Thenf is locallyflat.

Proof. We may assume that M:1" and N:rRq. The case a:0 is trivial'
For q>3n*1 the theorem follows from [44, Theorem 3.8]. This implies the case

n:1. Let n>2. By [7, Theorem 27, 1.7, and [35, Theorem 1.7.2, p.34], it suffices

toprovethatif x(fl",e>0, and A:{yERqllx-yl-e}, then (/:B\fI' is simply

connected. By ll7, Corollary l, p.481, Uis connected. Let g: 012*U be contin-

uous. There is a continuous extension g; I2*B of g. Choose a LIP approxima-

tion h: I2-B of gr. By 126, Theorem 6.51, (hl2*y)nfl':0 for almost all

y(.Rq. fi d(g1, h) and lyl are small enough, 8':h1-y is a map -I2*[/ such

that g and g'lBI2 are homotopic in U. (The existence of g'also follows from i.13.)

Hence g is null-homotopic in U. n

1.15. Lemma. Let X be a locally compact separable metrizable space with

dim X<-n>=0. Then there is a closed embedding of X into R?"+L.

Proof. This follows easily from 1.12. We can also reduce it to a classical special

case of 1.12. Choose a compact metric space I containing X as a subspace with
y\X: {p}. Then dim l:dim X by ll7, Corollary 2, p. 32). Hence [17, Theorem

V 2l gives an embeddin g f:. Y*Izn+tx {1}. Then fX is closed in å1"+\{ f(p))-
j2n*1. !

The following lemma is due to J. Väisälä.

1.16. Lemma. Let n>4, artd let X be a locally connected locally compact

separable metrizable space with dim X=n-2 such that for each component Xi of
X there is a closed embedding fi: Xr*p"' Then there is a closed embedding f: X*R''

In addition, if x is a topological manifuld and each fi is locally flat,f can also be

chosen to be locally flat.

Proof. we show first that if x is connected, there is a closed embedding

g: X*J" with 0J' +gX. Choose a closed embedding f: X-R". There is a closed

PL embedding q,: Rl*R' with aÄ1*nfX:0. By [35, Theorem 3.4'3, p. 109],

aisflat. Thuswegeta closed embedding h: X*Jn with hXal.l:0. Obviously,

there is a homeomorphism q: Jn*Jn with erqElX. Then g:Eh is the

required map.
In the general case each component X, of X is open and we may assume that

je{|,2,...}. Let H":intÅi=Å' and [Jr:J"aH"a3je1. The flrst part of the

proof implies that tlere is a closed embedding 8i: X,-U, with ffioTLr,c|H".
Then /:9, gi: X*H" is a closed embedding.

The assertion concerning local flatness can be proved similarly' tl

1.17. Lemma. Let M be a topological n'manifuld, n>1. Then there exists

a closed locally fiat embedding of M into R2".
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Proof. Replacing M by its double, we may assume that 0M:0. The case
n: 1 is trivial. suppose n:2 or 3. By the tubular neighborhood theorem it suffices
to prove that M is homeomorphic to a closed C--differentiable submanifold of R2'.
By [30, Theorems 4.8, 8.3, 23.1, and 35.3), M is homeomorphic to a pL manifold.
Hence, by [8, Theorem III], M is homeomorphic to a c1-differentiable manifold N.
Thus, by [3I, Theorem 4.8], it suffces to show that if Iy' is connected, there exists
a closed Cr-embedding f: N-Rzn with fNcJz,-typr. If N is compact, this
follows from [46, Theorem 5]. If i/ is non-compact, there is a C1-embedding
fo: N*J2"-1 by 115, Theorem 4.6]. Choose a proper Cl.differentiable function
/f : N*Å1; then f:(fo,fi) is the required map.

Suppose now n>4. By 1.16 we may assume that M is connected. Only the
case of compact M can be found in the literature: If M is orientable, the lemma
follows from [23, Theorem 1, p. ll]. If the orientability is not supposed, define
f: M*Rzo by /(x):4. Then/is simpty connected, i.e., no(f):ur(.f):0, where
n1(f):n,(Cr, M) with C, the mapping cylinder of /. By [32, Theorem 7, p. 445f,
/is homotopic to a locally flat embedding (even for n>3). cf. also [12, Embedding
Theorem 3] (for n>2). For the case where M is non'compact a proof has been
sketched by J. Dancis (written personal communication, 1980) and L. siebenmann
(oral personal communication, 1981). tr

2. PL approximation of quasisymmetric embeddings in Euclidean spaces

2.1. In this section we prove first the main result of the section, Theorem 2.16.
Then we give two corollaries of it. These results concern PL approximation of
quasisymmetric embeddings in Euclidean spaces. We close the section by a similar
theorem about weakly quasisymmetric embeddings.

We begin by defining cubical decompositions.

2.2. Let a>1. For k€Z let 9,(k) denote the family of closed a-cubes in Å,
with side lengrh 2k and wirh vertices inZkZ". Let g,:U{9,(k)lk<Z}. For eeg,
letzndenotethecenter and2Tnthesidelengthof Q. Define an: R,*R" by ue(x):
zr*)'nx; then Q:qn1".

2.3. Lemma. Let XcR" and let Y be an open subset of X such that y is the
union of a subfamily of 9" which is locally finite in Y. Then there exists a subfamily
X of g" with the following properties:

(1) Y: U y.

Q) If Q,REy,QnR*A, and 8*R, then intQnintR:0 and

)"elAn( {112, 1,2}.

(3) ael"(3)nX: U {Re 
g"lRnQ*0, )"^:1p, Åc y} for eey.
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Moreouer, if q is a continuous map of Y into a metric space (2, d) and if
e(C*(Y), then 74 can be chosen in such a way that

@) d(Ee)=e(x) if x€Q(x.

Proof. We construct X which satisfies (l),...,(4). For 8€9" let Q'denote
the right side of (3). Let

9: {QCg"lQ c Y, url'(3).,X: Q', d(EQ') -= mineQ'}.

Let yo-gtn9,(O). For i>l we deflne X; inductively as the family of all cubes

Q€9 o9"(-i) such that for no 7<i there is RCXi containing Q. Define

X: U {X,li=0}. To prove (l), let x€ I. There are i>0, k>1, and Pr, ..., Po<9"(-i)
such that P:Ptu...vP* is a neighborhood of x in Y. For each j>i there is

Qj€.9"(-i) with x€Qrc.Y. lt i is large enough, then unI"(3)nXcP, which

implies a n,I " (3) n X : Qj, and d (E Ql) = mineQrl. Thus Q i ( 9, whence x Q v r, 

= r(v 1).
The flrst ässertion in (2) is clear. In the second we may assume that Q(Xi and

R€xi with i=-i. Let St:{S€g"(-i-l)lSaQ*g, S +Q, Sc I}. Then

as(2/'\,I')n X:U9. If S€9, we have S':ocs/'(3)n XcQ' and, hence,

d(ES'\<min eS', whichimplies S€9. hfollows that i:i or i*1; consequently,

).elln€{l,2}. The conditions (3) and (4) are satisfied by construction. n

2.4. Let X and I be as in 2.3 and let X be any subfamily of 9, satisfying

(1),...,(3). Dividing each cube of yinto 2'cubes by bisecting the sides we get a

new cube family X. Obviously, the conditions (l),..., (3) are satisfied also by ['
If X satisfies (4), X satisfies it, too. A cube family X obtained in this manner is called

a cubical decomposition of Y with respect to X.

2.5. From now on and up to the end of the proof of 2.16, we suppose lhat X
and Y are as in 2.3 and that tr is a cubical decomposition of Y with respect to X.

Let e>0 and let f: X-Re be an q-qaasisymmetric embedding, where (n, q) is

admissible. Finally, we assume that Y is a manifold and thus a PL manifold.

For Q€ld we set qs:lf(zr)-f(ze*7eer)l and Q*-a"s1'(9/8)nX. Then

Q*nu*J"(1518):0 if Q,R(/{ and QnR:o.
2.6. Lemma. There are constants cr>l and cr>l depending only ort n and

4 with the following properties:
(l) If 8,Reff, QoR#0, and Q*R, then Qqlcl=lf(z)-f(zil=crQa.
(2) If Q,R(/{ and QaR*A, then ealpx=c?.
(3) If QUd, x(Q*, and v€x\anJ"(1518), then lf@)-.f(il]l=oalcr.

Proof. (l): We have (312) Lo-.lra-, 
^l=3{i 

La. Hence

aslqQl3) = lf @d-f @*)l = ,rQ {i)qn.

(2): This follows from (1).
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(3): Since (1518)).o=lze-!1, we have so=r(8/1s)lfkd-fO)| Since

lra-*l=15121fis,n=QlZ)/ilx-yl and thus lze-yl=_tlx-yl, where t:(llZ)1/i+1,
we have lfQa)-f(y)1=-yt 1t117(x) -f(y)1. Hence ee=a $lts)a|)lf@) -f0)1. a

2,7, Let %t, ?{2, and xbe the least natural numbers such that

2,r> 2{d, 2", > 2c?, and y > )xixz()cr+{f,2"r-,).

These numbers depend on

lk,l = x\.

ly on Ft) Q, and y'1. Define

{2"1 kez, lkl = xz),

{2-xt-xz(kr, ... , kr)l lrr€2,

EL

E2

For each Q€tr letlq be the integer with 2ua=Qo=2'a*L, and define so:)aa.
Then prl2=sasQa. We choose bn€2ua-*,Ze such that lba-f@a)l=1/f,2oo-*,-t
1=ssl4). The following lemma can now be proved by the aid of 2.6(l) and 2.6Q)
exactly as [18, Lemma2.4f.

2.8. Lemma. If Q,
(1) sE/sn €Et,
(2) (ba-b*)lsa€Er.

2.9. We express i{ as a disjoint union ff :,{rv ...vffy, where each family
;( is disjoint and where l,I:M(n). In fact, this can be done with M(n):2" 4s

follows. Number the cubes of g"(0) in I" by Sr, ..., ,Son,,r. Let ff:X,. lf Q€yd,
let R be the unique cube in X with 7n:27a and QcR; then set So:aiLQ. Define

4:{Qef lSo:S,}. It is obvious that the families ffr, ..., ffu(n) satisfy the
requirements. We set ff*:ff v ...vtr, and Fr: v {Q*lQe .fr*}.

2.10. Let §":{Q(9,(0)lQc21'\"r'}. If Q€.f, and t({1,2,3}, we set

Q(t):oal"(l+2-t). Let 9i be the finite set consisting of manifolds which can be

expressed as a union I'v(v"f), ,9 cAn. If T€9;, let 9(T) denote the flnite set

of pairs (P', P) of the form

P' : (1" (9 18) v ere) v...u eoQ)) oT,

p : (gr7t)v...v eoQ)) nT,

where Qi(9,, QiCT, and tr€{1,2,3} for i<k>O. It is obvious that the sets

P', P, and F\F are PL n -manifolds and that f nf \f is a PL (z- l)-manifold.
Let l=i<M(n) and Qe,ft. Since I is a manifold, we have Ta:In(2)n

aolx({,. we set
po: (v{urlR*lR(filu Rae t A})aTn,

Pb: qa'Q* v Pa'

Then (P'n, Po)€g(To).

RQtr , Q n.R {fi, tlten

T
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2.11. Let T€f", let g: T*Rq be an embedding, and eo>0. Let

(P" P)<g(T).

Then by 1.9 (or also by 1.10.2 if fi:q:2 or 3) there exists ä6(0, el such that if
gr: P-Rq is a PL embedding with d(gr,glP)<ö, there is a PL embedding
gl: P'*Rq with gflf:g, and d(gf,glP')=er. Welet ä(g, eo) denotethegreatest
ä satisfying this for all (P', P)(.9(n.

2.12. For fE?i let Hr(T) be the set of all 4-quasisymmetric embeddings
g: T*Rq with lg(0)l<l14 and 314=lg(er)l<3. In the topology of uniform con-
vergence HoQ) is compact by [38, Remark 3.6 and Theorem 3.7]. Let Hr:
v{Hr(T)lT<,?;}. We set ä*(e):inf {ä(g,eJlg€f/r} (=eo) for eo>Q. Then as

in [41, Lemma 2.6), we get ö*(eo)>O, and ä*(eo) depends only on n, q, 4, and eo.

For each Q(tr we define fn: Rq*rRa by §a@):(x-bn)lso and set /o:
§pfuslTn. Then frQH* because arand freare similarities and because l"fq(O)l:
I f(z r) - b ol I s o= | I 4, I fek )l = o nl s q* t I 4 = 9 I 4, and I f n@ )l= Q al s a- I I 4 > 3 I 4.

2.13. We choose positive numbers ärs...fö*(o) such that

öa@) = mir'(e12, ll clcr, \aclaQ)a Q{-r))
and ä,<ä*(f ,*r)lQ*,*'*1). The numbers ö; depend only on fl, e,4, and e.

2.14. Lemma. For euery iQ{l,..., M(n)} there exist a finite set Ai of PL
embeddings g: I"(918)aT-Rq, where T€{n, such that Ai depends only on n, Q,4,
and e, and an injectiue PL map gii Fr*fta yi71,

(l) §rE,uelua'Q*(A, if Q<ffi*,
(2) d(flQ*,E,lQ\=26,s, if Q€4*.
Proof. The proof is by induction on i. Let Te?'". We choose a finite subset

H(7, ör)cHr(T) such that for every h€HÅT) there is h'e H(7, ö) with
d(h', h7=5r. By 1.7 we choose for every h€H(T, är) a PL embedding g1,: I"(918)n
T*Rq with d(gh,hll"(918)nT)=är. we define ,4.: {srlhen(r,ör), T<4}. If
Q€ff, we choose hacH(Ta, är) with d(ha,fo)<6,,and set gs:Bnn.

WedefineaPLmap el F1*fta by ErlQ*:§n'Sqaa'lQ* for Q€ld* Then
(l) is satisfied. We have d(flQ*,erlQ*):sad("fqlaa'Q*,ge)=2årsn it Q(trr.
lf Q,R€trL, Q#R, JsE§3, x<Q*, and y€R*, then, since y{arJ"(1518), we get

by 2.6(3)

(2.15) lE,@) - etU)l = lf@) -f{y)l - lf@) - et(x)l -lf@ - et@l
> Qqlcz-zöL(sp*sp) = se(llcr-4är) = 0.

Hence g, is injective.
Suppose now that A,-, and g;-. satisfying (1) and (2) have been constructed.

Let Q€4. Consider the PL embedding ts--§s9i-flnlPn. lf x(Ps, there is

Refi:_L such that an(x)€R* and RaQ*0. Then te@):fls§iLrltuplun(x),
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where rlt:Bnei-ranlaitR*(Ai-r. It is easy to see that the maps al1an belong

to a finite set depending only on a. The sets 1'(2)na;1R* are among the sets P
considered in 2.10. Thus the sets Pnna[tÄ* belong to a finite set depending only

on a. Since §afr;'(y):t*ylsr*(ba-bo)lsn, by 2.8 the maps fra|i'belong to a
fi.nite set depending only on n, q, and 4. Hence the maps ?s belong to a finite set

C; depending only on n, q, 4, ar,d e. If x and A are as above, we have

lTq(,x1 -fa(x)l :-

by 2.8, which inplies that d(yn,helPe)=ä*(ä;). Hence there is a PL embedding

s$: f'n-pt with g|Pa:Ta and d(gf,,ha!lP'o)=6t. We can choose the maps

g[ such tlrat the maps g|on'Q* belong to a finite set G;, depending only on n, q,

4, arJ e, of PL embeddings g: I"(918)aT-Rq, T€.9-".

Weset eilFi-r:ei-, and E,lQ*:§a'säuq'lQ* for Q(4. Then E;: Fi-Rn
is:r weil-defined PL map and (1) is satisfied with Ai:Ai-1vGr. If Q($, then

d, i12*, E,lQ\:sad(fqlao' Q*, cölaa'Q\=2ö,so, which implies (2)' we prove
t\at e is injectivö. Observe first that E, is the embedding fir'cöurl on anP'n

: )I over1l Q€,ft. Thus it suffices to show that /:lEi(x)-Ei(y)l=0 if Q(4,
{l€ffi", x€Q*, yQR*, and either (a) QnR:0 or (b) QIR*O and y$arl"(2).
We proceed as in (2.15). If either (a) holds or (b) holds with sn>s*, we get Å>
sr(Ilcz-46)=0. If (b) holds with sr-s., we use the fact Qe=q*lczr, implied by

2.6Q), and get />s*(llclcr-4ä,)=0. n
2.16. Theorem. Let (n,q) be admissible, let q: Rt*-R'+ be a homeomor'

phism, and. let e>0. Then there exist a homeomorphism q*: Åf *Rt* and afinite
set D of PL embeddings g: T*Rq, T(9,, wilh the following property: Let XcR",
let f: X*Rq be ail 4'quasisymmetric.embedding, let Y be an operu subset of X which

is the union of a subfamily of g,locally finite in Y and which is a manifold, and let

:{ be a ctbical clecomposition of Y ruith respect to X. Then there exists an 4*-quasi'
symmetric embedding f*: X*Rq such tlrut

(l) /*lx\r:/lx\r,
(2) f.lY ,s PL,
(3) d(f.lQ,flQ)=esa for euery Q(.%',
(4) Bnf*anlTe(D for euery QQ.{.

Proof.We define .f*:E r,ru("flX\Y). Then (1), (2), and (3) are satisfied.

One can find D and prove (4) in the same way as one obtained the relation yq€ G
in the proof of 2.14. Two auxiliary results will be proved next. The first one, (2.17),

implies that f* is an embedding.

Let M:M(n). Define as:4ö*clcr€(Q, l) and a:(l-ao)-r. We show that

lE, -,(a a(r)) - f (o a1x)) l/so

2ö,-r sn/sg =- 2242+ 
t ä, -,

(2.17)
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if x(Q€tr and y€.y\aaJ"Q). Let Å:llf.t*)-f.o)l-lf@)-f0)1. Suppose
first that y(R€tr Then /<2ö*(sn+s*). If QnR*$, this implies, by 2.6,
/=2ö*(l-lc)qr=2öMQ+cNcrlf(x)-f1)l whereas if QnR:A, then 7!=-

4ö*crlf(x)-f(y)1. Suppose now that y€X\r. Then / =2ö*qr<2ö*crlf@)-f(.1)1.Thus / =aolf@)-f(y)l in all cases. Hence (2.17) holds.
Define bn:4ö*clq(2)q(2fn)€(0,1) and b:(l-b)-r. We show that

lf@) -f(v)ll b = lf* @) -f*O)l = b lf@) -f1)l
if Qe J{; x, y€anl" (2) o X, and l* - yl= )"a. Let A be as above. Then / < 4ö *clB r.
We may assume that lx-zel>)"a12. Then pr<r1Q)lf@)-f(rs)1. Since lx-zrl=
Zfi t n=2li l*-yl, we have ly@)-f(z)l=?tQfn)lflx)-fj)1. rhus /<
bol f@) -f(y)1, whence (2.18).

Now we prove thatf* is quasisymmetric. Since every g(D is quasisymmetric
and since an and fre are similarities, (4) implies that f*lurl'(2)aX is 4o-quasi-
symmetric for every Q({ for some 40 depending only on il, e,4, and e. Set qr(t):
sup {40(s)a(s')ls, s'€1, ss'=r} for t(L Then qr: I*R\ is bounded and non-
decreasing. If er=0, there is ä€(0, l) such that qs(ö)=e1lq\) and ,,(ä)=
etlqo(l), whence qr(ä')=er. Thus 4r(l)*0 as l*0. It follows that there is a
homeomorphism 4r: Åt**R'* with qr=qrll.

Let u, u, x€X, It *x, t :lu- xlllu - xl, and t' :lf* @) -f* (x)vlf* @) -f. (r)1.

We need an estimate t'=rl*(t). We divide the consideration into four separate

cases.

Casel. Let x€Q€tr and u,u€arl"(Z). Then t'=qo(t).

Case2. Let x(Q(ff,u€aal"(2), and u*ool"Q).

Subcase 2a: lu-xl>).r. Then, by (2.18) and Q.l7\,

I f * (u) - f 
* (x)l = bl f @) - f (x)l < bq (t) l f (u) - f(x)l

= abnU)lf*@)-f*(x)1.

Subcase2b: lu-xl-),o. Choose y(Q with lx-yl:)"a. Then lu-xl-
ly-*l=lr-xl. Hence by Subcase 2a,

r, lf*@)-f* (x)l lf.U)-,f.(x)lt : l|{A,)-f\x)l' W6=f@f

=r,(m)*r(H)=abqz(t)
Case3. Let xCQ(t, u{unl"(2), and u€anl'(2).

Subcase 3a: lu-xl=,in. Now

I f * 
@) - f 

* (x)l =- a 
I f @) - f (x)l = a tt Q) I f (u) - f (x)l

= sbryQ)lf. @) -f* (x)1.
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Subcase 3b: lu-xl=,in. Choose y(Q with lx-y|:Aa. Then by Subcase 3a

and since lu-;rl= ly-rl= lu- *1,

t' lf. U) -f* (x)l

lf . U) -f* (x)l lf. @) -f* (x)l

-< sb, (m) r'fiH) 1 abrr @ ry o(t )

Case 4. Let either x€Q€,t{ and u,u{anl"(2) or x€X\L Then by (2.17),

I f * (u) - f 
* (x)l = a I f (u) - f (x)l = a?t (t) I f (u) - f (x)l

= a' q (t)l f* (u) -f* (x)1.

Thus there exists a homeomorphism f 
*: Å1* *rR1 which depends only on

fl, Q,4, and e such that t'=rl"(t), i.e., such that f* is q*-qtasisymmetric. n

2.19. Remark. In Theorem 2.16 we assumed that Y is a manifold only in
order to be able to use the PL approximation results 1.7 and 1.9. However, for
Q*n:l this assumption is redundant, and for n>2, q>n+3 we could omit
it by 1.10.3 (cf. also 1.10.1). This remark also applies to 2.20 and 3.2.

2.20. Corollary. Let il, q, and 4 be as in 2.16. Then there exists a homeo-

morphism q*, R\*R\ with the followittg property: Let X,f, artd Y be as in 2.16

and let eeC*(Y). Then there exists an q*-quasisymmetic embedding f*: X*Rq
such that

(1) /.lx\r:/lx\r,
(2) f.lY is PL,
(3) lf.@)-f(x)l=e(x) for et:ery x(Y.

Proof. This follows from2.l6 (choose e:l) and 2.3. n
2.21. Corollary. Let (n,q) be admissible and let 4: R'*-R'* be a homeo-

morphism. Then there exists a homeomorphism q*: A'**Åt* with the following
property: Let UcR' be opefl, let f: U*Rq be an 1-quasisymmetric embedding,

and let eeC*(U). Then there exists an 4*-quasisymmetic PL embedding g: UtRq
such that lg(x)-/(x)l= e(x) for eaery x(U, §l|U:Jl|U, and, if l=n:q<3,
g():fU. Here f and § are the closed embeddinss U*Aa extending f and g, respec-

tiuely (cf. 1.2).

Proof. Let 4* be the homeomorphism of 2.20. It is easy to see that {./ is the

union of a subfamily of 9,which is locally finite in t/. Thus 2.20 gives an ry*-quasi-
symmetric PL embedding g: U*Rq with lg(x)-/(x)l=e(x) and lg(x)-f(x)l=
d(f(x),f|u) for every x(t/. Then g!u:Il\u. Suppose that n:q. lf V is a
component of U, we have 0gV:§0Y:lffY:0fV and gVcfV, whence gV:fV.
Thas gU:fU. D
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2.22. Theorem. Let (n,q) be admissible and let H>1. Then there exists

H">l with thefollowing property: Let XcR", let f: X-Rq be a weakly H'quasi-

symmetric embedding, let UcX be opert in R", and let e€C*(U). Then there exists

a weakly H*-quasisymmetric embedding f*: X-Rq ruch that

(1) /*lx\uJlx\u,
Q) f*lu is PL,
(3) lf*(x)-f(x)l=u(r) for euery x€U,
(4) I.l|U:jl|U, where f and f* are the closed embeddings A-Rq extending

flu ad f*lU, respectioely (cf.1.2),
(5\ f*U:fU if l<n:q<3.

Proof. lt suffices to prove the modification of Theorem 2.16 in which 4 is
replaced by H, q* is replaced by H*, the embedding/is only assumed to be weakly

ä-quasisymmetric, Y is assumed to be open in Å', and the embedding/+ is only

required to be weakly I1*-quasisymmetric. To this end, we modify the proof of
2.16 (in 2.5-2.18). We first observe that in this proof, with two exceptions, one

actually used, instead of the assumption that the embedding / is 4-quasisymmetric,
only the assumption that flQ'is 4-quasisymmetric fot everv Q€il, whete Q':
anl'(3)oX. The exceptions were (a) the proof of 2.6(3) and (b) the estimation of /'
in Cases l-4. Now let f and I/ be as in the present modification of 2.16, and let
tr be a cubical decomposition of )'with respect to X. Then Q':aaI"(3)cY
for every Qeff. It follows from [38, Theorem 2.16]thar flQ' is 4-quasisymmetric
for every Q(tr with 4 depending only on rt, q, and ä. Hence it suffices to re-

examine (a) and (b).

For (a) let Q(4 x<Q*, and y€X\aoJ'(1518). Choose u(t)uoJ"(1518)cX
with l*-ul=lx-yl. Then lf(x)-f(u)l=nlf@)-f(y)1. On the other hand, the

proof of 2.6(3) shows that lf(x)-f(u)l>-pnlc, where c:q(8lls)a(QlD{i+t).
Therefore os=Hclf(x)-fU)|. Hence 2.6(3) holds.

For (b) suppose that t<1. Then, proceeding as earlier, we get t'<4o(l) in

Case 1, t'<abH in Subcases 2aand3a, t'<qo(l)abH in Subcase 2b,and t'<azH
in Case 4; Subcase 3b does not occur. This implies that the embedding/* is weakly

fl*-quasisymmetric with ä* depending only on fl, 4, H, and e. D

3. PL approximation of bilipschitz embeddings in Euclidean space§

3.1. In this section we apply 2.16to proving bilipschitz analogues of 2.20 and

2.21. Both [41, Theorem 2.4] and [18, Theorem 3.1] are special cases of corollary
3.3 for l<n:4<3.

3.2. Theorem. Let (n,q) be admissible and let L--1. Then there exists

L">l with the foltowing property: Let XcR", let f: X-Rq be an L-bilipschitz
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embedding, let Y be an open subset of X which is the union of a subfamily of 9" locally

finite in Y and which is a manifold, and let e€C*(Y). Then there exists an L*-bilip-
schitz embedding f*: X*Rq such that

(1) /*E\r:/E\r,
(2) f.lY is PL,
(3) lf.(x)-f(x)l=e(x) for euery x€Y.

Proof. Every Z-bilipschitz embedding is ryr-quasisymmetric, qr.Q):L't. Let
D be the finite set of PL embeddings g: T*Rq, T<f", given by 2.16 with substitu-
tions (2, q)-(n,e),4*4t, e*ll3Lz. Let now X,f, Y, and e be asin3,2, By 2,3

there is a cubical decomposition ff of f with respect to X such that )"r=e(x) if
x(Q(tr. Then 2.16 gives an embedding f*: X*Rq such that (l) and (2) hold
and such that d(f*lQ,flQ)=qrl3Lz=Änl3L and firf*unlTa(D for every Q<tr
It follows that also (3) holds.

There is Io=1 depending only on n, q, and .L such that each 9€D is Zo-bilip-
schitz. We show that f* is Z*-bilipschitz with L*:maxQLLr,3L). Let x,y(X,
x*y, and set Å:lf*@)-f*(y)1, ä:lx-yl. If x,y€X\I, then llL</16<L.
lf x,yeuol"(2) for some Q(,%', then llö=srLolAn=LLo and /16>srlLole>-
tlzLLo. If x(Q(.{, yeR€,il; x{u*1"(2), and y{unl"(2), then ),r,),*=ö,
whence / = | f (x) - f (y)l + (l n+ ), 

^) 
I 3 L 

= 
(L + 2 I 3 L) ö and

Finally, let either x(Y, y ( Y or x{Y, y€Y. We may assume that x€Q€.tr and

y(r. Then Äa=ö andthus 2l3L</lö<L+1/3I. Hence/+ isZ*-bilipschitz:. tr

3.3. Corollary. Let n, e, L, and L* be as in 3.2. Let UcR" be open, let

f: U*Rq be an L-bilipschitz embedding, ond let e€C*(U). Then there exists an

L*-bilipschitz PL embedding g: U*Rq such thqt lg(x)-f(x)l-e(x) for euery

xQU, §l\U:Jl\tJ, and, if 1<n:q<3, gU:fU. Here f and § are tlrc closed embed-

dings U *Rq extending f and g, respectiuely. n

4. CAT approximation of embeddings in manifolds

4.1. Recall that CAT denotes either LQS or LIP. An immersion of a topological
space into another is a continuous map which is locally an embedding. The follow-
ing lemma for CAT:LIP and l<n:q=3 is very similar to 137, Theorem 1].

4.2. Lemma. Let (n, q) be admissible, let (A, B) be either QJ", J") or
(2JL, JI), let f: A*Rq be an embedding which is a CAT embedding oru a neigh-
borhood in A of a closed subset C of A, and let e€C +(B). Then there exists an embed-

ding f*: AtRq such that
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(l) /*1,4\B:/1,{\.B,
Q) f.lB ,^r PL,
(3) f.lu is a CAT embedding for some open neighborhood U of C in A,

@) lf.(x)-f(x)l=e(x) for euer1, x(8.

Consequently, f*lBvU is a CLT embedding.

Proof. We may assume that Cc(,a\.B)nB. Then there exists a compact
polyhedron X which is a neighborhood of C in A and such that flX is a CAT
embedding, Y:XaB is the union of a subfamily of 9,localtry finite in Y, and Y

is a PL manifold. Then also Yr:Ba^a\f ana YaY, are PL manifolds. Let

lr:l\1'(312); then er:d(fB,fAr)12>0. Deflne eo€C*(B) by

eo(x) : min (e (x), er, d(f(x),f(A\B»).

By 1.9 (or also by 1.10.2 if n:q:Z or 3) there exists ö€C+(Y) such that if
S€Uo61f, ä) is a PL embedding, there is a PL embedding g*(Uo(flB, eo) extending

g. Here d(x, y):lx-yl.
Now /lX is quasisymmetric if CAT:LQS or bilipschitz if CAT:LIP.

Hence 2.20 and 3.2 imply that there is a CAT embedding f1: X*Rq such that

fr(x)--.f(x) if x(x\I,filr is PL, and lf,(*)-f@)1=ä(x) if x(Y.
Let g* be the extension of g:fr|Y given above. Define /*:(/l,a\.8)ug+.

Then/* is a continuous injection, andf* satisfies (1), ..., (4) since /*lX:L. Since

d(f*B,f"AL)=er, we conclude lhatf* is an embedding. I
4.3. Remarks. 1. Suppose that l=n-q=J and (A,B):Q,J",J') in 4.2.

Then obviously f* B:fB. Moreover, Alexander's trick [34, Proposition 3.22(i)]

gives an isotopy H rel,4\.8 from f to f* (i.e., an embedding H: AXI*RqXI
of the form ä(x, t):(Hr(x),t) such that Ho:f, Hr:f*, and flr(x):/(x) if
(x, r)e (.4\.8)x1); then H,B:fB for every r(.tr

2. It is easy to see that if n:q:l and (A, B):QJL*, .rf) in 4.2, one can

choose./* in such a way that f* B:fB.

4.4. Theorem. Let CAT:LQS or LIP, let M and N be CAT manifolds

with 0N:0 such that M is n-dimensional and N q-dimensional with either n<1,
q>fl or n>2, q>n*3 or 2<n<q=:3, let UcM be an open neighborhood of a
closed set CcM, let f: M*N be an immersion such that flU is a CAT immersion,

let e: M\C*(0, -) be continuous, and let d be a metric defining the topology of N,

Then there exists a CNI immersion g: M*N such that

(t) glc:flc,
Q) d(s@),f(x))=e(x) for euerY x€M\C,
(3) gM:fM if n:q33 and 0M:0,
@) S is a C^t embedding if f is an embedding.
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Proof. In the case z:0 we can choose g:Jf since M is discrete. For the

rest of the proof we assume that n>-I, i.e., that (n, q) is admissible. Let ,il and 0
be the CAT structures of M and N, respectively. Replacing e by a smaller function

we may assume that for every x€M\C there is a chart (Z,rlt)eg such that

{t eN ld(v, f(x)) = e(x)}c z and {t Z : Rq'

Let 7r:(n*l)M(n), whete M(n):2' is the number given in 2'9. We con-

struct a locally finite family { of open relatively compact sets in M and functjons

ro, tL, ..., rp€C*(M\C) with the following properties:

(u) flV is an embedding for every Ve{.
(b) For each v€{ there is a chart (v,Exd such that Erv is either 2J"

or 2Ji. We set V*:E7'J" or V*:EiUf, respectively; observe that T*c'V'
Let ^//'*:{V"lVUr}.

(c) M\Uc v'//'*c v{ cM\C.
(d) {:ffv...u'/C, where each { 'consists of disjoint sets.

(e) rs * ... + rk-r-=rk: t.
(f) d(ftt)=inf rrV for every VQ{.
(g) If Ve{ and i=k, then 3 xtpriV<inf ri*rV.

To flnd "[ and the functions r;, r,I/€ choose first a closed neighborhood CrcU
of c in M. It iseasy to find an open cover,?/ of M\c consisting of chart neigh-

borhoods relatively compact in M\C and functions r0,...,rr€C*(M\C) such

that (e) holds, (a), (f), and (g) hold if { is replaced by %, and such that V nCr:fi
whenever Veoil and V+U. By [3], Lemma Z.7lthete is an open refinement 4l'
of 4l locally finite in M\c such that "//r :7//åw . . .vNli with the members of each

fibeingdisjoint. Then for each i<n there is a CAT homeomorphism g; of w$ll
onto an open subset Wi of Rn*. By 2.3 choose a cubical decomposition $ of 14,

with respect to Wi, and let 5,y,...,t,*<nl be its partition as in 2,9. For Q(trt
deflne Q*cW, by Q*:anI'(918) if Q^R"-a:$ and by Q*:aal"(918)nÅ!
if QaR"-t*0. Then QiaQ[:0 if Qr,QzQ.tri and Qr^Qz:g.For Q(trt
choose a PL embedding o: Q**11' such that oQ*:21" and oQ:l.(ll2) if
QaR"-r:O and such that 6Q*:2[n nRn*, o(Q* .,pn*r)-)Jn-t, and oQ:
I"(l12)aR"* if QaR'-L*fr. Let Vr:<p;to-L(2J") or Vr:E;Lo-LQ,Ii),
respectively, and let Eyo:oEilva. Then (Vs, vyr)Cil satisfies (b). Let

{,F,10<l=a} be a closed co-ver of M\C with dc villr;. Define

f,*61*i: {ValQ(tri,i, Q^QiFi* 0, Vs^Cr:0\'
Then '{.:fiv...v"/i is the required family (observo that each V€{ is contained

in some We{), presented in such a way that (d) is satisfied.

By (c) there is a closed cover {C"lV<{)v {Cr} of M such that CrcV*
for each VQ{ and such that CcCoc.(I. Let '%:{U}, and define a closed set

Ci : v {CylV€%u...v !i} for 0 <i< k.

We prove Theorem 4.4 by showing that there is a sequence f:fo,fr, -..,f0 of
continuous maps M*N such that
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(i) I is a CAT immersion on a neighborhood of C'if O<i=k,
(i\ rt17 is an embedding if V('1" and O<i=k,
(iii) I is an embedding, O=i=k, if /is an embedding,
(iv) d(f;V)<inf r,V if V€{' and O<i=k,
(v) d(flx),rt-r(",r))=r;-1(x) if x(M\C and 1<i=k,

(vi) f,(x)-f.-r(x) if .x€M\ v{V*lv€"t\} and I =i<k.
We have already set fo:f' this satisfies (i), ..., (iv). Assume that l<m<k

and that we have defined I for 0<i<m-7 satisfying (i),..., (rD. Let V({;
and ev>O; we specify e, later. If x,y(V, by (iv), (v), and (e), we have
d(f^-r1),f(x))=ro(x)*...*r,-.(x)<e (x). Hence there is a chart (Z,r|)€o sach
that f*-rVcZ and rltZ:Rq. Set A:qrV, B:E.V*, h:rltf^.r.Eia: A*Rq,
and X:ev(VaC*-t). Then å is an embedding by (ii), X is closed in A,andhis
a CAT embedding on a neighborhood of X in A by (i). Let ä>0. Then 4.2 gives
anembedding h*: A*Rq suchthat h*:h on ,4\8, h*lBvE isaCATembedding
for some open neighborhood E of X in A, and d(h*,h)=.$. It follows that ff :
r!-'h* Er: V *N is an embedding which is a CAT embedding on a neighborhood
of Vng-:(Vorn-t)vCn and coincides with f^_, on Z\Z*. We choose ä
so small that d(ff (x),f*-r(x))=.e, if x€V. Wenowrequire that ry<minr*-rT*.
Since {W<{lWaV*0} is finite, we can also require, by (ii), that

tv 5 i a(f**r(w^v*), f^-r(r\rr)) if w€r and wnv * g.

By (iii) we can require the stronger condition

, f*-1(M\V))
if /is an embedding.

We choose a map ff : V*N as above for each VC'n.Then we can define a
continuous map f^: M*N by

x(v('n,
otherwise.

Clearly f^ satisfies (vi), (i), (v), and, by (g), also (iv). To prove (ii) and (iii), assume
first thatlis an embedding. lf V(n, xqV*, and y€(M\Z)\u{W*)W€'f,,},
then

d (f^(x), f^(y)) = d (f_ _ r(x), f_ _ r(y)) _ e,

=_ f, d. (f* _ r(x), f^ _ r(y)).

lf V,WQ'n,Y#W,xQV*, and y(W*, then

d(f*(x), f*(v)) > d(f*-l(x), f,,-r(y)) -ty-tw

Ey = + d(f*-.v*

r*(x):{fj:ir"

1 d(f*-l(x), f*-r(y)).
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It follows that f- is an embedding. In exactly the same way one sees that f*lW
is an embedding for every W€{ it f is only assumed to be an immersion. We

have now constructed the sequence fo,...,f0.
Consider g:fo. By (i), g is a CAT immersion of Ck:M into 1[. Further.

(vi) implies (1), (v) and (e) imply (2), and (iii) implies (4). Finally, suppose that

l=n-q=) and AM:O. Then in the above construction -flV:f^-rY for each

VQ'r;, whence f,,M:f*-1M. Thus gM:fM. n

4.5. Remark. Theorem 4.4 holds for fl:4:1 even if the supposition åN:0
is omitted, and we can choose g in such a way that gM:fM even if 0M#0.
By 4.3.2 this follows from the proof of 4.4, the only modification being that one

also allows the possibility {rZ:RL* in addition to rtrZ:RL.

4.6. Corollary. Euery CNI n'manifuld, n>0, ls CAT homeomorphic to a

closed subset of R2u+1.

Proof. This follows from l.l5 and 4.4. n
4.7. Remark. We give a stronger embedding result in 4.11. Corollary4.6

implies that for erery cAT manifold (M,il) there is a metric d on M such that
id: (M,,il)*(M, d) is a CAT homeomorphism, in which case (M, d) is a metric

CAT manifold. This shows that the two definitions of CAT manifolds are essentially

equivalent. (To get full equivalence, we should identify tu,o metric CAT manifolds

M.:(M, dr), i:1, 2, whenevet id: Mr*M, is a CAT homeomorphism.) It follows

that the category of metric spaces and CAT immersions is a natural category in the

sense of 142, 1.91.

4.8. Corollary. Euery component of aCAT l'manifold rr'CAT homeomorphic

to exactly one of thefollowing CAT |-manifolds: (0,1), [0, l), 10,tf,012. tr

4.9. Coroll ary. Let M and N be homeomorphic CAT n'manifulds, il=3,
and suppose that 0M:0:0N if n:2 or 3. Then M and N are CAT homeomor'

Dhtc. I I

4.10. Corollary. If n:2 or 3, euery CNT n-manifuld without boundary is

C1lI honteomorphic to a closed C--dffirentiable submanifuld of R2".

Proof. This follows from the proof of l.l7 and 4.9. n

4.11. Corollary. Euery CAT n-manfold, n>|, can be closedly CAT embedded

into Rzn.

Proof, The case a:l follows from 4.8 and the case n:2 or 3 from 1.4 and

4.10. If n>4 (or, in fact, if n+2), then 4.11 follows from 1.17 and4.4. n

4.12. Corollary. If M is a LIP n-manifuld, n>1, tltere is a closed locally

LIP flat LIP embedding f: M*Rs".
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Proof. -this follows from 4.1I and 126, Corollary 4.81. ll
4.13. Corollary, Let rt>O, q>2nal, and let M be a LIP n-manifuld, N

a LIP q-mantftld, f: M*N continuous, CcM closed, U a closed neighborhood
of C, flU a closed UP embedding, fCcint N, and Ql an open couer of N. Then

N(f,tU) contains aLlP embedding g: M-intN with glc:flc.
This also holds if LIP is replaced åy LQS and C:0.

Proof. We ulay assume that fMcint l[ by 125, Lemma 2.3 and 1.2). By 1.13,

flu is a Zo-embedding. Hence we may assume by l.l2thatf is an embedding.
The corollary now follows from 4,4. n

4.14. Remarks. l. Consider the case CAT:LIP. The special case of 4.4
in which n:q=3 and/is a homeomorphism is [37, Theorem 2]. There the result
is stated for manifolds with boundary, but the proof is only valid for manifolds
without boundary. However, the first-named author could reduce (using 4.14.6)
the case with possibly 0M=0 to the case |M:A. Another proof will be men-
tioned in 4.14.3. Corollary 4.6 solves affi.rmatively [26, Problem 9.1(1» and with
4.11 improves [26, Theorems 4.2 and 4.5], which only give a closed LIP embedding
of a LIP n -manifold irlo 4r(r+r) (z=1). Similarly 4.12 improves [26, Theorem 4.9].
In [4], Theorem 3.8], 4.9 is proved for 2-manifolds with boundary. In fact, f4l,
Theorem 3.fl and PL approximation results imply a (stronger) special case of 4.4
for these manifolds.

2. Theorem 4,4 for CAT:LQS, n:q<3, and f a homeomorphism was con-
jectured in 137, §4, p. 1381. Corollary 4.6 for CAT:LQS solves a problem in
144, 4.31. The result that every compact metric LQS manifold can be quasisym-
metrically embedded into a Euclidean space also follows from [1, Remarque 2,
p.732, and Proposition 2 (h), (i)l by [38, Theorem 2.10](cf. also [38, Remark 3.20]).

Kuusalo [21] and Cannon [9] have considered orientable quasiconformal 2-mani-
folds. They did not assume that these are metrizable, but they supposed there to
exist a locally quasiconformal atlas the dilatations of whose coordinate changes
have certain boundedness properties. They proved that these manifolds have a
locally quasiconformally equivalent conformal structure and, hence, are metrizable.
In particular, a corollary of [21, Satz 3] is that, in our terminology, every orientable
connected LQS 2-manifold without boundary is LQS homeomorphic to a Riemann
surface; cf. 4.10. The metrizability result is generalized for n>2 in 1221.

3. Tukia and Väisälä [39, Theorems 4.4 and 4.8] have recently proved, using
Sullivan's methods [36], that if M, N are CAT manifolds with dim M*4+dim0M,
every homeomorphism of M onto N can be relatively approximated by CAT homeo-
morphisms. Sullivan proved this in [36, Corollary 3] for LIP manifolds without
boundary. In [4, Theorem3.ll] one proves that every CAT manifold satisfying
the above dimension condition and homeomorphic either to A', S', or ,I' is CAT
homeomorphic to it. Earlier this was proved for CAT:LIP in p6, Section 81.
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4. We can omit the hypothesis åI[:0 (but still have gMc.intN) in the
weaker formof 4.4whera c:0 and (3) is omitted, provided thatthe map M*fM
deflned by/is proper (which is satisfled if/is an embedding). To see this, observe
first that snce fM is locally compact, we may assume that fM is closed in N, in
which case by [19, Lemma, p.47]there is ä(c+(ff) with ä(/(x))=e(x)lz if x(M.
Then, using a collar of åN in N, we can construct an embedding h: N*N in
ud(idN,ä) with hNcntN (125, Lemma2.3l). Hence 4.4 gives a cAT immersion
g: M*N such that gMcintN, 4.4(4) holds, and S€Uo(hf,el2), whence
sCUo(f, e).

5. I-et (ru, q) b admissible, M aCATn -manifold, Na pL 4-manifold, f: M*N
anembedding, a€C+(M), and dametricforNsuchthat id: N*(ÄLd) isaLIp
homeomorphism. Then uo(f,") contains a cAT embedding g: M*N such that
there is a closed subset Y of gM whose n -dimensional Hausdorff measure is zero if
CAT:LQS or whose Hausdorff dimension is < n-l if CAT:LIp and for
which gM\r is a PL submanifold of N. rn fact, since we may assume that 0N:0
by 4.14.4, the proof of 4.4 gives the required g if one chooses (I:0 and each
(Z,r!) such that rlr is PL. To see this for cAT:LQS, one can use the fact ([43,
Theorem 4.ll)that every quasisymmetric image in.R, of an open set in R!, p=n,
has zero Lebesgue measure.

6. Suppose that l=n-q=3, 0M:0, and that / is an embedding in 4.4.
Then the construction of g allows one also to construct, by 4.3.1, an isotopy ä
relC from / to g such that H,M:fM if t(I and d(H,(x),f(x))=e(x) if
(.rc, t)e (M\C)xL

tlI

t21

t3l
t41
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