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1. Introduction

For some time it has been known that the right direction to extend the geometric
parts of the theory of analytic functions in the plane to real n-dimensional space is
given by the theory of quasiregular mappings. In this article we shall deal with
recent results closely related to Nevanlinna theory, starting with a Picard type
theorem on omitted values. In the light of these results the plane theory is an excep-
tional case due mainly to the separating property of arcs in plane domains. In spite
of a striking contrast here between the dimensions n:2 and n>3 surprisingly
strong results are true for higher dimensional mappings.

Let G be a domain in the Euclidean ,z-space R' and let f: G*R' be contin-
uous. We say that f is quasiregular if (l) fCW:,b"(G), i.e. / has distributional
paftial derivatives which are locally L"-integrable, and (2) there exists K,l=K<.*,
such that
(1.1) lf'@)|, = xJ1@) a.e.

Here f '(x) is the formal derivative defined by means of the partial derivatives which
by (1) exist a.e., lf'(x)l is its supremum norm, andly@) is the Jacobian determinant.
For the purpose of this article we call a quasiregular mapping K-quasiregular if
(1.1) is satisfied although this is not common terminology. The definition of quasi-
regularity extends immediately to maps f: M tN where M and N are Riemannian
r-manifolds, see for example [5]. The term quasimeromorphic is reserved for the
case where M is a domain in R'or R':Rou{-} and N:R'. The space R'is
equipped with the spherical metric. A quasiregular homeomorphism is called a
qu a s i c o nfo r m al mapping.

The theory of quasiregular mappings was initiated by Re§etnjak around 1966

in a series of papers and a systematic study was continued mainly by Martio, Rick-
man, and Väisälä some years later. For the basic theory we refer to [3, 4] and to the
expository articles [10, 15].

If n:2, the l-quasiregular mappings are exactly the analytic functions and
any quasiregular mapping f can be written as f:goh where h is quasiconformal
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and g analytic. lf n>3, the l-quasiregular mappings are Möbius transforma-

tions or constants, and it is essential to allow a distortion factor 1(in order to obtain

a class of mappings which is interesting in the function theoretic sense.

One of Re§etnjak's early main results is that a nonconstant quasiregular mapping

is discrete and open. Hence these topological properties remain the same as in the

plane. In 1961 Zoriö [16] proved an important rigidity property for locally homeo-

morphic quasiregular mappings f: R"*R" fot n>3, namely, that they are in
fact homeomorphisms. This result was conjectured for a slightly smoother class

of mappings by Lavrent'ev already in 1938. On the other hand, for every rz>3

there exists K,> I such that every nonconstant K,-quasiregular mapping is locally

homeomorphic.

2. The problem of Picard's theorem

In [16] Zoriö gave a simple example of a nonconstant quasiregular mapping

I R3*R\{0} and the construction can immediately be generalized fot any n>4.
It resembles the exponential function in the plane. In t}ris connection Zoriö also

raised the question whether a Picard's theorem is true also in dimensions r>3
for quasiregular mappings. At a rather early stage it was proved in [4] and [8] that

for a nonconstant quasiregular mapping 7f: ,R'*R' the set [/R' of omitted values

is of zero conformal capacity. A few years ago the question of the existence of a
Picard's theorem was answered, namely, the set of omitted values is in fact finite,

more precisely as follows

2.1. Theorem [11]. For each n>3 and each K>l there exists a positiae

integer q:q(n,K) such that if f: R"tR\{ar, ...,ar} is K-quasiregular and

at, ..., aq are distinct points in R", then f is constant.

It has been conjectured already from the appearance of Zoriö's article [16]

that the Picard's theorem is true in the same form for n>3 for quasiregular map-

pings as in the plane, i.e. no more than one point in R'can be omitted. However,

this was disproved for n:3 recently and the result is that (at least for n:3) Theo-

rem2.l is in fact qualitatively best possible, more precisely as follows.

2.2. -fheorem [a]. For each positiue integer p there exists a nonconstant

quasiregular mapping ,f: R3*Rs which omits p points.

The most important tool in the proofs in the theory of quasiregular mappings

for dimensions n>3 is the method of moduli of path families. A potential theory

exists in the form that the substitute for harmonic functions consists of extremals

of certain elliptic variational integrals. The Euler equation of such a variational
integral is a second order quasilinear partial differential equation and so the extremals

are solutions of such equations. The use of variational techniques is important in

Re§etnjak's early studies of quasiregular mappings.
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In the original proof of Theorem 2.1 in [1 1] both methods mentioned above were
used. Here I will briefly outline a proof which uses only the method of path families.
For more details, see [3].

2.3. Idea of proof of Theorem2.l. Suppose that f: R'*R\{ar,...,ar) is a
nonconstant K-quasiregular mapping where ar, . . ., aq ate distinct points in the ball
B(ll2):{xe R'lfxf- ll2}. We shall first consider a situation where / behaves in a

sense like a mapping of finite order. Let n(E, y) be the number of points inf-l(y) nE
with multiplicity regarded and let v(E):y1B,,S) be the average of n(E,y) when

Jp runs over the unit sphere .§. Let a quasiconformal mapping E of R' onto itself be
givenandlet U beaBorelsetsuch that E-rB(ll2)cUcq-18(U2).5s114/:(p-rB(2).
Assume now that
(2.4) v(W) = Lv(U).

If we also assume thatt(U) is sufficiently large, it is possible (see [9,4.1]) to relate
the average v(U) and the average v(X, S.;) over a small sphere §;:^S(a;, o),
where X:E-tB(l), such that
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(2.5) v(x,s) = 1r«I).
The radius o is chosen so that v(U):sr(1., (Uo))'-'. Here cr,cr,... are posi-
tive constants which depend onn and K only. Set I:g-18(312) and let l-, be

the family of paths connecting .f-'Si to l)o*if-r51" in I\X. Because each

a, is omitted, each component of f-rB(ai, o) tends to -. Since we also have (2.5),

it follows (see [12, (6.6)]) that we are able to find a 7 such that the modulus M (f i)
of ,l-, satisfies M(f ,)>d(n)qtl{"-t> for some d(n)>O. On the other hand, each

path in the image family ff t connects .S; and §(a;, os) where

oo: la i - axl.

Rememberin g that o is small we conclude that M (ff ) is small. But this is possible

only if the average t(Y,S7ar,l)) is large for some t([o,oof. If we put all these

quantitatively together and relate averages over different spheres as we did in (2.5),

we end up with an estimate (see [2, 6.71for the technique)

(2.6) v(W) = crqu("-D(log(1/o))'-'.

By the choice of o we get v(W)>crrtt(n-r)r7g) which with (2.4) gives

q < ln-Lgt-n'

The proof is now completed by finding a pair U, W so that (2.4) holds and

v(U) is large. Write v(r):v(fi1.;), and for v(r)>1 define

1

zwi
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By using ideas which go back to E. Borel we can find a set ,Ec[l, -[ of finite
logaritlmic measure and

(2.7) v(r') = Zv(r) if r€ [1, oo[\ä.

Let r€U, -[\E We write the ball B(r) as a finite disjoint union of sets U; such

that for some.K(n)-quasiconformal map qt E;'n0lZ)cUrcE;tB(ll2) and so that

the sizes of the sets U, are within fixed bounds measured in the hyperbolic metric

of the ball,B(r'). We may choose the cp, so that the sets Wi:Qi7 B(2; are con-

tained in B(r') and do not overlap more than å(n) times. It then follows from
(2.7) and the fact that v(r)*- as /*6 that if r is sufficiently large, then there

exists an index i such that (2.4) holds for the pair U,, W , with L: L(n) and v (U;) >
t(ltl+. The pair (Ji, Wi has then the desired properties. That ar,...,aq wete

assumed to lie in B(U2) is no restriction because this can always be achieved by a

preliminary Möbius transformation.

2.8. Remark. Because of the localizing method in the proof of Theorem 2.1,

we obtain by the same proof also a result which corresponds to the big Picard's

theorem [11, Theorem 1.2].

It is interesting to see how the idea of the given proof works in the plane to
give the shärp result, namely Picard's theorem. We did not use the fact that - is

omitted. Let therefore f R2*R\{ar, az,az} be a nonconstant K-quasimero-

morphic mapping where ar, az, aB ate distinct points in B(ll2). Let U, W be the
pair (Jr,W, chosen at the end of the proof. Let yrr: [0, l]*!11; be the linear

path yj(r;: ry+Q-t)aj. By the method of the proof of [9, 4.1] we can find 7(S
such that n(U,y)>'r(U)12 and there exists at least 3n(U,y)14 maximal lifts aJ,

of yj such that a{(t;:x(U, ui@12)€X. But then there exists at least n(U,y)14
points x€U with such a lift al for every i:1,2,3. Each triple (fll*, a], a]; of
such lifts divides the plane into three Jordan domains D1,, D2*, D]. Consider another

triple (a), a2,a,) and the domains Dr., z*x. We may assume that the segment

Ittl:lor,yl does not touch the image of the branch set. It follows that the paths

at, and at, are disjoint and that two of the domains Dj must be contained in one of
the domains DL,, D'*, D]. This has the effect of squeezing some of the domains

when v(U) is tending to -. But this implies that M(l) gets arbitrarily large for
some jt when increasing r. This is impossible according to the proof in2.3.

The essential fact that makes the proof work for three points omitted in R2 is that
paths have an effective separating property in the plane. In dimension three paths

do not separate, and even more, tubular neighborhoods of paths do not separate

in general. The construction in the proof of Theorem 2.2 depends on this latter

fact. In contrast to Zoriö's example where one point in RB is omitted, the construc-

tion of a nonconstant quasiregular mapping of RB omitting p>2 points in R3 is

complicated and one can even show that in a sense this must be so. It is probable

that Theorem 2.2 is trw also for n>4.
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3. A defect relation

Nevanlinna's second main theorem [6] for meromorphic functions is a far
reaching extension of Picard's theorem. In this section we shall discuss what is
known in this direction for quasimeromorphic mappings in dimensions n >3. For
simplicity let us consider only the case of a nonconstånt K-quasimeromorphic

mapping f R'*R' and n>2. As in the classical theory let n(r,y) be n(B(r),y),
i.e. the number of points in f-'(y)nE(r) with multiplicity regarded. We call

n(r,y) thecountingfunction. LetA(r)bethe averageof n(r,y) overRnwithrespect
to the spherical metric.

If for some point a€R' and some r>0, l-n(r, a)lA(r)>0, then a is covered

less than in average by the restriction flB(r). The positive part (l -n(r,a)lA(r))a
can therefore be called the defect at a in B(r1.

Let for the moment n:2 and f R2*R2 be meromorphic. Nevanlinna's

second main theorem implies that there exists an exceptional set Fc[0, -[ of finite
measure such that

(3.1)

whenever at,
integrals of
Nevanlinna's

(3.2)

where

(3.3)

(3.4)

rimsup th
i?; ,:1 \

_N(r,ar)1 <)
T(r) )--

Z ö@) =2A€.RL

..., oq are distinct points in R2. Here Ir{(r, a) and T(r) are logarithmic

n(r, a) and A(r) respectively. The inequality (3.1) gives immediately

defect relation

is the Nevanlinna defect at a.

A theory parallel to Nevanlinna's was created by Ahlfors [1] where a highly

geometric point of view is taken. The result in Ahlfors's theory corresponding to
(3.1) is the following (see [7, p. 350]): There exists an exceptional set .gc[l, -[ of
finite logarithmic measure such that

whenever aL, ...,aq aredistinctpointsin R2. Thusthesumofthedefects zt a1, ...,ao

in ,B(r) is asymptotically bounded by 2 outside the exceptional set. Ahlfors himself

pointed out in [1] that his theory works for quasimeromorphic mappings in the

plane as well. This is the case for parts of Nevanlinna's theory too; for example,
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a second main theorem has been proved by af Hällström by using Ahlfors's theory
as a starting point.

For quasimeromorphic mappings in dimensions n >3 a result connected to
(3.4) has been proved in the following form.

3.5. Theoremll2l. Let n>3 and let f: R"-Rn be a nonconstant K-quasi-
meromorphic mapping. Then there exists a set Ecll, *l offinite logarithmic measure
and a constant C(n,K)<- depending only on n and K such that

(3.6)
"äyo'l+ ål

wheneaer aL, ..., aq are distinct points in R",

Theorem 2.1 is clearly a corollary of Theorem 3.5. By Theorem 2.2 the bound
C(n,K) is qualitatively sharp atleast for n:3. The lefthand side of (3.6) reduces

to that of (3.4) for n:2. However, it is an open question whether the exponent ri - I
is the best in (3.6). There seems to be some indication that it could possibly be 1 as

in (3.a). The proof of Theorem 3.5 consists of a careful analysis of lifts of paths
together with a generalization of the method of moduli of path families. The very
basic idea is in the spirit of the proof of Theorem 2.1 outlined in 2.3.

4. Averages of the counting function

For meromorphic functions Nevanlinna's second main theorem bounds the
ratios N(r, a)lfQ) from below. The inequality (3.1) is an example of this. In the
other direction Nevanlinna's first main theorem implies that

N(r, a) = T(r)+O(l)

where the O(1) depends on d. The relationship between T(r) and averages of N(r, y)
with respect to measures in R2 is discussed in [7, pp. 177-1821. Ahlfors's well-
known covering theorems ll,p, 164, 165] are examples of average results for the
counting function n(r, y).

For quasiregular mappings a general result for averages of the counting func-
tion n(r,y) hasbeengivenin[5]. In[5]weconsideraquasiregularmapping f:M*N
where M and N are connected Riemannian z-manifolds, M noncompact and N
compact. To avoid the discussion of exhaustions of M we will here present the
result for M: Ro. We consider measures p in N such that Borel sets are measurable,
0=p(N)=e, äDd for any ball B(x,r) in N

p(B(r, ,)) = h(r)
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holds, where h is an increasing, continuous, and positive function such that

(4.1) irydq = *!a
for some p>2. Let tu?) be the average of the counting function n(r,y) with
respect to iu. Our result is then that outside an exceptional set vr(r) is asymptotically
near the average A(r) with respect to the Lebesgue measure of N, more precisely as

follows.

4.2. Theorem [5, Theorem 5.11(1)]. If f: R" * N is a nonconstant quasiregular

mapping, there exists a set Ecfl, *[ of finite logarithmic measure such that for any

measure p, in N as aboue we haue

ri* ''r(') : r.

"18 

A(r)

For meromorphic functions Hinkkanen [2] sharpened t]re result of 4.2 to the
form that (4.1) can be replaced by

i '<nl ds = *.JO
0E
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