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ON NEVANLINNA’S PROXIMITY FUNCTION

SAKARI TOPPILA

1. On the growth of and T'(r, ) and T'(r, ')

Let f be a transcendental meromorphic function in the plane. We denote by
T=T(r,f) and T'=T(r,f’) the characteristic functions of f and f’. Nevanlinna
[4, p. 104, and 5, p. 236] conjectured that

l+o(l) = TT =2+o0(l)

as r—oo outside an exceptional set E of values of r. This conjecture holds in the
following form.

Theorem 1. Let f be a transcendental meromorphic function and let ¢(r) be
any positive and increasing function of r such that @(r)—o as r—eo. Then
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for some K=\, and if fis an entire transcendental function, then
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The inequalities (1) and (4) follow from Lemma 1 of Nevanlinna [5, p. 244],
(2) and (5) follow from Lemma 1 of Hayman [3, p. 99], and (3) is a consequence of
the following result of [7].
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Theorem 2. Let f be a transcendental meromorphic function of lower order
zero. Then

(6) lim sup r

and there exists a sequence r,, r,—~oc das n—-co, such that

(7 m(r,, f) = m(r,, f)+o(T(r,, /) as n— e

Theorem 2 shows that we may take K=1 in (3) for functions of order zero.
If the order of fis infinite, it is not difficult to see that (3) holds for all KX=1. In
the other direction, we have

Theorem 3. Given any e, 0<e<-oo, there exist a meromorphic function f of
order ¢ and K=1 such that

®) lim sup %’%l -1

and that for some =0,
® m(r,f) = m(r, )+ 6T (r, f)

for all large values of r.

Proof. Such a function f'is constructed in the proof of Theorem 2 of [7].
If fis an entire function, the following a little stronger result than (3) holds
(unpublished). )

Theorem 4. There exists an absolute constant Q=1 such that

(10) 11131?;)% |

for any transcendental entire function f.

W

It is not possible to take Q=1 in Theorem 4, for in [6] an entire function 7
of order one is constructed such that f satisfies (8) for some K= 1.

The following theorem shows that the constant 1/2 in (2) cannot be replaced
by a larger one, and that (7) need not hold for all large values of r, not even for
slowly growing functions.

Theorem 5. Let ¢(r) be as in Theorem |. There exists a transcendental
meromorphic function f satisfying

(11) T(r,f)=0(p(r)logr) as r— oo
such that for some sequences r,, r,—~ as n—oo, and K,, K,—~o as n—oo,

. T(K,r,, f) ]
(12 TG ) 2

(13) m(r,, f) =0 forany n,



On Nevanlinna’s proximity function 61

and
1 .
(14) m(r,, f) = (74—0(1)) T(r,, [) as n — e

Proof. Such a function f is constructed in the proof of Theorem 3 of [7].
For slowly growing functions, Hayman [3] proved the following result stronger
than Theorem 1.

Theorem 6. Suppose that f is meromorphic in the plane and not a linear poly-
nomial, further that

(15) T(r,f) = O0((logr)?) as r — oo,
Then

G TS o TS
(16) 5 = lll;llglf To. ) = llrjl»soklp To. ) -

If, further, f is a transcendental integral function, then

. T(r,f)
(17 lim T = 1.

In [7] it is proved that the growth condition (15) in Theorem 6 can be replaced
by the smoothness condition

. TQ@r,f)
18 lim ——== =1
19 M6 )
If f satisfies (15), then it satisfies (18), too. The following result of Hayman [3]
shows that the conditions (15) and (18) are essentially the best possible for Theo-
rem 6.

Theorem 7. Let ¢(r) be as in Theorem 1. There exists an integral function f
such that

(19) T(r,f) = O(p(r)(logr)?) as r — e
and

T(r, ) )
(20) —T(Tf) -0 as r —> o

through a set of values E having infinite logarithmic measure.
If f has finite order, then
21 m(r,f)=m(r,f)+0(logr) as r — eo.

This together with the following result of [7] describes the connection between
m(r, f) and m(r, f’) for all values of r.

Theorem 8. If fis a transcendental meromorphic function satisfying (18), then

(22) m(r,f) = N, f)+m(r, f)+o(T(r,f)) as r— oo
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Theorem 5 shows that (22) is sharp, and from Theorem 7 we conclude that
(15) and (18) are essentially the best possible conditions under which Theorem 8
holds.

Remark. The conditions (3), (6), (7) and (22) do not hold for polynomials.
The function f(z)=z+1/z does not satisfy (7). For rational functions other than
polynomials, the conditions (6) and (22) hold.

2. On the deficiencies of / and f~

From the proof of the second main theorem of Nevanlinna [5, pp. 238—247]
we get

Theorem 9. Suppose that f is meromorphic in the plane and not a linear poly-
nomial. If the order of f is finite, then

(23) 0(ee, ) = 6(==, ),
(24 A(e>, 1) = A(es, /),
(25) ; d0(a, f) = 26(0, 1),

and for any finite a

(26) A(a, f) =24(0, ).

If f has infinite or finite order, then

@7 0(o=, f1) = A(, f)

and

(28) agﬂ o(a, ) =24(0, 1).

In the other direction, the following theorem is proved in [8].

Theorem 10. Let f be a transcendental meromorphic function satisfying (18).
Then

©9) 5(ees 1) = 25(=, )~ 1.
(30) a1 =520,

with equality in (30) if f has only simple poles, and, furthermore, there exists a finite
value a such that

3D é(a, f) = 6(0,1).



On Nevanlinna’s proximity function 63

From Theorem 2 we get
Theorem 11. If fis a transcendental meromorphic function of order zero, then

(<>, f)
2-0(e, f)
The condition (29) holds for those rational functions which are not linear
polynomials. If we take f(z)=z+1/z, then

A(ee, f7) = 6(=, ) = 0.
For this rational function f the conditions (30) and (32) do not hold. The function

(32) (==, ) =

and

does not satisfy (31). Modifying a little the function f constructed in [6] we get a
meromorphic function of order one which does not satisfy (32). The following
result of [8] shows that (29) is sharp.

Theorem 12. Let ¢(r) be as in Theorem 1. For any 8, 1/2=é<1, there
exists a transcendental meromorphic function f satisfying (11) such that é(ee, f)=06
and (e, f)=20—1.

Especially, if d=1/2, then we have J(c, f)=1/2 and d(ee, f’)=0 in Theo-
rem 12. The following theorem of [8] shows that the conditions (15) and (18) are
essentially the best possible for Theorem 10.

Theorem 13. Let @(r) be as in Theorem 1. There exist transcendental mero-
morphic functions f, g and h satisfying (19) such that
0(ee, /) =0 but 6(f) =1,

A2, g ) =0 but A(e, g) =1,
and
5(0,hy=0 but 6(a,h) =0
for all values a.

Let g be an entire transcendental function with simple zeros satisfying (15).
Then we see from Theorem 6 that

T(r,g)=(1+0(1))T(r,g) as r — oo
Using Theorem 1 of Hayman [2] we conclude that
N(r,0,8) = (1+o()T(r, )
=(1+o)T(r,8)
=(1+o(1))N(r,0,8) as r— e,
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and that the function f=1/g satisfies
T(r,f) =(Q2+0(M)N(r,0,g) as r— o
Since  N(r,0,f")=N(r, 0,g’), we conclude that §(0,/")=4(0, f)=1/2. Clearly
6(0,/) = 4(0,1) = 1.

This example shows that the constant 2 in the inequalities (25), (26) and (28) cannot
be replaced by a smaller one, not even for slowly growing functions.

The conditions (23), (24), (25) and (26) need not hold for functions of infinite
order. In fact, there exist meromorphic functions f, g and h of infinite order such that

0(e2,f) =0 but (e, f) =1,
A(eo,8) =0 but A(e,g) =1,

6(0,g) =1 but 6(0,¢g) =0,
and
AQ0,h) =1 but A4(0,h") =0.

For a proof, we refer to [8] and [9].
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