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ESTIMATES OF HARMONIC MEASURES

LENNART CARLESON

l. The theory of analytic functions of one complex variable can be based on

essentially three different principles: (l) the Cauchy integral and the related power

series expansions, (2) the geometric idea of conformal mapping and (3) the use of
harmonic functions and the study of loglf(z)1. In the development during the

last fifty years the last aspect has been predominant and the work of R. Nevanlinna

together with that of many other Scandinavian mathematicians has been of funda-
mental importance. To combine the aspects (2) and (3) one must be able to handle

harmonic functions in terms of geometric conditions and this is how harmonic
measures enter. I shall here give a short summary of the most important methods

and mention some open probiems. During the last decades the first method has

been revived through the D-equation and we now have methods where all three aspects

can be made to work together.
Assume that I is a domain in the plane. We divide its boundary into two sub-

sets, 09:Eu.l-, and we are interested in estimating the harmonic function in 9,
co(z;E;9) which :1 on E and :0 on J-, at some fixed interior point zoof 9.
This point zo is always assumed not to be close to 09. I shall schematically classify

the situation in the following sections.

2. I simply connected; E an arc

This case is the most well-known and there are three essentially equivalent

methods

(A) the Ahlfors distortion theorem [1]
(B) Beurling's method of extremal length
(C) Carleman's differential inequality [4].

Since Beurling's method is the least known and the most flexible, I shall indicate
the result.

We assume that P is some fixed arc "close" to zo and that the geometry of I
is well-behaved in this part of 9. Consider the family of all curves {y} joining B
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toEinOand

3. äisolatedfrom f -Ag-E

We assume that f contains some well-behaved

is located inside a curve ]-.
We assume first that the complement of E has

c (E):v -L

Then

part. A typical case is when

a Green's function

functions g in g such that

v ( {v}.

all well-behaved non-negative

{ eQ)ldzl = 1,

We define

)\E: §)-2 : inf [ [ o(z)2 dx dy.
-@

Then
a(zo; E;9)\exp {-"1"y

where ! indicates that the two sides are equal disregarding constants which can

be found in terms of the local geometry around zo.

Upper estimates of a are obtained using particular choices of g. In the case

of a domain where segments 0r, xo<x<.x.., parallel to the y-axis separate z6 from
E, we can choose

s@, v): {# (i'#)-' ' xo < x = x" (x' Y)(o'

[0 otherwise

and obtain Ahlfors' distortion theorem.
To get lower estimates we observe that ).(B,E).i(6,o):1, if ö and o ate

the arcs l2\(frvE) and estimate i(ö,o) from above by special choices of g.

E

stz) : { 
los lz - tl dpo$) +v.

is the capacity of E (observe that there are other normalizatrons).

@(zo; E;9)= C(E)

with the same conventions as before. Since

v :inf ![r"u*dp4)dp(op -Ei tz-ll

for all p=0, p(E):I, we have good possibilities to make geometric estimates.

- lf s@) does not exist C(E): ot(zo; E; 9):0.
In Nevanlinna's book [9J all this is set down in detail.
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4. f a smooth curve, -E close to l-

This is a very important case for studies of entire functions and behavior of
analytic functions close to the boundary. The first results are by Nevanlinna [7]

and Beurling [3] and the very useful lemma of Hall 16l. A rather complete solu-

tion can be formulated as follows. Even if the result has not been recorded, this

type of estimate was known to Beurling and the methods are standard in Ile-theory.

Nevanlinna's estimate [7] was based on the same idea.

To simplify the presentation we consider the upper half-plane and assume that

Ec(0,1)X(0, ll2) and choose zo:i. Denote by Q dyadic cubes obtained from

Qo:(0,1)X(0, 1) and having one side on y:0. (B) is the family of positive

measures on Q6 which satisfy

(A) p(Q) = s(Q) for all such Q,

where s(Q) is the side-length of Q. Let us furthermore denote by Q' the upper half

of Q and set E(Q):EaQ'' We then also assume

(B) p(e)=ffi0',tol.
We then have for 9:upper half plane tr\E

(4.1)

Let us first
satisfies

@(i; E; s)=,)lg, pQtr).

observe that the Green's function for y=0 with pole at {:(*irt

G(2, 0=f
os*+o(1), lz-(l=+

lt-ll

tz-ilt=+yry
1-fi,l/- sl

We shall in the sequel relate measures p and v to each other by the relation

dt(O : dP(O'q-'.

We then have the estimate fot z(Q'

(4.2) un(z) - { G@ ; O ctv(O = const. tt(Q)
S(Q)

Conversely, if zC.Q and p satisfies (A), then

iz-el=s(Q)|4 iz-(l=s(O)/4
oo,

* Con t ., ,[ + = Const.

(4.3)
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Let us assume that E is located in y>2-r'-r. We first consider squares Q
of side 2-k. lf C(E(Q))=O. let v[ be the distribution of mass C(E(Q)) on E(Q')
so that

I bg/--,dvä(O: t, z(E(e).
E(Q) > r

An easy computation shows that on E(Q')

I ot,,0 dvö(0=t-cL:to:» +c@(Q)).

Hence the maximal total mass that we can distribute on E(Q') with a Green's poten-
tial <1 is

- 
c(E(Q))

^ c (E(Q)) + (t - c (E(Q)) I c (Q))'

We define vo:Const- vf, so that suprto,) u,o: We do this for every Q
of side 2-k and define y(1):)vn for these Q's. From (4.3) follows that u,(z)=
Const.

Having defined v(D and ,{) 1o. squares of sides 2-i, j=*+1, we consider
E(Q') for a square of side 2--.

If
u,<*+r(z)>l on E(Q')

we put u(m)-r(n)-g on E(Q). If not, we define

(4.4) v(')(O : Const. vc(O on E(Q')

where the constant c is chosen so that infrtaru,t^+r»q",o(Z):1. We go through
the squares of size 2-* andhave defined v(') by (4.4). Wäs€t y:y(l) and. p:ptr).

It is clear from the construction that uu>l on -E Since u,oXl on E(Q')
it is easy to see that u,<^*'>(21)fuuo,r»(22)\l for zr, z2 on Q' for a square Q of
size 2-* (this is essentially Harnack's inequality). It then follows from the con-
struction that

u,(z) = Const., for all z,
and by (4.2)

p(Q) = Const. s(Q), for all Q.
We conclude

and 
ot(z)xu,(z)

o(r) X u"(»X I4dv(r) : p(,*).

Conversely, let po satisfy (A) and (B). We replace polQ' by §s. n. dvs, where

frgis a constant so that

Po(Q):§a {nd'o'
E(Q')
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The changed measure p; sa

Since p also satisfies (A) it

u'(z) -
By the maximum principle

plo(b) : u(6.)X t e @;0 dvi,G) : u'(i) = Const. co(i).

This proves the result.

To obtain the Beurling-Nevanlinna projection theorem (in a weak form) we

choose for every y=0 for which this is possible some (x, y)CE and define

dpo(*,y):dy. The corresponding set of y's is denoted -E*. Then

tisfies by condition

{ cU;0 dv'oG)
E(Q')

follows from (4.3)

(B)

< Const.

that

Const. on E.

Const.

;-1rogm

terms of the general geometry. No lower

(4.s)

For Hall's lemma we consider instead r>0 so that, for some 0, reio<E and

define dpoQe"):dr. If again the corresponding set of r's is denoted -E*, (4.5)

holds.

5. 09 zcurvel Ec09

lf 09 is rectifiable it follows by conformal mapping that @(i; E, 9) and length

/(.8) vanish simultaneously. An upper bound

o(E) <

can be given with a uuiform constant in
bound of such nature can exist.

lf 09 is a general Jordan curve, our knowledge is very unsatisfactory (see [5])'
Lavrentiev has shown that it is possible that a(E)>0 and /(E):9. Conversely

if Ecv?, where 9u are discs with radius r, it follows from the Beurling-Nevan-
linna projection theorem in §4 that

a(EaZ") 5 Const. r|/2.

Hence ,f 24' can be made arbitrarily small, i.e. År1r(E):0, then or(E):0.
It can be shown that there exist a> ll2 so that A,(E):O implies ar(E):0. 1o
prove this for all a<l would be an important progress that would also imply

that if g is a conformal mapping of any domain I onto the unit disc then

U lE'l' d.x dy '' *, p = 4'
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6. E a linear set

A natural method to deal with harmonic measure is to try to find an iterative
scheme of linear inequalities which derive from the Poisson formula for some explicit
situation. This seems to have been first used by Benedicks [2]. I shall here describe

in detail a situation where the method works.
Let xr, - @<v< -, Jf,,:0, be a sequence of points on the real axis, 0<rr+r-

x,-C. Assume also C-r=a,=C, and that the intervals

al, : {xl x-xnl = a,\

are disjoint. Let I be the complement of F: ucr;,. We wish to estimate a(z; ao; 9)
for z rcal.

Let .I, be the complementary intervals of F in natural order. Suppose n1v:
maxr,ar(x) is taken at 4u€1,. Let K"(x; /) be the Poisson kernel for the plane

!,. Then, lf lunöo:fi,

If we set

and aui:O for the two excluded intervals Iu, the matrix (4,7) has the following
two properties:

(6.1) Jo"t=t=. 1

where q only depends on C;

(6.2) O<aui=G+, K:K(C).

Both inequalities are immediate consequences of the assumptions on the intervals
and the explicit form for r(,.

Lemma. Under the assumptions (6.1) and (6.2)

(6.3) o=m"< )an,mi].+"<Const.j
implies

Const.
mu € __@_.

n4, :a)((,) - { K"(("; t)@(t) rtt

- .Z I x"((,,; t)o(t) clt+ { x"((,; t) dt
i*v i @o

< Z,n, I x"((,; t) dt+o(v-').
Jfv' Ii

avj { x"(("; t) clt, v * i
I.i
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Proof. If we write (6.3) in matrix notation it takes the form (x:m)

0<x< Ax*c

where xr<Const., cr<Const. .7-2. Hence

x = A,*+"i Aur.

Since Max, (A"x)r=q"*O it is sufficient to prove the following: There exists e>0,

only depending on q and C, so that if
0 < x, = Min (e,i-'): ai

then

(6.4) !i: (Ax)i =*o,.
Let !:6-rtz. There exists ö-ö(q,C) so that if lil=-(L+6)g then (6.4)

holds. This is an immediate consequence of (6.1). Take i:Ä! with .2'>l+ä.
Then

,, = u,,V=, o,, *,, _,11:yi o,, *,, _,lE*åW
The second sum is

- ,-rrr_1, for ä < ä(q).

The third sum has an estimate

Const. i-29-L: Const. i-2€;112.

The first sum, finally, is bounded by

const. ."'^.1": #:9H# =[#,
().-r)g

if e is sufficiently small, since i2e>1*ä.
In a similar way one can also estimate harmonic measure for compact sets.

Let me mention the following results. The proofs will appear elsewhere.

Let E be a compact set so that for every xo(ä

m(En(xr-ö, xe+ä)) = cä for all ä > 0

for some fixed c=0. Let dist.(0,8):1, and let ar(x) denote harmonic measure

at 0 for the part of ,E located in (0, x). Then

(a) ar(x)<Const. ;r-0, 0 :0 (c)= 0.

(b) co is absolutely continuous and

t ,' "*p {uro''t'y dx - *. a : q(c) > O.

E

A natural conjecture is that a'€A for some p>1.
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