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MEROMORPHIC SOLUTIONS OF THE RICCATI
DIFFERENTIAL EQUATION

STEVEN B. BANK, GARY G. GUNDERSEN and ILPO LAINE*

§ 1. Introduction

The special position of the Riccati differential equation
(1.1) w =a(z)+b(@)w+c(z)w?

with rational coefficients within the collection of birational differential equations
w’=R(z, w) was first established by J. Malmquist in his classical paper [11]. It has
been more then twenty years since the appearance of the fundamental work con-
cerning the Riccati differential equation in the complex domain by H. Wittich in
his four articles [13], [14], [15] and [17] and the respective parts of his monograph
[16]. This work done by H. Wittich was preceded by work of K. Yosida (see, e.g.,
[19]) and followed by work of E. Hille [5]—[8], C.-C. Yang [18] and K. Yosida [20],
among others (see, e.g., [9], [10]).

Of course, many important problems concerning the Riccati differential equa-
tion (1.1) and its solutions still remain open. For instance, it has been largely open,
under what conditions a Riccati equation (1.1) with meromorphic coefficients which
are not all entire, actually admits meromorphic solutions in the complex plane.
This article is mainly devoted to presenting some contributions to this problem.
We should perhaps point out here that the problem of whether such meromorphic
solutions are rational or transcendental in the case when the coefficients are rational,
has been treated earlier by H. Wittich [13] and [17].

In this article, the term “meromorphic function” means meromorphic in the
whole complex plane, unless otherwise explicitly stated. Almost all of our treatment
is concentrated in the special case of (1.1):

(1.2) u = A(z)+u?
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Foundation (MCS 78-02188 and MCS 80-02269). The work of the third author was also supported
in part by a research grant from the Finnish Academy.
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with A4 (z) meromorphic. This can be motivated in the following way. If c¢(z) 0,
then the transformation

_ 1 b @)
(1.3) YEI@" T 2¢(@) " 2e(2)

transforms the general equation (1.1) into the special case (1.2) with

b b 3() b ¢

(149 a=a—iprz-7(5) 55435

see [16], p. 77. The special case (1.2) may be considered as a normal form of the
Riccati differential equation (1.1) with ¢(z)#0. Because of our main problem,
this specialization means r.o loss of generality. In fact, a solution w of the Riccati
differential equation (1.1) is meromorphic (resp. rational) if and only if the cor-
responding solution of the differential equation (1.2) is meromorphic (resp. rational,
if all coefficients of (1.1) are supposed to te rational).

In §2, we give some criteria for the existence of meromorphic solutions of
(1.2). This section is mainly of a technical nature, to be applied in §§ 3—6.

In §§ 3—5, we assume that A(z) is entire. It is well-known that all solutions of
(1.2) are meromorphic functions in this case ([4], Satz 4.5). The main results in
this part are as follows. In § 3, we are dealing with the general case (1.1) with con-
stant coefficients. Using the Schwarzian derivative, we prove that all nonconstant
solutions of the Riccati differential equation (1.1) with c(z)=c#0 are either trans-
cendental meromorphic functions or Mobius transformations. In §4, we assume
A(z) to be a nonconstant polynomial of degree n. We prove that if n is odd, all
solutions of (1.2) are transcendental (see also [13], p. 285), while if » is even, then
(1.2) admits at most one rational solution. Moreover, any finite set of distinct
points in the complex plane can be the pole set of a rational function satisfying
a differential equation of the form (1.2) with A(z) a nonconstant polynomial. In
§ 5, A(z) is assumed to be transcendental entire. In this case, the relation A=u"—u?
shows that all solutions of (1.2) are transcendental, and that the order of any mero-
morphic solution is at least the order of 4. We prove that if A(z) is a transcendental
entire function, then for any positive function ¢(r) on (0, +<) satisfying the
condition that limsup,_ ., (loglog ¢(r)/logr)<1, the equation (1.2) possesses
at most two distinct meromorphic solutions u;, u, which satisfy the condition
T(r,u)=0(p(T(r, A)) for j=1,2, as r—+o outside a possible exceptional set
of finite linear measure. If the order of A4(z) is finite, then the equation (1.2) admits
at most two distinct meromorphic solutions of finite order. In addition, when
A(2) is of finite order, the number of entire solutions of (1.2) is at most two.

Our final section (§ 6) comprises a major part of this article. Supposing A(z)
in the differential equation (1.2) to be non-entire, it appears that the maximum num-
ber of distinct meromorphic solutions of (1.2) depends on the highest of the multi-
plicities of the poles of A(z). More precisely, if all poles of 4(z) are simple, then
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(1.2) admits at most one meromorphic solution, and if A4(z) possesses at least one
pole of multiplicity =3, then (1.2) admits at most two distinct meromorphic solu-
tions. The case where 4(z) admits at least one double pole and no poles of higher
multiplicity, appears to be the most complicated. If 4(z) has a double pole at z,
with the Laurent expansion

A(2) = p(z—z9) 2 +..., B =0,
and if
B = {l—n?n is an integer = 2},

then the existence of a double pole of 4(z) with 4f¢ B indicates th-t the Riccati
differential equation (1.2) admits at most two distinct meromorphic solutions.
The maximum numter of distinct meromorphic solutions reduces to one, if there
exists a double pole of 4(z) with 48=1. The case where all double poles satisfy
48€ B remains somewhat problematic. A series of examples, beginning from Exam-
ple 6.6, illustrate the various possibilities which may occur in the framework of
§ 6, including the possibility of non-existence of meromorphic solutions. The authors
would like to thank here their colleague Matti Jutila, University of Turku, who
pointed out some number theoretic information needed to discover Example 6.6.c.

§ 2. Existence of meromorphic solutions

In this section we shall consider the special case
(1.2) u = A(z)+u?

only, for reasons described in § 1. We should perhaps point out that Proposition 2.1
will be improved in Theorem 2.5.

Proposition 2.1. If the Riccati differential equation (1.2) with A(z) mero-
morphic possesses at least three distinct meromorphic solutions u,, u,, s, then the
equation (1.2) possesses a one-parameter family (uc)ccc of distinct meromorphic
solutions with the property that any meromorphic solution u=u, of (1.2) satisfies
u=uc for some CcC.

Proof. Suppose that u;, u,, us are three distinct meromorphic solutions of (1.2)
and denote
wy = (U —up) ™t wy = (uy—uy)n

Clearly wy, w, both satisfy the linear differential equation

2.1 w+2uw = 1.
Denoting further
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we get
2.2) U5+ 2u v, = 0.

Let us consider the family of distinct meromorphic functions,
we = wy+Cry, CEC.

For any C€C, the function w is a solution of the differential equation (2.1). There-
fore w.70. Hence
Ue = uy—(we) ™t

is a meromorphic function. An elementary calculation shows that u satisfies the
differential equation (1.2). Finally, the meromorphic functions (u¢)c¢ ¢ are distinct,
since the functions (W) ¢ are distinct.

On the other hand, let usu; te any meromorphic solution of (1.2). Clearly
w=(u, —u)~? satisfies (2.1) and

W/ve)” = 1/vg,  (W1/vy)” = 1/v,.

(W/ve) = C+(wy/vy)

Therefore

for some complex constant C. Hence

w = w;+Cvy = w¢
resulting in u=uc.

Remark 2.2. By the above proof, all solutions of (1.2) are rational as soon
as (1.2) possesses three distinct rational solutions. This is a well-known result
due to H. Wittich ([17], p. 284). One should perhaps note already here, that (1.2)
may possess a one-parameter family of meromorphic solutions such that these solu-
tions are transcendental except for two, one or no exceptions. This follows by the
subsequent results and examples.

Proposition 2.3. Let uy and u, be two distinct meromorphic solutions of the
differential equation (1.2) with A(z) meromorphic. If all poles of u, and u, are simple
and the residues of 2u, (resp. 2u,) are integers at all poles of u, (resp. u,), then the
equation (1.2) possesses a one-parameter family (Uc)cec of distinct meromorphic solu-
tions with the property that any meromorphic solution u=u, satisfies u=u; for
some CeC.

Proof. Clearly wy=(u;—u,)~* satisfies the linear differential equation
2.1 w4+ 2uw = 1.

Since 2u, has only integer residues, there is a meromorphic function y in the com-
plex plane such that 2u;=)"/y, see, e.g., [12], p. 193. Therefore (2.1) may be
written as

(2.3) w (' [y)w = 1.
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All solutions of (2.3) are meromorphic. In fact, w, is a particular solution of (2.3)
and the solutions of the corresponding homogeneous linear differential equation
w'+()’[y)w=0 are plainly meromorphic. The family of distinct solutions of (2.3)
may be written

we = wo+Cy~L,

where CeC. A straightforward calculation proves that
uc =uy—(we+Cy=H™!

satisties (1.2) for all complex constants C. Finally, the meromorphic functions
(uc)cec are distinct, since the functions (wc)c ¢ are distinct.

On the other hand, let u#u; be any meromorphic solution of (1.2). Clearly
w=(u; —u)~! satisfies (2.3). Hence

(u—u)™' = wy+Cy~*
for some C¢C, resulting u=uc.

Proposition 2.4. Suppose that the differential equation (1.2) with A(z) mero-
morphic admits a meromorphic solution u, such that at some pole of u, the residue of
2uy is not an integer. Then (1.2) possesses at most two distinct meromorphic solu-
tions.

Proof. Suppose (1.2) possesses three distinct meromorphic solutions u;=u,,
uy and ug. Following the proof of Proposition 2.1 we may write the formula (2.2)
in the form
vy/vy = —2u,.

Therefore the residues of 2u, would all be integers and we have a contradiction.

The following theorem may be considered as a summary of the preceding
propositions. One should note that its complete proof will be postponed until
§6.3.

Theorem 2.5. a) If the Riccati differential equation (1.2) with A(z) meromorphic
admits an entire solution uy, then all solutions of (1.2) are meromorphic functions.
The collection of these meromorphic solutions has the form U=u; 0 (Uc)ceer Where
(Uc)cec is a one-parameter family of distinct solutions of (1.2) with the property that
u,#uc for all CeC.

b) If all meromorphic solutions of the Riccati differential equation (1.2) with A(2)
meromorphic are noi-entire, then the following possibilities may occur:

If (1.2) admits a meromorphic solution u, such that either
(1) u, has a pole of multiple order =2 or
(i) u; has at least one (simple) pole such that the residue of 2u; at this pole is not
an integer, then (1.2) has at most two distinct meromorphic solutions.
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Finally, if all meromorphic solutions u of (1.2) have just simple poles such that all
residues of 2u are integers, then
(ili) the equation (1.2) has at most one meromorphic solution or
(iv) all solutions of (1.2) are meromorphic functions and, supposing u, to be a partic-
ular (non-entire) solution of (1.2), the collection of all meromorphic solutions has the
same form as in part a).

Proof. a) Since u, is entire, A=uj—u] is an entire function. Therefore all
solutions of (1.2) are meromorphic functions ([4], Satz 4.5). To prove the second
assertion, we may solve the equation (1.2) explicitly. In fact, let v be a primitive of
2u, and F te a primitive of ¢”. Then all solutions of (2.1} are meromorphic and
they can bte represented in the form

w=e Y(C+F),

where C is a complex constant. Immediately we may verify that all meromorphic
functions of the form
(2.4) ue = u,—e’(C+F)1

satisfy the equation (1.2). Conversely, any meromorphic solution u#u, of (1.2)
is of the form (2.4) for some complex constant C. b) Proposition 2.3 proves the
cases (iii) and (iv) immediately. Similarly, Proposition 2.4 proves the case (ii).
Finally, the case (i) will be postponed until Corollary 6.13. See also Remark 6.14.

§ 3. The Riccati differential equation with constant coefficients

The Riccati differential equation (1.1) with constant coefficients a(z)=gq,
b(z)=b, c(z)=c#0, is particularly simple, elementary and well-known. Therefore
the following proposition actually contains nothing new. However, we have not
found in the literature the following simple idea about using the Schwarzian deriva-
tive in this connection.

Proposition 3.1. The Schwarzian derivative
S(w) = (W)W =5 (w’/w)*

of all nonconstant solutions w of the equation (1.1) with constant coefficients such that

c#0 is a constant:
S(w) = (dac—b?)/2.

Therefore, all nonconstant solutions of (1.1) are either transcendental meromorphic
functions, if S(w)#0, or Mdbius transformations, if S(w)=0.

Proof. The first assertion follows by a straightforward calculation. For the
second assertion, we have to prove that the Schwarzian derivative S(R) of a rational
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function R is a constant if and only if R is a Mdbius transformation. To this end,
let R be a nonconstant rational function such that S(R) is a non-zero constant,
say a. Then f=R”/R’ is a rational solution of the differential equation

(3.1) [ =a+3fr

This implies an immediate contradiction. In fact, the constant solutions of (3.1)
result in
R(2) = C; + CpexV =22

and this is never a nonconstant rational function. On the other hand, the non-
constant solutions of (3.1) are never rational.

§ 4. The equation ' = A(z)+u® A(z) a nonconstant polynomial

It is well-known that all solutions of the differential equation
(1.2) u = A(z)+u?

are meromorphic, as soon as A(z) is a polynomial ([4], Satz 4.5). The following
theorem can be considered as a completion of the earlier results due to H. Wittich,
see [13] and [16].

Theorem 4.1. Let A(z) be a nonconstant polynomial of degree n. If n is odd,
then all solutions of the differential equation (1.2) are transcendental meromorphic
Sfunctions, and if n is even, then (1.2) admits at most one rational solution. Moreover,
given any finite set E of distinct points in the complex plane, there exist a nonconstant
polynomial A(z) and a rational solution u of the corresponding differential equation
(1.2) such that the set of finite poles of u coincides with E.

Proof. Let u be any solution of (1.2). Then u is a meromorphic function such
that all poles of u are simple and the residue of u at all poles is —1. Therefore
there exists an entire function g such that u= —g’/g. Clearly g satisfies the linear
differential equation

(4.1) g’+4(z2)g =0.

If the degree n of A(z) is odd, then g has infinitely many zeros, since the order of
g is (n+2)/2 by the Wiman—Valiron theory. Therefore its logarithmic derivative
cannot be rational, hence ¥ must be transcendental (see [13], p. 285, where this result
was already mentioned). Let then n be even and let u;, u, be two distinct solutions
of (1.2). Then u=—gj/g; and u,=—gj/g, for some entire functions g;, g,. Since
u; #u,, the entire functions g, g, must be linearly independent. By [1], Theorem 1,
at least one of g;, g, possesses infinitely many zeros. Thus the corresponding solu-
tion of (1.2) is transcendental.
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To prove the second assertion, suppose first E=@. Then we have only to
take any nonconstant polynomial P(z). The polynomial P(z) satisfies (1.2) with
A(z)=P’(z)— P(z)% Suppose now that E consists of one point only, say «;. Then,
for any nonconstant polynomial P(z) possessing a zero at z=a,, the rational
function u(z)=—(z—oa;) '+ P(z) satisfies (1.2) with A(Z)=P'(z2)—P(2)*+
2P(z)/(z—,). Clearly 4(z) will be a nonconstant polynomial.

Before going to prove the general case, we first derive a necessary condition to
be satisfied before a rational function

4.2) u(zy=- 2 Z—la-+P(z), P(z) polynomial,
i=1 <4 &

can be a solution of (1.2) with a polynomial coefficient 4(z). Clearly the degree of
A(z) must be at least 2 and the degree of P(z) at least 1. A straightforward calcula-
tion gives
A(z) = u'(2)—u(2)* = P'(2) - P(2)*+0Q(2),
where
n 1 n 1 1

0(z)=2P(2) 2 ———-2 2 ,
i=1 Z—«

i ij=1 Z—0; Z“Olj

i<j
is to be a polynomial. Evaluating Q(z) we obtain

(=)™ | (=)
e

0(2) = 2P(z)éiz+a'+2 >

i, 721 z—q; z—u;
i<j
noo2 1 1 1 1
= 2 (P(z)-i— +.o.+ + +..+ )
k=1 2% 0 — % -1 % Oy 0 %y — Ay
Hence the necessary conditions are
. 1 1 1 1
(4.3) P(w) = ——+...+ + ot
=% O —Og—1 O —Op+1 O — 0ty

for k=1, ..., n.

To prove the second assertion in the general case, let E contain at least two
points, say E={u,...,,} with n=2. We may determine the coeflicients
Bos «oes By of the polynomial

n—1

(4.4) P = 3 bz

in such a way that the rational function (4.2) using o, ..., «, from the given set £
and the polynomial (4.4) is the rational solution we are looking for. In fact, an
application of (4.3) results in a linear system of equations

(4.5) Bot+Bioi+ ..+ By (@)' "t =Pa), i=1,..,n
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The linear system of equations (4.5) has a unique non-trivial solution, since its
determinant is non-vanishing being the well-known Vandermonde determinant.
Therefore (4.5) defines a rational function

u@=—3—

i=1 Z2—%;

n—1 X
+ 2 Biz'
i=0

solving the equation (1.2), where

4 =[5 g} (5 02) oo

Example 4.2. If E={—1,0, +1}, the above procedure results in

This rational function satisfies the Riccati differential equation

, 219 .,
u ~—-—2——'—4‘Z “+us.

§ 5. The equation u’ = A(z)+u®, A(z) transcendental entire

In this section we apply the standard notations and results of the Nevanlinna
theory, see, e.g., [3]. Specially, the abbreviation n.e. means “everywhere in (0, + <)
outside a possible exceptional set of finite linear measure”.

Again, all solutions of the differential equation

(1.2) u = A(z)+u?

are meromorphic functions. Because of the relation 4=u"—u? they must be tran-
scendental. Let o denote the order of A(z). From the same relation we observe
that the order o () of any solution u of (1.2) satisfies ¢(u)=¢. We now obtain the
following

Theorem 5.1. Let ¢(r) be any positive function on (0, + <) satisfying the
condition

. loglog ¢ (r)
(5.1) ll?*ﬂlp—l%r— < 1.

If A(2) is a transcendental entire function, then the equation (1.2) admits at most two
distinct meromorphic solutions u,, u, that satisfy the condition

(5.2 T(r,u;) = o(p(T(r, A)) n.e. as r—oo
for i=1,2.
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Proof. Let uy, u,, ug be three distinct meromorphic solutions of (1.2) that
satisfy the condition (5.2). All poles of u,, if there are any of them, are simple and
the residue of u; at all poles is —1. Therefore there is an entire function g such
that u,= —g’/g. Since g satisfies the linear differential equation

(4.1) g'+A(2)g =0,
with A(z) transcendental entire, we conclude that

(5.3) T(r,A)=m (r, %J = O(logr+logT(r, g)) n.e.as r—oo.

Using the notation of Proposition 2.1 we get the equation (2.2) which may be
written as

(5.4) v—2(g'/g)vy = 0.

By (5.4), vy must be of the form

(5.5) S S S

ul—U2 ul—ll3

for some complex constant C0. From our hypothesis on ¢, there exist positive
numbers a<1 and R,(®) such that @(r)=exp (r*) for all r=R;(x). Applying
(5.5) we get therefore n.e. as r— the following inequalities for some real number
M=0:
T(r, 8) = o(@(T(r, A)) = o(exp (T(r, 4)%)

= o(exp [(M log T(r, g)+ M log r)*)
o(exp [M*(log T (r, g))*+ M log r])
= o(exp [log (T(r, g))*+ M log r])

= o(rM(T(r, 2))).

[IA

This yields immediately

T(r,g) =o(rM/=-%) ne as r—oo.
Because of (5.3) we then obtain

T(r,A) =O(logr) n.e. as r — oo,
This is impossible 4 (z) being a transcendental function.

Corollary 5.2. If A(z) is a transcendental entire function of finite order,
then the equation (1.2) admits at most two distinct meromorphic solutions of finite
order.

Proof. Let uy, uy, uz be three distinct meromorphic solutions of (1.2) of finite
order. We may follow the proof of Theorem 5.1 up to the formula (5.5). Therefore
g must be of finite order. But then (5.3) implies T(r, A)=0O(logr) which is
impossible.
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The following two examples (together with Example 5.6) show that Theorem 5.1
is essentially the best possible. Example 5.3 shows that in the condition
lim sup,_. ., (loglog ¢ (r)/logr)<1 the bound 1 cannot be increased, while Exam-
ple 5.4 shows that Theorem 5.1 does not hold in general, if 4(z) is a non-entire
meromorphic function.

Example 5.3. We consider the differential equation

(5.6) W= A(z)+ur with A(z) = ——i-— eprz

Then A(z) is a transcendental entire function such that T(r, A)=2r/n+0O(l) as
r—oo. Clearly the equation (5.6) is satisfied by

u(2)=3(1+e) and uy(2) = 5 (1 —e.
Applying the proof of Theorem 2.5.a) we find that all solutions u=u, of (5.6) are
(5.7 u(z) = %(H—ez)—ez[l—kCexp (—ed)]™ L, CeC.
Consider now the function ¢(r)=exp (2r*). Then

lim loglogo(™ _
r—  logr

Assuming O<A<1 the hypothesis of Theorem 5.1 will be satisfied. As r—oo
we obtain

o(ree. ) = exp 2( 2] +o(1))]
and
T(r, ) = —+0(1)
for i=1, 2. Therefore
T(r,u;) =o(p(T(r, A) as r —»oo

for i=1,2. Let now u#u;, i=1,2, be a meromorphic solution of (5.6). Then u
is of the form (5.7) for some C=0. Then

T(r,u)=eQn*r)72(14+0(1)) as r—oo,
see [3], p. 7. Hence we obtain in this case

,lir{i T(r, w)o(T(r, A)) =+ .

On the other hand, if 4A=1, then all meromorphic solutions of (5.6) satisfy the
condition
T(r,u) = o(o(T(r, A))) as r —eco.
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Example 5.4. We consider the Riccati differential equation

(5.8) u' = A(z)+u?* with A(z) = —E’i—j—ll)é—'
Then

up(z) = (e —=1)7"

is a meromorphic solution of (5.8). All other meromorphic solutions of (5.8) can
be written in the form

1 (1—e3)?

u(z) = + , CecC.
@) e —1 C——z—2e"+%e“2z

Choosing ¢(r)=exp (r*) with 0<i<1, we have

lim —log log o (r) =i=1
F>co logr

and

A -
o(T(r, 4)) = exp [(—27%-) (1 +o(1))] as 1 —>oo.
For any meromorphic solution u of (5.8) we have

T@r,u)= —:;L(H-o(l)) as 1 oo

and therefore
T(r,u) = o(@(T(r, A))) as r —eo.

Theorem 5.5. If A(2) is a transcendental entire function of finite order o,
then the equation (1.2) admits at most two distinct entire solutions.

Proof. Because of Corollary 5.2 it is sufficient to prove that the order o(u)
of all entire solutions u of (1.2) satisfies a(u)=0. To prove this assertion, let u
be an entire solution of (1.2) such that o(u)>o. Writing the equation (1.2) in
the form
(5.9 u*=u"—A(z)

we may apply a variant of the Tumura—Clunie theory to (5.9), see [1]. If o (1)< + <,
we infer
T(r,u) =m(r,u) = O(r°+e)

for all e=0 by [l], Sect. 7. Therefore we get o(u)=o0, a contradiction. Finally,
if o(u)=+ oo, then [1], Sect. 7, may be applied yielding

T(r,u) = m(r,u) = O(r***+log T(r,u)) mn.e. as r —oo.
Therefore
(5.10) T(r,u)=0(°"%) ne. as r —oo,
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It is now easy to prove that, for some r,, (5.10) holds for all r>r,. Hence o(u)=o,
a contradiction also in this case.

Example 5.6. Let ¢ be a nonconstant entire function. Especially ¢ may be
taken to be a polynomial. Let further 4 be a primitive of the entire function e® and
define g=—(@+Hh)/2. An elementary calculation proves that u;=—g’ and wu,=
—g’—Hh are two entire solutions of the differential equation

u = —%(h'2+g0'2—2(p”)+u2
of the form (1.2), where the coefficient standing for 4(z) is a transcendental entire
function, Clearly o(u))=0(u)=0(h)=0c('>+¢’>—2¢”). Therefore the number of
exceptional solutions in Theorem 5.1, Corollary 5.2 and Theorem 5.5 is the best
possible, as shown also by Example 5.3.

Remark 5.7. Concerning the distribution of poles of meromorphic solutions
of (1.2) when A (z) is entire, we have observed already that for a solution u of (1.2)
we have u=—g’/g, where g is an entire solution of the differential equation g”+
A(z)g=0. Hence the sequence of zeros of g coincides with the sequence of poles
of u, and so we can immediately translate the results in [1] concerning the distribu-
tion of zeros of solutions of g”+A4(z)g=0 into results about the distribution of
poles of solutions of (1.2).

To this end, let A(f, a) denote the exponent of convergence of the sequence
of a-points of a meromorphic function /. We have the following results from [1]:

(a) If A(z) is a nonconstant polynomial of degree n, then there is at most one
meromorphic solution u of (1.2) for which A(u, «)=(n+2)/2. If n is odd, then all
solutions of (1.2) satisfy A(u, «)=(n+2)/2.

(b) If A(z) is an entire transcendental function whose order o(A4) is a finite
number which is not an integer, then there is at most one meromorphic solution u
of (1.2) with A(u, «*) <o (4). The same conclusion holds (regardless of the order of
A(2)) if A(z) has the property that its sequence of distinct zeros has exponent of
convergence less than o (A4).

(c) In the case where A(d4, 0)<o(A4) the inequality A(u, <)=c(4) holds for
all solutions u of (1.2).

(d) For any o, where 0=0=cc, there is an entire transcendental function
A(z) of order o, such that the equation (1.2) admits an entire solution.
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§ 6. The equation u’= A4(z)+u? A(z) meromorphic non-entire

The existence of meromorphic solutions of
(1.2) u = A(z)+u?

with A(z) meromorphic and non-entire, has been somewhat problematic, even if
A(z2) is rational. It appears that criteria for the maximum number of distinct mero-
morphic solutions can be organized according to the highest of the multiplicities
of the poles of 4(z). Also the subsequent examples have been organized in this way.

6.1. All poles of A(z) are simple.

Theorem 6.1. If all poles of A(z) are simple, then the equation (1.2) admits at
most one meromorphic solution.

Proof. Let u be a meromorphic solution of (1.2). Since A(z) is non-entire,
the same conclusion holds for u. Clearly, all poles of u are simple and the residue
of u at all poles is —1. Thus there is an entire function g such that u=—g’/g.
As stated earlier, g satisfies the linear differential equation

4.1 g”’+A(z)g = 0.

Let g; and g, be two linearly independent meromorphic solutions of (4.1) and let
h denote the meromorphic function g,/g;. A simple application of Abel’s identity
results in A'=c(g;)~2 for some complex constant ¢=0. Let z, be a pole of 4(z).
By (4.1), g, and g, both must have a zero at z;. Suppose the zero of g; at z; is of
multiplicity p=1. Then (g,)~2 (resp. /1) has a pole of multiplicity 2u (resp. 2u—1)
at z,. If u=>1, then g, would have a pole of order u—1=0 at z, by the defini-
tion of 4. If then u=1, then g, would have a regular point at z, such that g,(z,) 0,
again by the definition of 4. Thus we get a contradiction for all u=1. Therefore
all meromorphic solutions of (4.1) must be linearly dependent, hence their logarithmic
derivatives coincide. The assertion follows immediately.

Example 6.2. If A(z) has exactly one simple pole and no poles of higher multi-
plicity, then the equation (1.2) admits exactly one meromorphic solution. In fact,
we may apply the Frobenius method (see, e.g., [6], p. 157) at the pole z, of 4(2) to
conclude that the linear differential equation g”+A4(z)g=0 admits a solution of
the form g,(z)=(z—z,) ¢ (z), where ¢(z) is an entire function. This follows from
the indical equation r(r—1)=0. Therefore u,(z)=—g7(z)/g:1(z) is a meromorphic
function satisfying (1.2). The solution may be either rational or transcendental.
In fact, the differential equation

u’=£—-1+u2
z
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admits a rational solution
u(z) = —l—}- 1,
z
while the differential equation

6.1) u =—+u?

l\][‘-‘

admits a transcendental solution. To see the latter assertion, we consider an entire
function g solving the corresponding linear differential equation

1
g//+_:_g= 0.

By the Wiman—Valiron theory (see, €.g., [16]) we may determine the order of g
resulting o(g)=1/2. Therefore g possesses an infinite number of zeros and u= —g’/g
is a transcendental meromorphic solution of (6.1).

Example 6.3. The differential equation

1
z(z+1) u

2

(6.2) W=

admits no meromorphic solutions. In fact, let u be a meromorphic solution of (6.2).
Then there is an entire function g such that u= —g’/g and that g satisfies the linear
differential equation

(6.3) g”.i..—___

By the Wiman—Valiron theory, g must be a polynomial, say
g(2)=c¢, 2"+, 12" +...+cy, ¢, #O.
Substituting g into (6.3) we get
(224 2)[n(n—1Dc,z" 2+ (n—1)(n=2)c,_1 2" 3+ .. ]4+ ¢, 2"+ ... +¢, = 0.
Collecting terms of degree n we obtain
nn—1)+1=0,

contradicting the fact that # is an integer.

6.2. A(z) admits at least one double pole.

At the double poles z, of 4(z) we consider the Laurent expansion
A(Z):ﬁ(z_zﬁ)-2+---’ ﬁ¢03
of A(z). We denote further

B = {l—n?n is an integer = 2}.
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Theorem 6.4. Suppose A(z) admits at least one double pole. If there is a
double pole of A(z) such that 4B ¢ B, then the differential equation

(1.2) u = A(z)+u?
admits at most two distinct meromorphic solutions. Moreover, if there is a double

pole of A(Z) such that 46=1, then the equation (1.2) admits at most one meromorphic
solution.

Proof. Let u be a meromorphic solution of (1.2). Clearly it must have a simple
pole at z,. Let the Laurent expansion of u at z, be

(6.4) u(z) =o(z—zp) t+..., a=0.
Substituting (6.4) into (1.2) we obtain

?+o+p =0
and therefore

6.5 20 =—1+V1-4p.

Clearly 2a is an integer if and only if 4f€Bu {1}. If 46¢ Bu {1}, then (1.2) admits
at most two distinct meromorphic solutions by Proposition 2.4.

Finally, suppose that 4(z) has a double pole at z, such that 4f=1. Let now
uy, u, be two distinct meromorphic solutions of (1.2). By (6.4) and (6.5) both of
them have at z, the Laurent expansion of the form

ui(z) = —%(z—zo)‘l—l—..., i=1,2.
Therefore u, —u, is analytic at z,, and we have
w(z,) # 0, where w = (uy;—uy)™L

By the equation
2.1 w4+ 2u (z2)w =1,

w must have a pole of multiplicity u=1 at z,. Substituting the Laurent expansions

W(Z)Zy(Z_ZO)_u+"" V#O,
and
wi(z)=—uy(z—zp) *~1+...

into (2.1) we obtain p=—1 which is impossible.

Remark 6.5. The case, where 48¢B at all double poles of A(z), remains
somewhat problematic, even if 4(z) is a rational function. Also, if there is a double
pole of 4(z) such that 4B¢ B, the framework given by Theorem 6.4 contains several
possibilities. The remainder of this section, consisting mostly of concrete examples
in both of the above cases, serves to illustrate some of these possibilities that may
occur.
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Example 6.6. The Riccati differential equation

’r__ ﬁ :Bl
(6.6) W=+ Gr 1P

+u?, where f,+#0, f;#0,

does not admit meromorphic solutions, if the coefficients fB,, B, are chosen con-
veniently.

Suppose u is a meromorphic solution of (6.6). Clearly u has simple poles at
z=0 and z=—1. The corresponding residues ry>%0 and r;0 satisfy the quadratic
equations
6.7 ri+r+B=0, i=0,1.

The function

T, r.
W@ =u@-"- L

does not vanish identically, because u(z)=ro/z+r,/(z+1) does not solve the equa-
tion (6.6). Moreover, w has only simple poles with residue —1. Therefore there
exists an entire function g such that w= —g’/g. Substituting

’

& g

T
u(z) = ?O'l'm p

into (6.6) and applying (6.7) we obtain after some calculation
(6.3) 2(z+1)g"=2(ro+(ro+r)z) g +2r,r1g = 0.

In both possible cases, r,+7r;%0 or ry+r,=0, we see by the Wiman—Valiron
theory that g must be a polynomial, say

g(2) =c,2"+cy1 2" ...+, ¢, #0.
Substituting into (6.8) and collecting all terms of degree # we get a quadratic equation
(6.9) n2—(2(ro+ry)+ 1)n+2ryr, = 0.
The selection of the coefficients f,, ;, will be done in four different ways.

a) Suppose first that 0<pf;=1/4 for i=0,1 and pB,+pB,>1/4. Then the
residues r,, r; are both real and the discriminant 4 of the quadratic equation (6.9)

satisfies
4 =1-4(By+py) < 0.

Therefore # is not real, which is absurd. Hence the equation (6.6) does not admit
meromorphic solutions in this case. Note finally that 4f,¢B for i=0,1. We
may have 4f=1 at both poles of A(z)=pf,z72+B,(z+1)72, resp. at one of the
two poles or resp. at neither of the two poles, just choosing, say, B,=p,=1/4,

resp. fo=1/4, f;=1/5 or resp. B,=p,=1/5.
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b) Supposing 4B,=1—n3, 4f,=1—n; for some integers n;=2, i=0,1, we
have 4B,6B and 4,€B. By (6.7) there are two possibilities for both of the residues
Fo» I1°

2ri+1=%n;, i=0,1.
From (6.9) we obtain
2n+1 = j:noinlil/m——_l,

with some combination of the three + signs. Choosing now g, 7, such that ni+
n?—1¢ {k*|k€ N} we infer that n cannot be an integer, a contradiction.

¢) The special case of (6.6) with 4f,=—48=1-7> and 4§,=— 15=1—-42
is perhaps of some interest. We may apply the preceding case b) to conclude that
all possible meromorphic solutions of (6.6) are of the type

r r
u(z) =?0+ z—ltl -

b

g
g

where g is a polynomial. The possible residues 7y, r, of u(z) at z=0, z=—1 will
be defined by
2ro+1 =£7, 2r;+1 =14,

and all possible degrees n of the polynomial g arise from

2n+1=+T+4L)VP+4—1=+7+4+8

with convenient combinations of the = signs. Since # is to be a positive integer,
four combinations are actually possible, determining then also r, and r;. These

combinations yield
ro =3, r,=3/2, n=1;

ro=3 rn=32n=9;
ro=3, r=-52 n=35;
ro=—4, r =372, n=2
Determining the coefficients of the polynomial g, we obtain the corresponding solu-

tions of the equation = —12z72—(15/4)(z+1) "2+ u*:

3 3 1
(2 =z G+0 Zren)

u (Z)——-?,--I- 3 6328414427 +8425+C
T T2+ ) T2 +1828+ 1227+ C(2+(2/3))°

" (Z)_i_ 5 35z4—4022+30z2—16z+5
2T 2(z+ 1) 728—102441022 =822+ 522

u(z)——iJ- 3 14z+18
) =TTV D) A8z 12
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Referring to Proposition 2.3 we remark that u,(z) arises from u.(z) with C=—3
and wu;(z) with C=0.

d) Finally, if 48,=1 and 4p,=1—nl¢B, the discriminant 4 of the quadratic
equation (6.9) must be of the form
4 =n3-1.
Therefore n determined from (6.9) cannot be a positive integer, a contradiction.
Thus the equation (6.6) cannot admit meromorphic solutions.

Example 6.7. Let g(z) be an entire function and B0 be a constant. We
consider the Riccati differential equation

(6.10) =g

dividing our considerations into several subcases.

a) If 48=1 and g(z)=0, the equation (6.10) admits exactly one meromorphic
solution, namely the rational function
1
u(z) = —Z .
b) Suppose then 4f=1 and g(z)0. By the Frobenius method, the linear
differential equation

” 1 7
(6.11) PTt—o +g(2)¢=0
possesses an entire solution ¢ 0. We observe immediately that

1 ’
u(z) = 5 q(z/))

is the only meromorphic solution of (6.10); see also Theorem 6.4. This solution
may be rational or transcendental, depending on g(z). For instance, the equation

1

/= 2 2
u in 24+ 24u
admits a rational solution
u(z) =—5-+2z
while the equation
.1
u = yp +14u?

admits a transcendental meromorphic solution. In the latter case, the linear dif-
ferential equation (6.11) takes the form

22"+ z¢p'+ 229 = 0.
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This will be solved by the Bessel function

S (__ 1)"'
Jo(2) = ~

D= 2 iy
of order zero. Since J,(z) is an even entire function of order one, it has infinitely
many zeros. Therefore

(z/2"

is a transcendental function.

¢) Let us consider now the case 4f¢ By {1} assuming that g(z)=0. By Theo-
rem 6.4, there exist at most two distinct meromorphic solutions of (6.10). Let
oy, oy be the (distinct) roots of the quadratic equation

(6.12) a2 +a+p =0.

Then we observe that the equation (6.10) admits exactly two distinct rational solu-

tions, namely
o Oy
u;(z2)=— and wu,(z) =—.
() =2 () = 2

d) Suppose now that 48¢ Bu {1} and that g(z)=20. Let again «;, o, be the
(distinct) roots of (6.12). By the Frobenius method, the linear differential equa-
tions

” 2ai ’ .
o __-Z_q) +g(z)(p=0, l:la 23

both admit an entire solution, say ¢,, @,, respectively, such that ¢;(0)=¢,(0)=1.
It is again an immediate observation that

o9 g uy(z) = 22— ?3(2)

(2= z 01(2) z ©,(2)

both satisfy the equation (6.10). Since ¢;(0)=¢,(0)=0, u; and u, have different
residues at z=0. Therefore u, and u, are distinct meromorphic functions. Again
rational and transcendental solutions may appear. To see this fact we consider some
specific examples.

We first consider the differential equation

> +i—zz+u2

solved by the rational function

3
uy(2) = —E—l—z.
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The second meromorphic solution u, of (6.13) must be of the form

190
S TN TEN

where ¢ is an entire solution of the linear differential equation

6.14) q)”+—21; ¢’+(§—22) p=0

such that ¢(0)=1. Now ¢ cannot be a polynomial, since otherwise ¢”/¢p and
¢’/¢ would tend to 0 as z—<o, and the differential equation (6.14) would give a
contradiction. Therefore we may apply the Wiman—Valiron theory to determine
the order of ¢ resulting o(p)=2. The equation (6.14) is also satisfied by h(z)=
@(—2). If (z) and ¢@(—z) were linearly independent, then all solutions of (6.14)
would be entire functions. This is impossible, since the indical equation r2—r/2=0
for (6.14) at z=0 implies that (6.14) admits a non-entire solution of the form
2?w(z), where w#0 is entire (see, e.g., [6], p. 157). Therefore we must have
@ (z)=Cqp(—z) for some complex constant C. Since ¢(0)=1, we find C=1 and
@ must be an even function of order o(¢p)=2. Suppose now ¢ has only finitely
many zeros. Therefore ¢(z)=P(z) exp (az?), where P(z) is a polynomial of degree
n. Since ¢@(z)=exp (az?) does not satisfy (6.14), we have n=1. Substitution into
the equation (6.14) results in

P’(2)

(6.15) m+4a222+4a21)(2)

P(zy 1 P'(2) 5
+E 116) +3a+—2-

= z2,

Letting z—< we conclude from (6.15) that
42 =1 and a(4n+3)=-75/2.

This is impossible because # is a positive integer. Therefore ¢ must have infinitely
many zeros and the solution u,(z) of (6.13) must be transcendental. .
Our second specific example is the differential equation

/_ 3 2
(6.16) u —W+1+u

admitting two distinct transcendental meromorphic solutions. In fact, the linear
differential equations given by the Frobenius method

” 3 ’ _
6.17) @ +qu +¢=0
and

” 1 ’ _
(6.18) v +—2—Z-1,0 +¥=0
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both admit an entire solution 0 and the corresponding meromorphic solutions
of (6.16) have the form

__ 3 ¢
R e

and

_ 1 v
us(2) =Tz V()

Let us consider more closely the solution u;(z). We may again prove u; to be tran-
scendental by showing that ¢ has infinitely many zeros. A similar reasoning as in
the preceding example shows that ¢ must be an even function. Now ¢ cannot be
a polynomial, since otherwise ¢”/¢ and ¢’/¢ would tend to 0 as z—<o, and the
differential equation (6.17) would give a contradiction. An application of the
Wiman—Valiron theory determines the order of ¢ resulting o(¢)=1. If ¢ has
only finitely many zeros, it must be of the form ¢(z)=P(z) exp (az), where P(z)
is a polynomial and a0 is a constant. This is absurd, since ¢ is to be even. Finally,
we may apply a similar reasoning to prove that u, is transcendental just using (6.18)
instead of (6.17).

€) Suppose now that 48¢B and that g(z)=0. Then the equation (6.10) has
the form
,  1—n?
T 4z

+u?,

where 7 is an integer =2. This equation has rational solutions only, namely the
function
n+1

2z

u(z) =—

and the one-parameter family of rational functions

-1
u(z)=—n2+21—[CZ"+1——%] , ceC.

f) Finally, suppose that 48¢B and that g(z)#0. In this case the equation
(6.10) has either one meromorphic solution or a one-parameter family of mero-
morphic solutions. Both of these two cases may actually occur. The possible residues
of any meromorphic solution u of (6.10) at z=0 are the distinct roots oy =(n—1)/2
and o= —(n+1)/2 of the quadratic equation «®+oa+ f=0. The linear differential
equation corresponding to o, is

” n—1 ’
(6.19) ¢ ———¢ +8(2)9=0

whose indical equation has the roots r=0 and r=n=2. By the Frobenius method,
the equation (6.19) admits at least one entire non-vanishing solution ¢. We have
two cases to consider.
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1) The equation (6.19) possesses two linearly independent entire solutions ¢y,
py. In this case

_n—1 9¢i(2) _n—1 ¢3(2)
G e e B A R )

are two distinct meromorphic solutions of (6.10) by the linear independence of ¢,
and ¢,. Therefore the equation (6.10) admits a one-parameter family of meromorphic
solutions by Theorem 2.5.

As a specific example, let us consider the differential equation

, 1—n?
u =
422

+n2 ZZn—2+u2,

where n is an integer =2. This equation has a one-parameter family of transcendental
meromorphic solutions, namely

u(z) = nz—_zl—l—nz"-ltan (C+2z"), CeC.
The corresponding linear differential equation (6.19) has now linearly independent
entire solutions ¢, (z)=cos (z") and ¢@,(z)=sin (z").

2) All entire solutions ¢ of the equation (6.19) are linearly dependent. In
this case, the equation (6.10) has exactly one meromorphic solution. To prove this,
let ¢ be an entire non-vanishing solution of (6.19). Then

_n—1 ¢(2)
4w =550
is a meromorphic solution of (6.10). If
_n—1 ¥
R PR 16

is another meromorphic solution of (6.10) with ¥ an entire function, then y must
satisfy (6.19). Therefore y=C¢ for some complex constant C and we get u=u,.
All other possible meromorphic solutions u of (6.10) must be of the form

__ntl @)
S PR ©)
where f is an entire function. Defining ,(z)=2z"f(z) we conclude that
_n=1 y4(2
“O= G

Since Y, is an entire function, we have u=u, applying the same reasoning as above.
Therefore u, is the only meromorphic solution of (6.10).
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To illustrate this case, we consider the equation

3
= 2
u |2+1+u

The equation (6.19) takes now the form

” 1 ’ _
¢'=— ¢ +p =0

Under the transformation f(z)=z"1¢(z) we get
22f" 4 zf '+ (22—1) f= 0.

This is Bessel’s equation of order one whose entire solutions all are linearly depend-
ent. Therefore the same is true of (6.19) in this special case. Hence the equation
#'=—(3/4)z72+1+u? has only one meromorphic solution, namely the function

RS _ (z41(2))

n(z) = 2z zJ,(2)

where J; is the Bessel function of order one.

Example 6.8. A concrete example slightly different to Example 6.7 is given by
the Riccati differential equation

(6.20) w2 3 1.,

which admits a rational solution

3 1
u(2) = BT

and a transcendental meromorphic solution u,(z). Since 48¢ B, these are the only
meromorphic solutions of (6.20) by Theorem 6.4. To find out the transcendental
solution u, (z) we consider the linear differential equation

” 3 ’_
(6.21) y +(1+4—Z] ¥’ =0,

which has a regular singular point at z=0 with the indicial equation r(r—1)+
3r/4=0 whose roots are r=1/4 and r=0. By the Frobenius method, (6.21) has a
solution of the form y(z)=z"*¢(z), where ¢ is an entire function such that ¢(0)=1.
Substituting back into (6.21) results

” 5 ’ 1 —
(6.22) o +[I+E] 03 —I—E(p = 0.
Therefore the meromorphic function
__5 1 92
w2 === 0
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satisfies (6.20). It remains to show that u, is transcendental by showing that ¢ has
infinitely many zeros. If ¢ were a (nonconstant) polynomial, then, by equating the
leading coefficients in (6.22), we infer that the degree of ¢ would be —1/4, which
is absurd. Therefore ¢ is transcendental and we may apply the Wiman—Valiron
theory to conclude o(p)=1/2. A theorem of Borel (see, e.g., [2], Theorem 2.9.2)
implies that ¢ must have infinitely many zeros.

Example 6.9. Let us consider the Riccati differential equation
(1.1) w =a2)+b(2)w+c(2)w? ¢ #0,

with polynomial coefficients. It is well-known that all solutions of (1.1) are mero-
morphic functions. Transforming (1.1) into the normal form (1.2) tells us that
all solutions of (1.2) must be meromorphic in this case. Since A4(z) in (1.2) has
the form

b b 3(c) b 1
(1.4 t=ae—ig—g(5) 55435

we see that all possible poles of A(z) appear at the zeros of c¢(z). Writing c(z)=
P(z—2zp)" *(1+Q(2)), where Q(z2) is a polynomial such that Q(zp)# —1, n is an
integer =2 and y70 a constant, we see that A4 (z) must have a double pole at z,.
The Laurent expansion of A(z) at z, satisfies 48=1—n2¢B in this case, see Theo-
rem 6.4.

The following Proposition describes a fairly general situation which turns out
to be a special case of the preceding Example 6.9.

Proposition 6.10. (i) Suppose that the differential equation (1.2) with a rational
coefficient A(z) admits two meromorphic solutions u, and u, such that at least one
of them, say u,, is rational. If w=(u;—u,)~* has a pole at all poles of u,, then there
exist two polynomials P50 and Q such that

(6.23) Uy (2) = -;— [1;'((22)) +Q'(z)) .

Further, all solutions u=u, of (1.2) are meromorphic and can be represented in
the form
(6.24) u(z) = u(2) = P(2)e?@[C+g(2)] 7,

where C is a complex constant and g is a primitive of the function Pe2.

(i) Conversely, if a rational function u, is of the form (6.23) and a meromorphic
Sfunction u is of the form (6.24), then both of them are solutions of a differential equa-
tion (1.2), where the coefficient A(z)=uy(z)—u,(z)® is a rational function. In the
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particular case when Q’(z)=acC, (6.24) reduces into the form

S’(2)+aS(2)

u(z) = ul(Z)_W’

where C is a complex constant and S is a polynomial.

Remark 6.11. 1) Proposition 6.10 is a special case of Example 6.9. In fact,
by a straightforward computation we observe that the equation (1.2) with A(z)=
u,(2) —u; (2)%, u;(z) given by (6.23), arises from the differential equation

w = Q' (z)w+ P(z) w?
via the transformation (1.3).

2) We note that the family of solutions given by (6.23) and (6.24) contains
exactly two rational functions, if Q’(z)=a>0. All solutions in this family are rational
functions, if Q’(z)=0.

Proof of Proposition 6.10. (i) Clearly w satisfies the linear differential equation
(2.1 w +2u;w = 1.

Since w has a pole whenever u; has a pole, all poles of u; must be simple and the
residue of 2u; at any pole must be a positive integer by inspection of (2.1). There-
fore, there is an entire function 4 such that 2w, =Hh’/h. Since u, is rational, # must
be of the form h=Pe?, where P>0 is a polynomial and Q is an entire function.
By differentiating we get 2u;=Q’+P’/P. Again, since u, is rational, O must be a
polynomial and we have (6.23).

Let now g be a primitive of 4. Substituting (6.23) into (2.1) we observe that
w + (' [Hyw=1. Hence hw=C;+g for some complex constant C;. Now we may
apply Proposition 2.3 and its proof to deduce that all solutions uzu, of (1.2) are
meromorphic and can be represented in the form

u(z) = u1(2) —h(D[Ci+g(D+ G,
where C, is a complex constant. Denoting C=C;+C, we obtain (6.24).

(ii) The first assertion in (i) is a straightforward computation which may be
omitted. To prove the second assertion, suppose that Q'(z)=acC. It is easy to
see that there is no loss in generality if we assume that Q(z)=oz in (6.24). By the
method of undetermined coefficients, we can find a polynomial S such that S§’+
aS=P. Then v=Se? satisfies v'=Pe?. Therefore v=g+y, where y is a con-
stant. Hence g=Se**—y. From (6.24) we obtain the second assertion in (ii).

6.3. A(2) admits at least one pole of multiplicity =3.

Theorem 6.12. Suppose A(z) admits at least one pole of multiplicity m=3.
If there exists at least one pole of odd multiplicity m=3, then there exist no solutions



Meromorphic solutions of the Riccati differential equation 395

of the differential equation
(1.2) u' = A(z)+u?

meromorphic in the complex plane. If all poles of A(z) with multiplicity m=3 are
of even multiplicity, then there exist at most two distinct meromorphic solutions of
(1.2). Moreover, if A(z) has a pole of even multiplicity =4 at z,, and uy, u, are two
distinct meromorphic solutions of (1.2), then u;+u, has a simple pole at z, with
residue —m/2.

Proof. Suppose u, is a meromorphic solution of (1.2) and consider a pole of
A(z) of multiplicity m=3 at z,. Clearly u; must have a pole of multiplicity a=m/2
at z,, since m=3. If m is odd, the assertion follows immediately. Therefore, we
may assume that m=2a=4 is even. Suppose that the Laurent expansions of 4(z)
and u,(z) at z, are

{A(Z) =d,(z—zp) " +...

u,(2) = c,(z—z9) ~*+...

Substituting these expansions into (1.2) we obtain ¢2=—d,,. Let u, be any other
meromorphic solution of (1.2) with the Laurent expansion

us(z) = e, (z—2z9) = *+...

at z,. Then similarly e?=—d, and therefore e?=c2. But w=(u;—u,)~* sat-
isfies
w+2uw =1,

and so w must have a zero of multiplicity o at z,, because of a=2. Therefore we
must necessarily have e,= —c,. Finally, let #; be a third meromorphic solution
of (1.2) and suppose that the solutions u;, u, and u; are distinct. If #; has the Laurent
expansion

ug(z) = fo(z—z)) 7"+ ...

at z,, then, by repeating the above reasoning, we see that f,=—c,, and therefore
e,=f,. On the other hand, beginning the above reasoning with u, instead of u,
and setting w=(u,—us)~? we infer e,=—f,, a contradiction.

To prove the last assertion, we observe that w=(u; —u,) ™! satisfies

{w’+2ulw =1

w4 2uw = —1
and therefore

w’ :
—VT = —(ll1+ uz).

Since w has a zero of multiplicity o at z,, the function wu;+u, must have a simple
pole (with the residue —o) at z,.
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Corollary 6.13. If the Riccati differential equation (1.2) admits a meromorphic
solution which has at least one pole of multiplicity =2, then there are at most two
distinct meromorphic solutions of (1.2).

Proof. Let u be a meromorphic solution of (1.2) with a pole of multiplicity
a=2 at z,. Then A(z)=u'(z)—u(z)? has a pole of multiplicity 2a=4 at z,.
Remark 6.14. The proof of Theorem 2.5 is now complete.

Example 6.15. Let h be a nonconstant entire function and let «=2 be an
integer. Then the Riccati differential equation

, _ h'(2) (h’(z))2+och’(z)+ 2u—o? )
T2 4 2z 4z2 T 4z

admits exactly two transcendental meromorphic solutions

W) o e
u@) =gt

n +-u?

Example 6.16. Choosing h=0 in Example 6.15 we get the Riccati differential
equation
, 2o—a? 1

—_ 2
W= s

which admits exactly two rational solutions

o 1
S R
u(z) 2z 7 2z%
Example 6.17. The Riccati differential equation
(6.27) w =3z74—z"% 42

admits exactly one meromorphic solution, namely the rational function
u(z) =—z78
To prove this assertion, let u, be another meromorphic solution of (6.27). By a

theorem of Wittich ([17], p. 283—284), u, must be rational. Then w=(u; —uy) !
is a rational solution of the linear differential equation

(6.28) w—2z73w = 1.

It is easy to see that w has no poles and it must have a zero of multiplicity three at
z=0. Hence w is a polynomial of the form

w(z) = cgz3+...+¢, 2"
with ¢;#0, ¢,#0 and n=3. Therefore

}Ln;lo W(2)=2z73w(z)] = + .

This contradiction with (6.28) proves the assertion.
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Example 6.18. There are no meromorphic solutions of the differential equation
(6.29) uw =cz t+dz 3 u?,

where ¢>0 is a complex constant and >0 is a real constant such that the equa-
tion y*—y+d=0 does not have any positive integer roots. Suppose u would be
a meromorphic solution of (6.29). Then u must have a double pole at z=0. Sub-
stituting the Laurent expansion

(6.30) u(z) =az ?+bz *tagtoyz+...
into (6.29) we conclude that
a*+c=0 and 2ab=-—2a.

Since a=0, we get b=—1. Therefore the expansion (6.30) must have the form

u(z) =az 22—z l4+oayto,z+...
Hence
w(z) =u(z)—az™?

has only simple poles and the residue at each pole is —1. Since the function az ™2
does not satisfy (6.29), w0 and there exists an entire function g such that
w=—g’/g. Substituting

’

-2 &

u(z)y =az ?—=>-

(2 .
into (6.29) and taking into account a*4c=0 we obtain
(6.31) z8g”—2azg’ +(dz+2a)g = 0.

By the Wiman—Valiron theory, ¢ must be a polynomial, say
g(2) = c, 2"+ ey, 2"t
with c,#0. Substituting this into (6.31) and collecting terms of degree n+1 we get
n?—n+d =0.

By our condition imposed upon d, n cannot be a positive integer and we have a
contradiction.
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