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SOME ACHIEVEMENTS OF NEVAI{LII{NA THEORY
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We have come together at this conference to honour Rolf Nevanlinna. Hilbert
once said to him: "You have made a hole in the wall of Mathematics. Other math-
ematicians will fill it." If the hole means that many new problems were opened up,
then this is indeed the case, and I am certain that Nevanlinna theory will continue
to solve problems as it has done in the last 50 years. Today I would like to give

an account of a few questions which have been wholly or partially solved by means

of the ideas in this theory.

1. Deficient and asymptotic values. When Nevanlinna first came to the Univer-
sity of Helsinki, Iversen was an assistant there. He had proved a famous theorem

[17]. If/is a non-constant entire function, then

J' * * along some path l--.

generally if/is meromorphic transcendental and assumes the value a only a
number of times then a is an asymptotic value, i.e.

f * a as / --+ a along some path f o.

The path ,l-o is called an asymptotic path.
It is natural to ask whether a corresponding result holds if the equation ;Ea

has sufficiently few roots and Nevanlinna theory enables us to define what we mean
by that. Nevanlinna conjectured that deficient values might be asymptotic, i.e.

ö(a,f)>O implies (1). If
(2) T(r,f): O(log r)2

this is indeed the case, as was proved by Anderson and Clunie l3l. If f has finite
order g, and 1-ö(*,f) and2-2ö(a,f) are sufficiently small depending on g,

the conjecture was proved by Edrei and Fuchs [8], sharpening an earlier result of
Pfluger [21].

For general functions the result is false if/grows more rapidly that is implied
bV Q). However U2l if
(3t r(r,fi-.**,'i N(t, a) dt

tr -+foo,
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then a is indeed an asymptotic value. This condition is satisfied in particular if
ö(a,f)>O and/has smooth slow growth, e.g.

(4)
T (2r) 

1

--->l

T (r) ^)

a condition implied bV Q). Further Anderson [2] has shown in this case that the
path i-o can be chosen to be almost straight. It can be chosen to be a straight line,
or more generally almost every straight line through the origin if the stronger con-

dition (2) holds [3] but not if just (4) is satisfied [2].
For functions of rapid growth and in particular infinite order we cannot improve

substantially the condition (3). Given any sequence of positive numbers r, tending
to - and such that

Z';ut' : *,

which is equivalent t" I; r-'lzN?)dF:* for the counting function, there exists

an entire function/ of arbitrarily rapid growth as measured by T(r,f), which has

no zeros at points other than the r, but for which zero is not an asymptotic value

[13]. On the other hand (3) shows that if

1 N(t, a) dt
J ---Vi'-' *

and lim,*- r-'l2T(r,f)=0, tlen a is asymptotic.

2. Size ol m(r, a) for varying a. According to the first fundamental Theorem

we have forlf meromorphic in lzl=R

m(r, a)+ N(r, a) - rk)+o(l) as r * -lR.

The second fundamental Theorem shows that in this relation the term m(r, a)

is in general small for most values of a. It is natural to ask "how small and for
how many a?".

In the first instance it follows from results of Nevanlinna and Frostman [20,
pp. 171, l72l together with Choquet's theory of capacitability [14, Chapter 5], that

(s) m(r, o) -- *

can only hold for a set of capacity zero. Drasin and Weitsman [7] have shown that
this is sharp. Given any set A of capacity zero and g> ll2, there exists an entire
function of order q, such that (5) holds for every a in A. lf Q:112, then I must
be contained in an Fo set of capacity zero.

At the other end of the scale we may ask if m(r, a) can sometimes be large

for every a and if so how large. Here the answer is given by an old Theorem of
Littlewood [18]

mffi=+(6)
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outside a set of arcal
proved that

(7) Iimffi=+
measure zero. This was generalized by Ahlfors [U who

outside a set of ä-dimensional measure zero.

Nevanlinna 120, p.2011 showed that if E is a closed set of capacity zero and

f(z) maps lzl-l onto the universal covering surface over the complement of -E

then / has unbounded characteristic. Since / does not assume any value of E, we

have for a(F
m(r, a): 7(r)*O(l) as r * l, N(r, a) : Q.

Nevanlinna 120, p. 2631 showed that outside a set of capacity zero m(r, a)

mustbesmallcomparedwithT(r). Moreprecisely if q>112, thenif/hasunbounded
characteristic in lzl=R

m(r, a) : O {T (r)'}, as r * .R

outside a set of capacity zero.

Ahlfors [1] had shown earlier that if
E(d, which can be enclosed in a sequence

Z

can be made arbitrarily small. We

exceptional set is at most (1 - r»lrl.
may say that the logarithmic dimension of the

(8)

0<q=ll2 then (8) holds outside a set

of disks of radii 9,, for which

I

[,"*])"-""

All these results are essentially best possible. One can construct counter exam-

ples of functions of unbounded characteristic in the unit disk such that

- 
m(r. a\ Itrm*71r; =T

for every a. Given a set Ep of Hausdorff dimension B, we can make

n m(r, a) Ir* 
tog r(.) = 7

on every point of .Er. Given a set F, of logarithmic dimension (l-4)14, where

r7=L12, we can find/such that

- 
loe m(r. a\tm1fuff=4

for every a(Fr. In particular even for q:112, we can choose F, to have positive

capacity. Thus Nevanlinna's Theorem is no longer true for q=112, and here Ahl-
fors' Theorem gives the sharp result.
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It follows from Nevanlinna's theorem that

m'u!",, ?) > 0T(r)
(e)

can hold at most on
also sharp. If E is an

order such that

a set of cap acity zero. For functions of infinite order this is

F" set of capacity zero, there exists an entire function of infinite

m*9t! : tT(r)

for every a in E. However for functions of finite order Hyllengren [16] has shown
that the exceptional set is much smaller than this. If the enclosing circles are again

lz-znl=po, we can make )(loglog(1/q))-(1+") small, when e=0, but not in
general when e=0.

3. Picard values of derivatives. Suppose that f is transcendental meromorphic
it the plane. What can we say about the values assumed by the derivatives/o of f?

In view of Picard's theorem f can leave out at most 2 finite values. However
Nevanlinna's theory tells us Ull that f<tt can leave out at most one such value. For
every pole of /0) has multiplicity at least l+l>2, so that the sum of the other
deficiencies is at most 1+ll(l+l)=312.

lf f abeady has a finite Picard value, then the exceptional value of/(r) can only
be zero. An example is given by f:e"+a. None of the derivatives assume the

value zero. If we set f():ul etia', 
where g(z) isentire then fty, f' lO. But for

higher derivatives no such examples can exist. Frank and the Hennekempers [9, l0]
proved a conjecture of mine [l] that if /is meromorphic and f*0,.f(t)tO for
some l>2, then either .f:eo'+b or f:(az*b)-', forconstant a,b and a positive
integer n. This settled finally old problems going back to p6lya and Csillag [6].
Nevanlinna's theory was an essential tool in this work.

Problems of Picard values of various polynomials in f and its derivatives can
also be attacked. I cite an example. If/is meromorphic transcendental then f'f"
assumes every value exceptzero infinitely often if n>2 [1], l9]. If/is entire the
result is true for n >1 [5]. Also f'-af" for a*0 assumes every value if n>5
[11], and the value zero also for n:4, but if r:3 or 4 and c#0, there exist
functions for which f '-af"+c [19]. It is not known if/ /assumes all values except
zeto or whether f'-f' necessarily has zeros, when/is meromorphic.

4. Iteration. suppose that f is non linear entire and define l, inductively by
.fr:.f, f,*r(z):f{f"(z)}. Then the fn are called the iterates of f. lf f,(():(,
but fr(()*( for l=p=.n we say that ( is a fix point of exact order r. It was shown
by Baker [4] using Nevanlinna theory, that every f has fix-points of all exact orders
with at most one exception. The function f(z):s"42 shows that there need be
no fix points of order 1. The polynomial f(z):zr-z has no fix points of exact
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order 2. However the question of whether a transcendental entire function can

have an exceptional order other than 1 or a polynomial an exceptional order other
than 2, remains open.

5. Angular value distribution. Nevanlinna theory shows that for meromorphic
functions in the plane the roots of equations f:a are distributed with great reg-

ularity. All values are taken roughly equally often, except possibly two, which may
be taken less often. For functions meromorphic in an angle the results are much
less precise but with the aid of modified Nevanlinna theory we can say a good deal

in this case also.

Let d<atgz<B be an angle.S. Let n(r,u,B,a) be the number of roots of
f:a in {§nlzl=r}, and define

Qo(a, §,o) : JE "rr!{;' .

The order Q(a, fr, a) is defined suitably as

S(,S, a) : Q(d, fi, a) : JiT. eo(o+t, §-e, a).

We can think of this as the inner order. Then Valiron [24,p.31] proved essen-

tially the following

Theorem. There exists a:q(,S), such that

g(s, a) : q

except for at most two Dalues a for which p (,S, a)= q and a set V of linear measure

zero for which q(5, a)=Q.

The exceptional set V can in fact exist. It is even smaller than Hyllengren's

[6] sets and can be enclosed in disks lz-z,l=pn for which

can be made as small as we please and a much more precise characterization can be

given, using Hyllengren's concept of span.

6. Extensions. The theory of Nevanlinna has many other applications. Some

of these have been considered by other speakers. I would like to mention the rela-

tion between the growth of /and f', whete distinguished work has recently been

done by Toppila 122,237, and entire functions which, together with some derivatives,

have only real zeros (Hellerstein and Williamson [5]) and the whole idea of func-

tions of bounded characteristic [20, Chapter 7], a concept which has proved of major

importance in many areas. Perhaps it is worth saying a word about subharmonic

functions in R*, m=3.

Z (,"r* los+ log+ *)-'-'



lf u(x) is such a function it can be expressed on any compact set .E as the sum

of potentialp(x) and a function h(x) harmonic in the interior of .E. Here

p(x): !l*-cl-^au{€)

and the positive measure p is called the Riesz mass of p. We denote by n(t) the
Riesz mass of the ball lxl=r and write

N(r): (m-2)!W
If rz 

+(x) : s1 ax (u, 0), u- (x) :1;1,aa (- u, O), we write

.1T(r' u) : #- 1.rf,-,u*(*) 
do{*1

1
m(r, u) : ;+- I "-@) 

do(x).
"rn, I*l:"

Here o(x) is superficial measure on lxl:7 and c* is the measure of the unit sphere

in R-. We then obtain the first fundamental Theorem in the form

T(r,u) - m(r,u)+ N(t,u)+u(0)

provided that z(0)>--. The function T(r,u) gives a very good description of
the growth of the subharmonic function u(x) and its asymptotic behaviour as ,r+@
and the analogues of the results of Weierstrass and Hadamard for entire functions
in the plane can be obtained without too much difficulty. Functions of bounded
characteristic in R' are precisely those functions which are bounded above, but
these functions need not be constant [14, Chapters 3 and 4]. The analogues of
meromorphic functions are the so called ä-subharmonic functions, which are locally
the diflerences of two subharmonic functions. Since any twice continuously dif-
ferentiable function is ä-subharmonic further restrictions must be made in general

to obtain significant theorems.
I hope that this far from exhaustive survey has given some impression of t}te

power and beauty of Nevanlinna theory.
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