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ON THE BIRTI{ OF THE NEYANLINNA THEORY

OLLI LEIITO

Classical value distribution theory deals with the study of the density of the

points in the plane at which an analytic function takes a prescribed value. Poly-

nomials, for which complete results can at once be obtained, served as a model

when the study of entire functions was started about a hundred years ago. By the

turn of the century, Borel had succeeded in combining and improving results of
picard, Poincar6 and Hadamard in such a way that a value distribution theory

began to take shape. Further progress was made during the first two decades of
this century by a greatly'increased number of mathematicians, albeit without any

particularly striking results. The theory of meromorphic functions resisted such a

development: apart from a few exceptions, it was difficult even to formulate the

problems studied in connection with entire functions.

In the early twenties the state of affairs underwent a discontinuous change due

to Rolf Nevanlinna. He succeeded in creating a far-reaching value distribution

theory for meromorphic functions, in such away that it contained as a special case

the theory of entire functions in an improved form. The Nevanlinna theory came

into being through the work he did in the years 1922-24. However, the impact

of the new theory was so profound that the process of birth persisted for a period

of about ten years.

Our description of this period will be preceded by a brief summary of the ante-

Nevanlinna value distribution theory.

1. Yalue distribution theory before Nevanlinna

l.l. Rational functions. The value distribution of a polynomial is very sym-

metric, and there is a simple relation between the number of its zeros and its growth

near infinity. A polynomial f of degree n >1 has n zetos if each zero is counted

according to its multiplicity. Since /*constant also is a polynomial of degree r,
it follows thatf takes every complex value precisely n times. With the aid of its
zltos a1.a2;...sao, the function fcanbe represented in the form

(l) f(r) : Q(z - a)(z * az) . -. (z - an).

koskenoj
Typewritten text
doi:10.5186/aasfm.1982.0707



Orrt LrHro

The degree n also tells exactly how rapidly l/(z)l grows as z+6: we have
the asymptotic equation

(2)

(3)

where

lim f(r)lzn : s (* 0, ..).

If an arbitrary non-constant rational function / is regarded as a self-mapping
of the extended plane, then again f takes every value the same finite number of
times. An analogue of (l) is obtained, since / is a quotient of two polynomials,
whereas there is no counterpart for the growth condition (2).

These properties of polynomials and general rational functions find their anal-
ogues among entire and meromorphic functions. This fact unfolded gradually in
the course of a long development which culminated in the work of Nevanlinna.

L.2. Weierstrass product representatian. The study of the zeros of entire func-
tions began about a century ago. In 1876, Weierstrass [34] proved that to every
sequence (a,) of complex numbers with la, | = lorl= . . ., lirr, an: -, there corresponds
an entire function having these a, as zeros. The proof was by direct construction:
a solution is provided by a canonical product

oo

lrE(zf a,,i k),

E(w; k) - (1 - w) exp (w * wr12+ .. .+wk lk).

(tf a,:g isazero,onewriteszinstead of l-zfa, in(3).) Thenon-negativeintegers
k, are chosen so as to make the product (3) convergent. If there is a ,t>Q sugh
that ) la,l-1 converges, then a fixed k, the largest integer <,1., will do for that
purpose.

All entire functions
strass product formula

(4)

where g is an arbitrary
formula (1).

having the given an as zeros are obtained from the Weier-

f(r) _ sgQ) II E(rlo,; kn),

entire function. This is the counterpart of the polynomial

Formula (4) was the starting point for the attempts to generalize from poly-
nomials to entire functions the result on the relation between the number of zeros
and the growth as z+@. There is of course the striking difference that while the
zeros determine a polynomial up to a multiplicative constant, they determine an
entire function only up to a zero-free function er. Since es can be of arbitrarily
rapid growtå, there cannot be a full counterpart to the asymptotic equation (2).

1.3, Genus of entire functions. Soon after Weierstrass had discovered formula
(4), Laguerre noticed the need to classify entire functions using a notion which
in some sense assumes the role of the degree of polynomials. suppose an entire

II
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function /has so fewzeros an that the series Zlo,l-^ converges for some l.>0.
Then there is a smallest integer p>0 such that )la,l-tt+tt is convergent, and the

canonical product (3) associated with/converges for k,:p. Let us assume' further-

more, that in the Weierstrass representation

f(r) : sg@) II E(rla"; p)

the function g is a polynomial of degree 4>0. Then / is said to be of genus

k:fiax(p, q). lf f has so many zeros that no I of the above kind exists or if such

a l. exists but g in (5) is not a polynomial, then /is said to be of infinite genus.

Let
M(,): f;pitf?lt

denote tlte maximum modulus of the entire function I An analogue of (2) would

be a bound for M(r) in terms of the number of zeros ofl When such a bound was

being sought in the 1880's, the very natural restriction was imposed onf thatfbe
of finite genus. This assumption not only implies a bound for the number of zeros

of/but it also keeps the non-zero term es under control.
In 1883 Poincar6[29] proved results solving this problem: An entire function

o-/'genus k satisfies the inequality

log M(r) : o(rk+l)
A,S f*@.

1.4. Order of entire functions. The converse problem to Poincard's theorem

is to derive an upper bound for the number of zeros ao of an entire function./when
a bound for its maximum modulus is given. Here no additional a priori assump-

tions about/need be made.

A bound for the maximum modulus can appropriately be given by aid of the

number Q:inf P,llogM(r):OO\\, which is also obtained as the upper limit

(5)

(6) q-rimsupW
This is called the order of the function. Its formal definition was given in 1897

by Borel [3] who realized its central role in the theory of entire functions'

Before that Hadamard [9] had proved a number of results which yield a solu-

tion to the converse problem: If an entire function f is of finile order q, then the

series )la,l-@+"1 conuergesforeuery e>0. Itfollowsthat thegenusof/isfinite,
and if k-Q=k+I, where /c is an integer, then/is of genus k.

Hadamard's theorem can be stated in a more general form which at the same

time better illustrates the meaning of the convergence of the series. For this purpose,

let us consider an increasing sequence (r,) of positive numbers wiht lim tn:*,
and call the infimum of the numbers l" for whidn ) r; ' converges the convergence

exponent of (r,).
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Let n(r,a) denote the number of a-points of an entire function/in the disc

lzl=-r, i.e. the number of the roots z, of the equation f(r):a, each root being
counted according to its multiplicity. A simple calculation shows that the integral

I* rU,a);Q+r1dt and the series Z lr,l-^ are simultaneously convergent. It fol-
lows that the convergence exponent a of t}te sequence (lz,l) admits the charac-
tetuation

(7)

(8)

fo, euery ualue of a.

fl,-limsupw

lim sup 
logn(r, a) s o

r+@ ^ Iog r

Let us now return to Hadamard's theorem. Since/and f-a are of the same
growth, we can replace the zeros of f by any of its a-points. Therefore, in view
of the characterization (7), Hadamard's theorem allows the following reformula-
tion: For an entire function of order q, the a-points are so distributed that

1.5. Theorems of Picard and Borel. As early as 1879, Picard [29lhad proved
the famous theorem that a non-constant entire function can omit only one value.
The very short proof was based on the use of the elliptic modular function and
did not utilize the basic representation formula (4). For quite a while this result
remained rather isolated, until Borel [3] in 1897 proved a part of it in a much sharper
form. This connected Picard's theorem with the then existing theory about the
distribution of values of entire functions.

In inequality (8) the left side can of course be strictly less than q, since n(r, a)
can even be zero for every r. On the other hand, Picard's theorem says that n(r, a)
can vanish identically for one vallue a only. Borel's theorem goes much farther;
in above notation it can be expressed as follows: For an entire function of finite
order p, equality holds in (8), with the possible exception of one single oalue a.

Thus Borel's theorem solved at the same time the two problems about the
relations between M(r) and n(r, a) treated in Poincar6's and Hadamard's theorems;
for Poincard's theorem the more general viewpoint of considering a-points rather
than zeros is essential. Borel's theorem shows that not only polynomials but all
non-constant entire functions of finite order exhibit a remarkable symmetry in the
distribution of their values and that, up to one value, the number of a-points is
determined by the rate of growth of the function.

Borel also gave indications of how to extend the theorem to functions of infinite
order. This was done by Blumenthal[2] in l9lO.

1.6, Repercussions of Borel's theorem. Borel's work seems to have increased
considerably the interest in entire functions. His results led to a number of new
problems of which some were explicifly posed by Borel himself, such as how to
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improve his theorem by the introduction of measures of growth finer than the order.

Also, Borel's method, which was based on estimates on the minimum modulus of
an entire function and on the growth of its derivative, gave rise to many questions

not directly connected with the relations between the maximum modulus and the

function n(r, a). It is hardly an exaggeration to say that during the first two decades

of our century, Borel's theorem dominated the theory of entire functions. Valiron,
one of the most active and successful of Borel's successors, said in his lecture [32]
in the 1920 International Congress of Mathematicians in Strasbourg: "C'est ä

cette proposition que se rattachent plus ou moins directement tous les travaux

ult6rieurs sur les fonctions entiÖres."

Having been prior to that time almost exclusively in the hands of French math-

ematicians, research on entire functions started to spread to other countries follow-
ing the turn of the century. One of Borel's first successors was Ernst Lindelöf, Nevan-

linna's future teacher and his father's cousin. Lindelöf's paper ll2] of 1902 contains.

among'other things, simplified proofs of the main results of the Poincar6-Hada-
mard-Borel theory. In reviewing this theory in the monograph [5], Borel adopted

Lindelöf's respresentation: "M. Lindelöf a retrouvd, par une voie plus rapide, Ia
plupart de ces rösultats."

The second edition of Borel's mono-eraph [4] "Legons sur les fonctions entiÖres",

which appeared in 1921, included developments subsequent to Borel's theorem.

In the preface Borel motivated the new printing by the remark that the fundamentals

of the theory of entire functions had not changed since the appearance of the first

edition which was based on lectures given in 1897-98. An updated theory was

presented in the supplementary chapter o'Progrös de la thdorie des fonctions entiÖres

depuis 1900" written by Valiron. This chapter also contained a bibliography of
almost a hundred entries covering the period 1900-20.

During this time the program suggested by Borel was largely carried out, by

Wiman, Lindelöf, Valiron, and others. Borel's theorem was refined in various ways

by the use of classifications for entire functions more accurate than the one based

on the notion of order. Moreover, Valiron showed that Borel's theorem remains

valid for functions holomorphic in the unit disc provided that the maximum modulus

M(r)tends to - sufficiently rapidl/ as r+1. Valiron also called special attention

to Jensen's formula, already used by Jensen himself [11] and by Lindelöf l12i to
study value distribution, and may have influenced Nevanlinna by the way he wrote
it (cf. Sections 2.3 and 2.4).

l.'7 . Results on meromorphic functions. Let us consider now a function .fmero-
morphic in the complex plane. If/omits a finite value c, then ll(f-c) is an entire

function. Therefore, Picard's theorem generalizes immediately: A function mero'

morphic in the complex plane and omitting three ualues is a constant.

In contrast to this, before Nevanlinna there had been no satisfactory way to
extend to meromorphic functions the Poincard-Hadamard-Borel theory of entire
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functions. Since a meromorphic function can take t}te value -, th€ basic problem
of studying the relations between the maximum modulus M(r) and the counting
function n(r, a) becomes meaningless.

Borel [5] had made an attempt to circumvent this difficulty. For a given mero-
morphic/ form theWeierstrass canonicalproduct å of lowest possible genus using
as zeros the poles ofl Then fh:g is an entire function, and so/admits a repre-
sentation

(e) J' - slh

as a quotient of two entire functions. Borel defined the order of f to be the greater
of the orders of g and å. With this definition, Borel succeeded in generalizing his
theorem: a meromorphic function / of finite order g satisfies the inequality (8),
and equality holds with the possible exception of two values of a.

The representation (9), on which this theorem depends, is unique only if the
genus of the denominator h is finite. Also, being based on (9), the required condi-
tion that/be of finite order is very implicit. Later development has shown that (9)
does not offer a convenient starting point for building a general theory for mero-
morphic functions.

2. Nevanlinna's first main theorem

2.1. Beginning of Neaanlinna's research. The only source today for learning
about Nevanlinna's gradual penetration into the properties of meromorphic func-
tions are his original mathematical papers. After his death quite a number of copy-
books and scattered notes from the early twenties were found, but they turned out
to be disappointing in that they did not shed new light on the actual birth of the
Nevanlinna theory. Either they were manuscripts, virtually identical with published
papers, or else lecture notes which did not reveal the ripening of Nevanlinna's ideas

beyond what can be read in his printed publications.
On the other hand, Nevanlinna's carefully written papers, which came out

in quick succession in 1922-25 and in which underlying ideas are often explained,
make exciting reading. T'hey show how the author step by step unveiled the mysteries
surrounding meromorphic functions until, in 1925, the essentials of a theory were
there to be read in a pure and elegant form.

In L922, when Nevanlinna was 26 and three years had elapsed since the appear-
ance of his doctoral thesis on bounded analytic functions, his interest was focused
on value distribution problems. In this he was stimulated and supported by his
teacher Lindelöf, then one of the world's foremost experts in the field; throughout
his life, Nevanlinna held Lindelöf in the highest esteem. It is not unlikely that
Lindelöf contributed to Nevanlinna's interest in the potential-theoretic method
which was one key to his success.
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Clearly very important for Rolf Nevanlinna at this stage was the contact and

actual joint work with his older brother Frithiof. In his Finnish memoirs "Muistel-

tua" ([28]) Rolf gave full credit to Frithiof: "Discussions with him have decisively

contributed to the success of my work... . I do not think I have received so much

significant inspiration from anyone else."

2.2. Potential-theoretic method. Nevanlinna's very first value distribution paper,

a Comptes Rendus note [14], appeared in May 1922; it announced results concerning

functions holomorphic in an angle. Two months later Nevanlinna gave a talk
(151) in the Scandinavian Congress of Mathematicians in Helsinki. Its title "tiber
die Anwendung des Poisson'schen Integrals zur lJntersuchung der Singularitäten

analytischer Funktionen" indicates the method whose importance Nevanlinna
repeatedly stressed, then and later.

This method was inaugurated in the comprehensive joint paper [13] with Frithiof
Nevanlinna, which was communicated in November 1922. The work begins as

follows: "This paper is devoted to the presentation and the most important applica-

tions of a general function-theoretic method. The essence of the method is to ufilIz,e,

as completely as possible, the simple fact that the logarithm of the absolute value

of a meromorphic function f(x) is a single-valued harmonic function which at the

zeros and poles of the function/(x) becomes negatively and positively logarithmically
infinite."

In reviewing [3] for "Jahrbuch tiber die Fortschritte der Mathematik" G. Szegö

wrote: "Besonders reizvoll wirkt an diesen lJntersuchungen, ausser ihrer geradezu

klassischen formalen Eleganz, die Abgeschlossenheit der Resultate und die Einfach-
heit der befolgten Methode." Ahlfors [1] said that after the appearance of [13],
function theory was no longer the same as before.

From the point of view o1' direct impact on the value distribution theory, [3]
must still be regarded as preparatory. But the function lJg l,fi, soon to gain great

importance, was there, and the authors introduced the integral

+
los lfUe'*)l dq)

to measure the growth ofl.
Even years later, when his theory was essentially developed, Nevanlinna empha-

sized tlre role of the method. In the opening lines of the monographl2ll "Le thdorÖme

de Picard-Borel et la th6orie des fonctions m6romorphes" he wrote that the theory
to be developed is based on the systematic use of certain general formulas which can

easily be derived by aid of Green's formulas.

2.3. The Poisson-lensen formula. The basic formula which Nevanlinna sys-

tematically utilizes can be derived as follows. LetJ'be meromorphic in the closure

of a domain D whose boundary consists of a finite number of analytic curves, with

11

{
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the zeros a1, andpoles å1 in D. If ,*g(r,() is the Green's function of D with sin-
gularity at (, then ttre function

(l) z *toslfk)l+ Z s?,a)- Z s(2, br)

is harmonic in D and has the same boundary values as log l/1. Application of
Green's formula to (l) then gives log lf(z)l in terms of the boundary values of
log l,fl and of the zeros a1 and poles å1.

In the special case where D is the disc lzl=r, Poisson's formula can be applied
to (1). Because g(z,O:logl(r2-z()lr(z-Ol, the ensuing result is very explicit:

(2:) los lfU)l - I2n

of / in lrl=r, then

(4) Zloe W
Similarly, Valiron writes

t

*{

r'-lzl'
log lf\n")l d0

rz + lrl' - 2r I zlcos (0 - arg z)

-z^el##l+),oglffil
The validity of (2) is clear if f(z)#O, - on the boundary lzl:r. But even without
this restriction the integral in (2) converges and equation (2), which Nevanlinna calls

the Poisson-Jensen formula, is true.

Paiticularly important is the special case z:0:

tros lfln'u)ld0- Zlos W+ Zlos W(3) los l/(0)l -

In Nevanlinna's hands this simple formula, established by Jensen [1] in 1899, was

to lead to amazing consequences.

2.4. Counting function and proximity function. In his thesis [31] of 1913, Vali
ron had used Jensen's formula (3) and taken one step towards the final form into
which Nevanlinna transformed it. If again n(r, a) denotes the number of a-points

_ / ,o* i o"tt, o)- { 
n(tro) 

ot

{4',) ä10e h:
n(t, ") ,' at.

ti
0

In the monograph [33], Valiron explicifly stressed the importance of Jensen's formula
and used (4) and (4').

A year after the joint work [3], Nevanlinna was ready in November 1 923 to publish

a large paper "[Jntersuchungen iiber den Picard'schen Satz" ([6]). It represented

a real breakthrough. Nevanlinna introduced and made systematic use for the first
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time of two of his basic concepts, the counting function N and the proximity func-

tion m, there with the notation

It{ (r, f )
-L

los lf?n'u)l {t0.

(lf z:O is a zero or a pole ofl then both sides of (3) become infinite' Likewise,

.f(o):O makes the above N(r,f) infinite. This state of affairs can be readily cor-

iected by a minor modification; in the following we shall disregard it.)

The functions N and m arose from a reformulation of Jensen's formula (3). In

view of (4) and (4'), the two sums there are N(r,f) and N(r, llfl. But the decisive

step was to use the simple identitY

(6) logx: logx-log(l/x),

which allowed Nevanlinna to decompose the curve integral in (3) into m(r,f)-
m(r, Uf). Thus he rewrote (3) in the form

ffi\r, f) + i/(r, I lfi : mlf , I lfi + l/(r, f) +1og l./(0)1.

Ahlfors [1] said that this was the moment when the Nevanlinna theory of mero-

morphic functions was born.

In retrospect, the use of (6) seems very simple. But it was scarcely accidental:

already in the previous work [13] Nevanlinna had noticed the importance of the

proximity function m.

We shall come back to paper [16] in Section 3.1, having first discussed direct

consequences of formula (7).

2.5. Charqcteristic function. Nevanlinna required a few more months to realize

the full meaning of the equation (7). In January 1924 he published a Comptes

Rendus note [17] which contained several new notions and results. Changing the

notation a little he now put

l3

(5) I0

n(tr o) dt, m(r, a)
t

.Zf|r

_1fÅ I

zn{ --s6do'

(7)

(8) N(r, a): i
0

As the first trace of his characteristic function, he wrote T(r, a):4(v, a)lN(r, a);

formula (7) then assumes the very simple form 7(r, *):T(r,0)*log I/(O)l' He

proved, as the first step towards the invariance of T(r, a) with respect to a, that

for any two values aandb, the ratio T(r,a)lT(r,b) tends to 1 as r*-.
Finally, in the Comptes Rendus note [19] of July 1924, Nevanlinna drew the

final conclusion from (7). In many ways this is a central result in the value distribu-

tion theory; in [20] and later, Nevanlinna called it the First Main Theorem:
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To each function non-constant and meromorphic in lzl- ft= *, there corresponds
a continuous increasing function T(r) such that for eaery ualue a,

(9) T (r) - m(r, a) * N(r., a) +O (1),

where O (L) remains bounded as r --> R.

Formula (9) follows readily from (7) if the notation in (8) is used; one can take,
for instance, T(r):m(r, -)+N(r, -).

The function T, the characteristic ofl was to play a decisive role in the theory
of meromorphic functions. In the monograph [10] W. K. Hayman, one of the
leading contemporary experts on the Nevanlinna theory, wrote about it: "In the
course of the book it is hoped to show the tremendous gain in elegance, clarity, and
depth which results from tåis basic concept, even in the special case of entire func-
tions."

Suppose that T(r)-6 as /+R; if R:-, this is always the case. The first
main theorem tåen says that if/takes a value a fewer than average, i.e. if N(r,a)
is relatively small, then there is always a compensation: t}te function/approximates
such a value stronger than average, i.e. the proximity function m(r, a) is relatively
large. To quote Nevanlinna, the total affinity of/towards each value a is the same,
independent of a. In this sense, the value distribution of meromorphic functions is
analogous to that of rational functions.

In addition to its intrinsic interest, the first main theorem (9) proved to be an
important technical tool for handling meromorphic functions.

3. Nevanlinna's second main theorem

3.1. Second main theorem for three "-alues. The relation (9) of the first main
theorem gave rise to the question of the relative size of the componenls m(r,a)
and N(r, a) in the invariant sum ru*N. An answer was given by Nevanlinna
with great accuracy in the form of an inequality which he called the second main
theorem. While the problem leading to the second main theorem can be conveniently
formulated with the first main theorem at hand, Nevanlinna actually arrived at
the main theorems simultaneously. Both were announced for the first time in the
Comptes Rendus note [19] of July 1924, a true landmark in the theory of mero-
morphic functions.

At the initial stage of his research Nevanlinna concentrated chiefly on ques-
tions emanating from Borel's theorem, being in no great hurry to deal with the
general case of meromorphic functions. It is true that in the breakthrough paper

[6] cited in Section 2.4, he established formula (7), i.e. almost proved the first main
theorem, for meromorphic functions. But this paper was primarily devoted to the
study of the growth of regular analytic functions when the distribution of c-points
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was known for two values of a. The Nevanlinna functions m and N were used for
that purpose, m(r,f) in place of the classical measure logM(r) and N(r,a)
instead of n(r,a). Thus Nevanlinna was automatically led to compare the growth

of m(r,f) and N(r, a), even before he had observed t}te invariance of la*N and

introduced the characteristic function.
The paper [6] already contained a preliminary version of the second main

theorem for regular analytic functions, i.e. for entire functions and for functions

holomorphic in a disc. (About a year later, this result was to elicit important com-
ments from Littlewood and Collingwood, as will be explained in Section 3.3.) But
Nevanlinna was quick to observe that the use of m(r,f) instead of log M(r) made

his method applicable to meromorphic functions as well. In the July 1924 Comptes

Rendus note he was ready to announce the basic inequality for functions meromorphic
in the plane, in the case of three given values:

t5

(1) T (r) - N(r, a) + I,{(r, b) + N(r, c) + §(r),

where §(r) is in general small compared to Z(r).
This inequality shows that in the equation (9) of the first main theorem the

term .l[(r, a) is usually larger than m(r, a). For instance, if lim sup N(r, a)lT(r):g
for two values of a,then limsup N(r,a)lT(r):l for all other values of a.

3.2. Suruey of the results. Inequality (1) was what Nevanlinna had wished to
prove. He had also made the very important remark in [17] thata natural defini-
tion for the order of a meromorphic function is the upper limit

.. log 7(r) .Irmsuo-ftf;

in the case of entire functions T(r):s1r, -), and a simple estimation shows that
this definition agrees with the classical definition (6) in Chapter 1.

All in a1l, Nevanlinna was now in a position to present a large survey of his

theory of meromorphic functions. This he did in 1925 in the paper l20l "Zv Theorie
der meromorphen Funktionen", which must be regarded as Nevanlinna's main work.
ln 1943, H. Weyl [35] wrote about it: "The appearance of this paper has been one

of the few great mathematical events in our century."
A central position in [20] is occupied by the first and second main theorems,

there so named for the first time. The proof of the second main theorem, extra-

ordinary in its originality, can be followed in all details. Technically it is far too
complicated to be reproduced here. A basic idea, to compare the growth of the

function with that of its derivative, goes back to Borel [3]. The technical starting
point is the omnipresent Poisson-Jensen formula (2) of Chapter 2. It first yields

a representation for logf, and then through differentiation,for f'lf. This makes

it possible to estimate m(r,f'lf), which is the key for estimating the remainder

term S(r).
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The other results of [20] were deduced more or less as direct consequences of
the main theorems. The use of the characteristic T(r) in the place of logM(r)
enabled Nevanlinna to establish for meromorphic functions practically the whole
classical theory of entire functions. Results on entire functions were thus obtained
in a unified manner as special cases of more general theorems. More than that,
Nevanlinna's main theorems often yielded these results in a sharper form or under
weaker hypotheses. And finally, due to the improved results, new problems were

opened.
For functions meromorphic in the unit disc, both main theorems hold in the

same form as in tJle case of the plane. The interpretation of the first main theorem

is of interest if the characteristic 7 is unbounded. But the case of a bounded 7 is
not without interest either: Nevanlinna had had time to prove in [18], as a generaliza-

tion of a previous result in [3], that the class of meromorphic functions of bounded

characteristic coincides with the class of functions which are quotients of two bounded

analytic functions.
In the second main theorem, ,S(r) plays the role of the remainder term provided

lim-sup Z(r)/logfr- : -.
This is the critical rate of growth: under this condition and only under it, do the

conclusions drawn from the second main theorem for functions meromorphic in
the plane remain valid.

3.3. Remarks of Littlewood and Collingwood. In spite of the richness of results

and the superb style, without a supplement written slightly later, the paper [20]
would not have given the main features of the theory in the best possible form.
In building his theory, Nevanlinna concentrated on studying properties of a mero-
morphic function/with the distribution of the roots f(r):a given for three dlf-
ferent values of a. He once told me that at an early stage he felt that there was a

version of Picard's theorem still sharper than Borel's improvement but that for
quite a while he did not know exactly in which direction to pursue it. Inequality (l)
was a most satisfactory solution, and this may explain why Nevanlinna failed to
notice that his method actually applied to the case in which arbitrarily many values

are given instead of just three.
This observation was made independently by Littlewood and Collingwood, after

they had analyzed the proof of the preliminary inequality in Nevanlinna's paper [16].
Nevanlinna had completed the manuscript for [20], when he received a letter from
Littlewood relating about this. Almost simultaneously, in November 1924, Colling-
wood made the same remark in the Comptes Rendus note [6]. This prompted Nevan-
linna to write an appendix which could still be included in [20]. With the sole dif-
ference that q (=3) values were considered rather than 3, he reformulated the
Second Main Theorem:
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Let f be meromorphic in the complex plane and let at,az,...,ao be distinct

finite or infinile nwnbers. Then

(2) (q -2)r(r) 1/(r, a) - ff, (r) * ^S(r),

where Nr(r)=0 and ^S(r) is in generol essentially smaller than T(r).

More precisely,

t7

q

i:1

nf, (r) - i
0

where nr(r) is the number of all multiple a-points of f in lzl=r, an a-point of multi-
plicity ft being counted /< - I times. The remainder term satisfies the condition

^S(r):6r(1ot @fQ)), except perhaps for a set of values r of finite length. If/is
of finite order, then ^S(r):911o*r;.

3.4. Deficiency relation. The general form (2) of the second main theorem
proved to be of paramount importance: it permitted the value distribution theory
to be pushed far beyond its classical scope. Nevanlinna immediately drew the first
decisive conclusions in the appendix of [20]. From the inequality (2) it first fol-
lows that

(3)

(4)

rigs;rnW:r,
with the possible exception of countably many values of a. Consequently, up to
such exceptional values, a meromorphic function exhibits great symmetry in its
value distribution, again resembling the behaviour of rational functions. The rela-

tion (3) generalized the result of Collingwood [6] that for entire functions of finite
ordertheinequality lim sup N(r, a)lm(r,f)=@=.1 ispossibleforatmost tU$-@)l
different values of a.

To measure the deviation from normality Nevanlinna introduced the number

a few years later he began to call it the deficiency of a. Clearly 0<ä(a)<1, and if
/omits the value a,then ö(a):1. By the result (3), ä(a)>0 for only countably
many values of a.

Typically for Nevanlinna, once the right concept (4) was defined, obtaining a
striking result was just a matter of observation. Inequality (2) yields immediately
the Deficiency Relation :

The deficiencies of a meromorphic function satisfy the inequality

(5) ) 6(a1= 2.

This is a far-reaching refinement of Picard's and Borel's theorems.
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4. Riemann surfaces of meromorphic functions

4.1. Inuerse problem and multiple ualues. With the appearance of the paper

[20], the birth of the Nevanlinna theory was complete and its full maturity was

near at hand. However, tJre concept of deficiency and a closer analysis of the second

main theorem with attention to the term Äi, generated completely new problems.

They led to the study of the Riemann surfaces onto which meromorphic functions

map the complex plane. This opened a new road into the theory of meromorphic

functions which proved to be strongly differential-geometric in nature. Therefore,

a few words about the early stages of this novel development can and perhaps even

should be incorporated in an exposition about the birth of the Nevanlinna theory.

The new turn in the theory was not quite immediate. It is true that, as early

as 1924, Collingwood [7] had analyzed the properties of the Riemann surface of
an entire function of finite order over a point a for which ä(a)>0. It seems, how-

ever, that for a while this viewpoint did not attract great attention. With Nevan-

linna the first hints of a new approach to meromorphic functions appear in the

monograph [21], whose preface is dated November 1927,three years after the writing
of [20] was completed. First, Nevanlinna there explicitly posed the Inverse Prob-
lem for the deficiency relation, in the following form:

Giuen the numbers ä,, 0=ä,< l, ) ö":2, find a meromorphic function f which

at prescribed points an has the deficiencies ö(a,):§n.

In the second main theorem Nevanlinna turned his attention to the term l[r(r)
arising from multiple roots of the equation f@):a. If n1(r, a) denotes the num-

ber of multiple a-points in lzl=r, an a-point of multiplicity A being counted fr- 1

times, and N{r,a) the corresponding integrated counting function, then Nr(r):
Z,Nr(r,a). In order to measure the relative frequency of multiple values, Nevan-

linna introduced the number

(l)

(2)

0la) - lim pf lf, (r, a)lT(r).

It follows that 0(a)>0, 0(a)=l-ö(a), and 0(a)--0, except perhaps for count-

able many values of a. The second main theorem yields immediately the inequality

Z ö(a)+ Z o(a) = 2.

This is a remarkable sharpening of the deficiency relation.

In [21], where (2) was stated and important conclusions drawn from it, Nevan-

linna did not yet use geometric language. He called 0(a) the multiplicity index,

but changed it soon to ramification index (Verzweigungsindex).
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4.2. Methodological remarks. Nevanlinna soon realized that in order to better
understand the deficiency relation and to attack the inverse problem one should
subject to closer scrutiny the Riemann surfaces of meromorphic functions. The
ramification index is also directly connected with these surfaces, since 0(a)>0
if the corresponding surface is sufficiently branched over the point a.

At this same time, other geometric aspects were brought into the value distribu-
tion theory. ln 1927 F. Nevanlinna had given a new proof for the second main
theorem by studying the universal covering surface of the plane punctured at the
points a,,a2,...,aq,4>3. This proof, a return to Picard's original idea, was very
much to Rolf Nevanlinna's taste, as is confirmed by his many remarks later. And
by 1929, Shimizu and Ahlfors, Nevanlinna's first student, had both shown that
the Nevanlinna characteristic of a meromorphic function / admits the represen-

tation

t9

(3)

(s)

(6)

1

2"

T(r) -

los lf?u") - al d0 - los l/(0) - al - N(r , a) * N(r, .o).

i
0

*0,,

where l(l) denotes the spherical area dividedby n of the part of the Riemann sur-
face of/which is the image of the disc lzl<t.

It might be appropriate to briefly point out that besides Nevanlinna's standard
method, the use of the harmonic function log LfI and the resulting Jensen's formula,
his theory admits a second easy approach. Through it further light can be shed on
the results of Shimizu-Ahlfors and F. Nevanlinna.

ciple

(4)

First of all, Jensen's formula can be readily obtained with the aid of the prin-
of argument

d arg(fkl-a) : 2n(n(r, a)-n(r,.,.)).

By applying the Cauchy-Riemann equation 0 argfll?:r\loglfllilr and then
integrating (4) with respect to r, one gets Jensen's formula, directly in the form

{
lrl:,

Let us now integrate (5) once more, with respect to a measure p(a) with support
E and total mass 1. With the notation

tt(w) - [rrrlw- alctp(a)

for the associated logarithmic potrnlut, it follows frorn (5) that

r

{
1

/.Tt
u(f(re")) d0 - u(/(0)) a) dp(a) - tr/(r, ..).
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If the order of integration is changed, the right-hand mean value of N assumes

the form

[ *(r, a) dp(a) : I I0,,
n{I

where O(t) is the mass on the image of lrl=t. (tne general relation (6) was first
derived by Frostman in 1934.)

If ,E is the extended plane and p the normalized spherical area, then by sub-

tracting (5) from (6) one obtains Nevanlinna's first main theorem, with the char-

acteristic in the Shimizu-Ahlfors form (3). The approach of F. Nevanlinna to
the second main theorem amounts to comparing the characteristic, i.e. the mean

value of N with respect to the spherical area, to the mean value of N with respect

to the hyperbolic area of the plane punctured at the points Q1ea21 ...,aq.

4.3. Brqnching of Riemann surfaces. In Nevanlinna's paper [22], which is the

lecture he gave in the 1929 Scandinavian Congress of Mathematicians in Oslo,

Riemann surfaces of meromorphic functions are for the first time the main theme.

In the paper l23l "Uber die Herstellung transzendenter Funktionen als Grenzwerte

rationaler Funktionen" of 1930, he started from the classical Riemann formula
concerning the branch points of an n-sheeted planar Riemann surface. Suppose a

meromorphic / is approximated by rational functions f, of order n. ff m@) denotes

the number of different roots of f"Q):a in the extended plane, then n-n@)
is the sum of the orders of branch points over a of the Riemann surface of f,. By

Riemann's formula, ),(n-n@)):2n-2, and consequ€ntly as r*-,

Z0-fr@)ln):2-2ln *2.

Nevanlinna compared this relation with the formula ) ö(a)+ ) 0(a)=2. pu
the rational function f,, we have 0(a):I-n@)ln and ä(a):0 for all values a.

The emergence of deficient values of f:1i1r'r7, was envisaged as follows. Assume

that over a the Riemann surface of.f has a branch point whose order divided by

n tends to a positive limit ä as n + @. The corresponding preimage of a then tends

16 o, ärid this means that a certain portion of the roots of f(z):q gets lost producing

the deficiency ä. "A deficient value is taken at e so rl€rny times that it compensates

for the deficiency in the finite plane", an analogue to the behaviour of rational

functions.
Explaining this and similar heuristic ideas and testing them by means of examples

formed an essential part of Nevanlinna's survey lectures [24) at Hamburg University
in 1931.

The new geometric way of handling meromorphic functions soon produced

concrete results. For instance, through an analysis of the class of Riemann sur-

faces with finitely many logarithmic branch points Nevanlinna gave in 1932 ([2.5])
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the first partial solution of the inverse problem: finitely many rational deficiencies

can be prescribed. (Only much later, in 1977, a complete solution was obtained

when Drasin [8], generalizing Nevanlinna's method inl25] and using quasiconformal

mappings, proved that both the deficiencies and the ramification indexes can be

assigned arbitrarily. In this sense, inequality (2) tells the whole truth about the

value distribution of meromorphic functions.)

4.4. New directions of research. The character of the value distribution theory

was now clearly changing. In the preface of [2a] Nevanlinna said that in the theory

of meromorphic functions the ultimate goal must be a closer knowledge of their
Riemann surfaces. He listed a number of concrete problems and, with geometric

interpretations in mind, announced the desirability of getting results in terms of
the original simple counting function n(r, a) instead of its integrated mean N(r, a).

(This was soon to happen through the work of Ahlfors.)
With characteristic lucidity, Nevanlinna described the geometric view-point in

the lecture B6f "lJber die Riemannsche Fläche einer analytischen Funktion" in
the lg32lnternational Congress of Mathematicians in Zirich. Having remarked

that the distribution of a-points of a meromorphic function f near an isolated sin-

gularity is very uniform for most values a, Nevanlinna declared the main problem

of the value distribution theory to be the study of the exceptional values a, or equiv-
alently, the study of the branching properties of the Riemann surface off

On the Riemann surface of f the inverse/-l is a single-valued univalent analytic

function. Thus a connection was established between the theory of such functions

and the value distribution theory. The "type problem", i.e. to decide whether a
simply connected Riemann surface is of hyperbolic or parabolic type, found direct
contact with the Nevanlinna theory.

The study of Riemann surfaces advocated by Nevanlinna led to vast new

research, partly of topological nature, which was succesfully carried out by Ahlfors
and others. A survey of the developments until the mid-thirties is presented in
Nevanlinna's monograph 127). Still today the Nevanlinna theory even in its purest

classical form is very much alive, and it has led to generaTizations far beyond the

theory of functions meromorphic in the complex plane.
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