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ON THE GROWTH OF THE SPHERICAL
DERIVATIVE OF A MEROMORPHIC FUNCTION

SAKARI TOPPILA

1. Introduction

Let f be meromorphic in the plane. We denote

PG
1+lf@F”

u(r, f) = sup {e(f(2)): |zl = r}
A(r, f) = inf {o(f(2)): |z| =r}.

o(f(2) =

and

In this paper, we shall give some estimates on the growth of u(r, f) and A(r, f).

2. On the growth of A(r, f)

We shall employ the usual notation of the Nevanlinna theory. First we shall
estimate the growth of A(r, f) from below.

Theorem 1. Let f be a transcendental meromorphic function of finite lower
order. Then

— oo,

.1) lim sup -19%_) =

This result need not hold for functions of infinite lower order. If we take f(z)=
exp {€°}, then
log A(r, /) = log o(f(r)) = —(L+o(1))e"

and T(r, f)=o0(¢") as r—o. These estimates imply that

2.2) lim sup 10:‘;{ (};('} {2 _
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If f is a meromorphic function of lower order zero, then f satisfies

L TCr f)
(2.3) llmolonfw' =1.

For this class of functions we prove

Theorem 2. Let f be a transcendental meromorphic function satisfying (2.3).
Then

©.4) lim sup 5’%{)— S

This does not hold for all functions of positive order. If we take f(z)=e", then

A ) =e(f) =e,

and since

TG, ) = (1+o(D)—
we deduce that
log A(r, f) _

2.5 lim sup =—n<-—1

ree T, f)

for this function f.
In the other direction we have

Theorem 3. Let f be a transcendental meromorphic function of finite order.
Then

(2.6) lim sup %fl =—5(co, f).

Theorems 2 and 3 together show that if f'is an entire transcendental function of
finite order satisfying (2.3), then

2.7 linls:p l‘l%%f:)_ =—1.

The condition (2.6) does not hold for all meromorphic functions of infinite order.

Theorem 4. There exists an entire function of infinite order and of lower order
zero such that

2.8) lilrll sup lo;g,—(/'% =oco

For meromorphic functions without Nevanlinna deficient values the following
theorem gives in some cases a sharper estimate than (2.6).
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Theorem 5. Let f be a transcendental meromorphic function. Then

2.9) 11131 iup a (2 g

On the other hand, we have

Theorem 6. Given any increasing and positive function @(r) such that
@(r)—~oo as r—oo, there exists a transcendental meromorphic function f satisfying

(2.10) T(r, f) = O0(p(r)(logr)?) as r— e
such that

@.11) liixiiup—%z(:—;% =0

and that

(2.12) h?},iur) T(( /{))

The function ¢(r) in (2.10) cannot be replaced by a positive constant. We have

Theorem 7. If f is a transcendental meromorphic function satisfying

(2.13) T(r, f)=0((logr)?) as r— o,
then

ri(r, f)
(2.14) llrl}igp " f) = 0.

3. On the growth of u(r, )

The following theorem gives a lower bound for the growth of u(r,f).

Theorem 8. Let f be a transcendental meromorphic function. Then

(3.1) Jim inf 208R0 ) g

S (%))

In the other direction, we have

Theorem 9. Let f be a transcendental meromorphic function satisfying (2.3).
Then

(3.2) Jim inf 122 A (> /)

e [y A
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Combining Theorems 8 and 9, we deduce that

.o logu(r, f)
(3.3) llminf—m* =—1

for transcendental entire functions satisfying (2.3).
The following theorem shows that (3.2) need not hold if the order of fis positive.

Theorem 10. Given d,0<d<1, there exists a meromorphic function I of

order d with (e, £)=>0 such that

. ru(r, f)
(3.4 h{l_};nf T, ) = 0.

On the other hand, the following theorem shows that a transcendental mero-
morphic function of lower order zero cannot satisfy (3.4).

Theorem 11. Let f be a transcendental meromorphic function. Then

lim inf —>2 - rpdr, j)

3.5 o,
(3.5) mint o Ay =
and if the lower order of f is finite, then
- ru(r, ) _
3.6 lim inf ———=
G0 PR T

If, further, the lower order of f is zero, then

ru(r, f)
3.7 hl}},glf T ) =0.

If the order of f is infinite, then (3.6) need not hold. We take

f(2) = exp {ie7}.

Then f’(z)=ie’f(z), and since |f(z)]=1 on the positive real axis, we get

1
(3.8) u(r, f) = 5 €
Since
T(r,f)=o0(e") as r — oo,
we get from (3.8)

u(r f)
i R 7y =

for any positive constant K.
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4. Proof of Theorem 1

We use Lemma 3 of Hayman [4] in the following form.

Lemma A. Let a,,n=1,...,p, lie in O<|z]<o. For any B=9, there

exists a set E which is a countable union of discs |z—c,|<d, such that

dy 3

ki
and that
2]+ |aa|

4.2 — =pB
@2 B B i PR N

when z#0 and z lies outside E.

Let f be meromorphic in the plane and let g, be the a-points of f. We write

2|+ |an|
lsla<fal<zlzl 2= @

S(z,a) =

Lemma 1. Let f be a non-constant meromorphic function. Then for any complex
value a and any B=12 there exists a set E which is a countable union of discs |z—c;|<
d, such that

d
4.3 2k -B
4.3) r<;c§<2, ol = 16000e
for all positive r and that
4.4) S(z, a) = n(4lz|, a, f)B

when z#0 and z lies outside E.
Proof. 1t follows from Lemma A that
4.5 S(z,a) =n(2**Y, a, f)B=n(4lz|, a, f)B

if 287'<|z|=2" and z lies outside a set E, satisfying (4.1). We select from each E;
those discs which have at least one common point with the annulus 2°~'<|z|<2"
and denote the union of these discs by E. It follows from (4.5) that S(z, a) satisfies
(4.4) outside E when z=0. Since B=12, it follows from (4.1) that all discs which
are selected from E, are contained in 2% <|z| <2“*, and (4.3) follows from (4.1).
Lemma 1 is proved.

Let f'be as in Lemma 1. We choose B=20 and a=< in Lemma 1, and denote
the corresponding exceptional set E by E.

Lemma 2. With the above notation we have

(4.6) log|f(2)] = 37T (8z], f)
when |z|=1 and z lies outside E, where E satisfies (4.3) with B=20.
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Proof. Let b, be the poles of fand |z|=1. Applying the Poisson—Jensen formula
with R=2|z|, we get

. R2—EkZ
4.7) log |[f(2)| = 3m(R, )+ 2 log|—=——~.
b =R R(z—by)
If R/4<|b]<R, then
R*—byz | |z]+ |by|
| ‘ =1 Lk 1 log8,
Bl RGbpl = 8 Tz—p, T °F

and for other terms in the sum of (4.7) we get the upper bound log 8<3. These
estimates together with (4.7) imply that

log |f(2)| = 3T 2z, f)+3n(2|z], =, /)+S(z, =),
and we deduce from Lemma 1 that
4.8) log |f(z)| = 3T (22|, £)+23n(4|z], =, 1)
when |z]=1 and z lies outside E. Since

1 = PI0B2 = [ (e oy 1711 = N, )= N, =, f) = T, 1)

r

for r=1, (4.6) follows from (4.8). Lemma 2 is proved.

Now we prove Theorem 1. Let f be a transcendental meromorphic function of
finite lower order. Then there exist K;>0 and a sequence r,,r,~o> as n-oo,
such that
4.9 T@32r,, f) < KT (ry, )
for all n. Since

m(r, [1) = m(@r, f)+m(r, flf),
we deduce from the lemma on the logarithmic derivative [Nevanlinna 7 p. 245] that
m(16r,, 1) = m(16r,, )+o(T(32r,, f)) as n — o,
which together with the fact that N(r, f')=2N(r, f) implies that
(4.10) T(6r,, f) = (2+0(1))T(32r,, f) as n — o
Using Lemma 2, we deduce that there exists #,, r,=t,<2r,, such that
log |/(2)] = O(T@®|z), ) = O(T(16r,, )
—log |f"(2)] = O(T82], 1/f")) = O(T(16r,, f7)
for all z lying on |z|=1,, and we deduce from (4.9) and (4.10) that
—log A(t,, /) = O(T(32r,, /) =O(T(1,, f)) as n — oo,

which proves Theorem 1.

and
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5. Some properties of functions satisfying (2.3)

We denote by f® the k-th derivative of f.

Lemma 3. Let f be a transcendental meromorphic function satisfying (2.3),
and let k be a positive integer. Then there exists a sequence r,,r,~o> as p—>oo,
such that

(5. T(pr,, f®) = (140()T(y, /) as p—~ o
and

(5.2) T(p*r,, f®)=T(r,, f®)+o(T(r,, f))

as p--<o, and that for any complex value a

(5.3) n(p*r,, a, f) = o(T(r,, 1)),

(54) N(pzrwa’ f)= N(rp’ a, f)+0(T(rp$ f))’
(5.5) n(p?r,, a, f®) = o(T(r,, 1))

and

(5.6) N(p*r,, a, f®) = N(r,, a, f®)+o(T(r,, /)
as p-—oo.

Proof. 1t follows from (2.3) that there exists a sequence f,, f,~< as n—oo,
such that

(5.7) TQ, /) = (L+0(D) T f) as n oo,
We choose r;=2. Let p=2 be a positive integer and

1
= e

Since T'(r, f) is an increasing and convex function of log r, we get

log(1/x
Tty N~ T3ty ) = 2EC (Tt f)=T00 1)
and we deduce from (5.7) that
T(t,, /) =1+o()T(xt,. ) as n — .
We choose n so large that xt,>p%,_; and

(5.8) T(t,, f) <2T(xt,, f)
and we set r,=xt,.
Let a be a complex value. We get from (5.8)

(5.9)
n@rya, Ap= [ 0l a Hrlde = (1+o(D) T, )= (2+0(D)T0,. f),

err
p
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which proves (5.3). From (5.9) we get
(5.10)

1
N(pzl’p, a, f)—N(rpa a, f) = 2n(p2rp, a, f) logp = ;(4+0(1))T(7’p, f) Ing,
which proves (5.4). If we choose a such that 4(a, f)=0, we get from (5.4)

(511) T(pzrp, f)'_T(rpa f) = N(pzrpa a, f)_N(r_p’ a, f)+0(T(p2rp: f))

= o(T(p*r,, 1)),
which proves (5.1).
It follows from the lemma on the logarithmic derivative that

T(t,)2, f©) = (k+ DN(f2, o, f)+m (L2, o, f)+m(t,/2, =, fOf)

‘ = (k+14+0()TG,, £),
and we deduce from (5.8) that
(5.12) T(t,/2, f®) = 2k+2+0(D)T(r,, f)
as p—oo. Just as in the proof of (5.9), we deduce from (5.12) that
(5.13)

n(e’r,, a, f®) = % (I+o(V)T(e*r,, fV) = % (Rk+2+0(M)T(r,, 1),

which proves (5.5), and just as in the proof of (5.10) and (5.11), we deduce that (5.6)
and (5.2) follow from (5.13). Lemma 3 is proved.

We choose B=20 in Lemma 1, and deduce that there exist sets E;, E,, E; and
E, each of them satisfying (4.3) such that

(5.14) S(z, o, f) = S(z, ) = 20n(4|z|, =, f)
outside E;, and that corresponding estimates hold for S(z, 0,1), S(z, =, f®) and
S(z, 0, f®) outside the union of E,, E; and E,. We write

4
E = U Ek'
k=1

Let z=ré" liein r,=|Z| =pr,. Let b, be the poles of f. Applying the Poisson-

=
Jensen formula with R=p%,, we get

(515) log /(2) = 22 m(R, =, /)= E - m(R. 0, )

R*—b
o Pr 8 ’w(z - lsvz)

b ]<R
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If |z|/2<|b| <2|z], then
R2—b,z
R(z—b)l ~

and for other terms in the sum of (5.15) we get the upper bound log (4p?). These
estimates together with (5.15) imply that

|21+ 1bs|

log logm—l—log 2p?),

togl/ @) = L m(® = ) -2 m(w,0,)
+8(z, =) +n(R, =, f) log (4p®,
and we deduce from (5.14) that
log |f(2)] = N(R,0,f)—N(R, =, f)

+2[p+i 1+o(1)] T(R, f)

+n(R, =, [)(20+log (4p%)
if z lies outside E. Therefore we get from (5.1), (5.4) and (5.9)
(5.16) log |f(2)| = N(r,, 0, f)=N(r,, =, f)+0(T(r,, f))

for all z lying in r,=|z|=pr, outside E. A similar estimate holds for 1/f, and using
(5.13) and Lemma 3 we get a similar estimate for 1/f® and f®. We have proved
the following result.

Lemma 4. Let f and k be as in Lemma 3. The sequence r, in Lemma 3 can be
chosen such that

(517) 10g |f(Z)| = N()‘p, 0: f)—N(i‘p, b f)—}-O(T(i‘p, .f))
and
(5.18) log|f®(2)| = N(r,, 0, f®)—N(r,, =, f®)+0(T(r,, )

as z— oo through the union of the annuli r, é\lz} =pr, outside a set E which is the union
of four sets satisfying (4.3) with B=20.

6. Proof of Theorem 2

Let /' be as in Theorem 2. We may suppose that f(0)=0, because in other cases
we can consider 1/f or the function

f(2)-/(0)

1+/0) /()
Let

6.1 J(2) = ez + e 2+
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be the Laurent expansion of f at the origin. Then k=1, and from (6.1) we deduce
that there exists #, O<t<1, such that if O<|a|<7, then

n((lal/ @I, a. /) =0
n(Qlal/lc)'™, a, f) =
These estimates imply that if O<la|<t and

r=9(1+1/[e]) = s,

and

then

(6.2)  |loglal|—N(r, a) = |logla] —klog(r(lel/2laD)*¥) = log "|26 lllal =0.
Let 0<la|<9. It follows from the first main theorem of the Nevanlinna theory
that
m(r,a) =T(r, f)—N(, a)+[log|a[{+log+[a{+log 2,

and we deduce from (6.2) that

6.3
© m(r,a) = T(r, f)+log2+log(l/t)+2log9 = T(r, f)+6+1log(l/t)

if O<|al<9 and r=>s,.
We write

M(r, f) = sup {If(D|:|z] = r}.

We apply Lemma 4 with f®=f", and choose a sequence r, as in Lemmas 3 and 4.
We may assume that the circle |z|=r, lies outside the exceptional set E of Lemma 4,
because in other cases we may choose r,,, r,<r,<2r,, such that the circle |z|=r),
lies outside E, and consider A(r,, f) instead of A(r,, f).

Let z,, f(z,)#0, lie on |z|=r,. We get for any z lying on |z|=r,

(6.4) f@=f(z)| = L S/ z I/ wydw| = 7, M(r,, f).
It follows from (5.18) that

(6.5) log| /()] = log M(ry, /) +0(T(ry /)
on |z|=r,, and from (5.17) we get

(6.6) log |/(2)] = log f(z,)! +0(T(r,, /)

for all z lying on |z|=r,.
We consider first those values of p for which |f(z,)|<4. From (6.4) we deduce
that
m(r,, f(z,), f) = —log M(r,, f")—log (mr,),
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which implies together with (6.3) that

6.7 log M(r,, f))=—T(r, /)+o(T(r,, 1))
Combining this with (6.5) and (6.6) we get

log A(ry, ) = log M(r,, f)+0(T(ry, ) =—T(ry, )+0(T(r,, f)),

which proves Theorem 2 in the case where |f(z,)|<4 for an infinite number of values
of p.
Let us suppose that |f(z,)|=4. Applying the Jensen formula we get
1 .
loglf(0) /()| = 7 [ 10g |/ (z)~f(ry ) ldet-N(ry == .
and since f(0)=0, it follows from (6.4) that
log |f(z,)| = log M(r,, f)+N(rp, =, f)+0(T(r,, £))-
This implies together with (6.5) and (6.6) that
log A(r,, f) =log M(r,, f)—2log M(r,, f)+0o(T(r,, f))
= _N(rm 2, f)_log lf(Z,,)H‘O(T(Tp, f))a
and using (5.17) we deduce that

log A(ry, f) =2 =T(r,, f)+o(T(r,, f)).
This completes the proof of Theorem 2.

7. Proof of Theorem 3

Let f be as in Theorem 3. Let z lie on the circle |z|=r. Since

e[ QLY _ £
tog*1/)| = tog | 2| LEFOL) < 10g | LU —t0g 10, 1),
we get

a. m. ) = mr, 1) ~log A6r, ).

Since f has finite order, it follows from the lemma on the logarithmic derivative that
m(, fIf)=0o(T(r, f)) as r - oo,
and we deduce from (7.1) that

log A(r, f) = —m(r, £)+0(T(r, £)) = (—(s, H)+o()T(r, f) as r — o,

This proves Theorem 3.
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8. Proof of Theorem 4

We set
@ = 3 Gy

where r,=log s,,s;=100, and for n=1, s, is a positive integer such that

8.1 loglog s, = s,_1.
Then

@)= 2 (s/m)fr)=="
It follows from (8.1) that
(82) lOg M(rna .f) = Sp—1 log ¥y = (lOg rn)z,

which implies that the lower order of fis zero. For |z|=r, it follows from (8.1) that
n—1
log|f’(2)] = log [% _;21' skr,fk) = (1+o()logs, = (L +o(D)r,,

and we deduce from (8.2) that

logl(rn,f) -~ (1—}—-0(1))7‘” — oo
log M(I’,,, f) - (lOg r")z

This proves Theorem 4.

as n —oo,

9. Proof of Theorem 5

Let f be a transcendental meromorphic function. We write

.Y n(r)y=n(,0, f)+n(r, 1, f)+n(r, =, ).
We have

2r
n(3r/2)log (4/3) = f n(nt=tdt = (3+0(1))TQ2r, f) = 4T2r, f)
3r/2
for r=r,. This implies that for all large values of r we may choose z, lying on |z|=r
such that f does not take any of the values 0, 1 and < in the disc

r

(9.2) ]Z_Zrl = m .

It follows from Schottky’s theorem that there exists an absolute constant K; such
that if |f(z,)|=1, then
(9.3) Sl < K
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in
D, = {z:]z——z,l =< m‘(rTf)}’

and if |f(z,)|=1, then 1/f satisfies (9.3) in D,.
We write g(z)=f(z) if [f(z)|=1 and g(z)=1/f(z) if |f(z,)|>1. Integrating
along the boundary of D, we get from (9.3)

¢ = |55 [ 2 au| = ZLCDK
which implies that '
04 £ lgE@) _ RKTer )
L+fG)F 1+]|g)P r ’

and we deduce that

ri(r, f) _
TQr, f)

for all large values of r. This proves Theorem 5.

32K,

10. Proof of Theorem 6

It does not mean any restriction to assume that the function ¢ (r) given in Theo-
rem 6 satisfies the condition

(10.1) o(r) =o(loglogr) as r — oo,

We choose s;=8, r;=100, and for n=2, s, and r, are chosen such that s,
is a positive integer,

(10.2) loglogr, = r,_q,
(10.3) s, = 8ns,_, log r,
and
(10.4) su < ¢(Vr,)logr,.
We set
- (_ 1)" (z/rn)s"
PO =Gy
and
J@ = 35,
Then

(_' l)n (Sn/rn) (Z/rn)S" -t
(L+(z/r)™)

Ja (2) =
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and
r@= 3.
We choose ¢, such that
(10.5) @, /r)yr = 2.
Suppose that #,=|z|=Vr,+;. For k<n we get from (10.2) and (10.3)

1

Tr iy | = 20 < e

(106 @1 =|
For k=n we get from (10.2) and (10.3)

(10.7) [e@)] = 2(Vrpsa[re < e®

It follows from (10.5) that |f,(z)|=2, which implies together with (10.6) and (10.7)
that

(10.8) If(2) =4
for all z lying in t,=|z|=Vr41-
Let f,=r=Vr,;,. We get from (10.3)

n—1
(10.9) N, f) =s,log (r/r)+logr > s, =s,log (r/r,)+2s,-, logr.
k=1
This implies together with (10.8) and (10.4) that
(10.10) T(r,f) = 2s,log r+log 4 = 2¢(y/r,) (log )2 +log 4
for t,=r=Vr,+,. Since T(r, f) is an increasing function of r, we get for Vr.<r<t,

T(r, ) = TQr,, ) = 2¢(r)(log (2r?))*+log 4,

which together with (10.10) proves (2.10).
From (10.9) and (10.5) we deduce that

N(t,, f) =log2+2s,_,logt,
and
NQt,, f) =s,log3+3s,_,logr,.

These estimates combined with (10.3) and (10.8) yield

(10.11) T, f)=3s,_,logr, =s,/n
and
(10.12) T(2t,, f) = 4s,.
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Suppose that |z]=t,. We get from (10.5)

@ = g57=2 3 () () =2 3 (s (@r)iry=?

S, 2

v

Zsk_2k§' Sk/rk,

97’" Fn k<n
and we deduce from (10.3) and (10.2) that

S, 45,1 4 S,

()= -l .
If ( )I 97‘" T, l/ [ ] 187‘,1
This implies together with (10.8) that

Sn

2t ) = e

This together with (10.11) and (10.12) proves (2.12) and (2.11). Theorem 6 is proved.

11. Proof of Theorem 7

Let f be as in Theorem 7. Let n(r) be defined by (9.1). We have

re
n@®logr = [ n@®r~1dt = (3+o )T f),
and we deduce from (2.13) that there exists K=0 such that
n(r) < Klogr

for all large values of r. This implies that for any large r, there exists z,, |z,|=r,
such that f does not take any of the values 0, 1 and < in

r

(11.1) |z—z,| <K1—og;7’

and just as in the proof of (9.4), we deduce from (11.1) that

logr)
r

A(r,f)=0( r —>oco,
Since f is transcendental, we get
ri(r, f) = O(logr) = o(T(r,f)) as r —»oo,

which proves Theorem 7.
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12. Proof of Theorem 8

Contrary to the assertion of Theorem 8, let us suppose that there exists a tran-
scendental meromorphic function f such that

..o logu(r, f)
12.1 liminf——222 =_1-94
(12.1) m 1 @, f)

for some d=0. Just as in the proof of Theorem 2, we may assume that f(0)=0,
and deduce (6.3) so that there exist t=0 and s,>0 such that

(12.2) m(r,a) =T(r, f)+6+1log(1/1)
if O<|a|<9 and r=>s,.

It follows from (12.1) that there exists an increasing sequence r,,r,~o> as
n— oo, such that

(123 log ¢(f(2)) = —(1+8d)T(r, f)
on |z|=r, for all n. Since m(r, -, /)=T(r, f) and
m(r, 0, f) = (1+o()T(r, f) as r oo,

we may choose a point z, lying on |z|=r, such that

(124 log |f(z)l| = A+ T(r,, /)
if n is large enough.

Let us suppose that
(12.5) log|f(wpl| = (L+2d) T (r,,, f)

for some w; lying on |z|=r,. Then we may choose an arc J, contained in |z|=r,
such that z,€J,,

(12.6) llog [fW)]| = (1 +2d) T(r,, f)
for all weJ,, and that
(12.7) log |f(wol| = A+2d) T (r,, )

(k=2, 3) for the end points w, and w; of the arc J,. For z€J, we get from (12.3)
and (12.6)

log|f"(2)lf (2)] = log (¢f(2)) +1og ( f (D +1/|/(2)]) = — (6d +0(1)) T (1, f).

and integrating along J, we deduce that

Jw)
for all z&J,. This implies together with (12.4) that

[log [f(wo)l| = (1+d +o(D) T, /).

(129) [togl /@G| = | [ L aw| = expt—(6d+01) T 1} =001
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This is a contradiction with (12.7) if n is large, and we conclude that
12.9) llog |/(2)l| = (14+2d+0(D)T(r,, £)

for all z lying on |z|=r,, and that (12.8) holds for all z lying on |z|=r,.
Let us suppose that there exist large values of »n such that

(12.10) If(z)| = 4.
Then it follows from (12.8) that |f(z)|=8 on |z|=r,, and from (12.3) we get
(12.11) log |f'(2)| =— (148D T(r,, f)+1log 65

on |z|=r,. Integrating along the circle |z|=r,, we deduce from (12.11) that
log |[f(2)—f(z)| =— (1+8d)T(r,, f)+log 65+2log r,
on |z|=r,, which implies that
m(r, f(z,), f) = (1+8d+0(D))T(r,, /)-

This contradicts (12.2) and we deduce that (12.10) is not possible if # is large. There-
fore we have

(12.12) fiz) =4
for all large n.

It follows from (12.8) that

@) = (L+eM)If ()
for all z lying on |z|=r,, and we get from (12.12)
(12.13) log |f(2)] = (1+o(W)m(ry, =, f)
for all z lying on |z|=r,. This implies together with (12.3) that

log |f"(2)] = —(1+8d +0 (1)) T(ry, f)+2m(r,, =, f)

on |z|=r,, and integrating along the circle |z|=r,, we get
(12.14) log [f(2)=f(z)| = —(1+8d+0o () T(ry, £)+2m(r,, =, f)

on |z|=r,. Applying the Jensen formula to the function f(z)—f(z,), we get from
(12.14), since f(0)=0,

log /(2)| = 5 [ log [£(r,€*)~f(z)lda NGy, =, 1)

=—(1+8d+o())T(ry, )+ N(ry, = ) +2m(r,. ==, f),
which together with (12.13) implies that
(A+8d+oMW)T(r,, /) =T(r,, f) as n —oo.

This is a contradiction, and we deduce that (3.1) holds for all transcendental mero-
morphic functions. Theorem 8 is proved.
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13. Proof of Theorem 9

Let f be as in Theorem 9. Since

m(r, f) = m(r, f)+o(T(, 1))

outside a set of finite linear measure, it follows from Lemma 4 that we may choose a
sequence r,, ¥, as n— oo, such that

(131) 10g |f(z)l = m(rn, ha) )—m(rm 0, f)+o(T(rn’ f))
and
(13.2) log |f"(2)] = m(ty, o=, f)—m(ry, 0, f)+0(T(rs, 1)

= m(r,, =, f)+o(T(,, )
on |z|=#,.
If m(r,,0, £)=0, we deduce from (13.1) that

m(t,s =, f) = o(T (s £)),
and if m(r,, -, f)=0, then
m(tn, 0, f) = o(T (s, f))-
These estimates imply together with (13.1) that
(13.3) log (1+1/(2)I?) = 2m(,, £)+0(T (s, 1))
on |z|=r, for all n. From (13.2) and (13.3) we get
log u(ry, £) = —m(ry, o=, [)+0(T (s, ) =—(6(e=, o) T (. f) as 1 oo

which proves Theorem 9.

14. Proof of Theorem 10

Let d satisfy O<d<1. We set

> Itz
f(z)’“nlzjl r,,—z’
where r,=n'%. We have
@ 3 2

f@ Sz

and since |[f(ir)]=1 for any real r, we get

G
(14.1) 1O N E TR = A e

for any r=0.
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From the choice of r, we deduce that

n@r, 0, f)=(1+o()r! as r oo,
which implies that
(14.2) n(2r, 0, f)—n(r, 0, f) = (2—1+o(1))r?

as r—oo. It follows from (14.1) and (14.2) that

(14.3) p = 2

2, 2+ > =(n@2r, 0, /)—n(,0, f))5 5
d
= (24— r— — oo,
= (2/—1+0(D) 5o as T
If |z|=r and |argz|<m/6, then

loglf(z) = 2 log

=r =
r=r,=2r

r,+z
r,—z

= (n2r, 0, H—n(r, 0, f))log (5/4) = (2'—1+o0(1))rlog (5/4).
This implies that
(14.4) m(r, o, f) = %log (5/4)(2*—1+o(1))r.
On the other hand, since
n(, 0, f)=n(, =, ) =0@") as r—e,
we have (see e.g. Nevanlinna [7, p. 223])
(14.5) T, /)=0@F% as r —>ce.

From (14.4) and (14.5) we deduce that J(es,f)=0 and that the order of f is d.
From (14.3) and (14.5) it follows that f satisfies (3.4). Theorem 10 is proved.

15. Proof of Theorem 11

Let f be a transcendental meromorphic function. Let n(r) be defined by (9.1).
Just as in the proof of Theorem 5, we deduce that there exists r, such that

4T(2r, 12
for r=r,.

If the lower order of f is infinite, we choose r,=e" for any positive integer n.
Let us suppose that

TQr, f) _
(15.2) hglglf 7w )
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Then we have for any K=1,
(15.3) TQ2r, f) = KT(r, f)
for r=rg. This implies that
T@2'rx, f) =K"T(rg, f)
for all n, and we deduce that if 2"~Yg=7=2"rx, then

log7'(t, f) _ (n—1)log K+log T(rg, f)
log ¢ nlog2+logrg ’

This implies that
(15.4) lim inf -

r—oo

IM > logK,

logr
and we deduce that if (15.2) holds, then the lower order of f is infinite. Therefore, if
the lower order of f'is finite and positive, we may choose a sequence r,, r,~oo as
n—oo, such that
T(2r"’f) - A

(15.5) 7, f)

for all n, A being a constant.

If f'satisfies (15.3) for some K=1, we deduce from (15.4) that the lower order
of f'is positive. Therefore, if the lower order of fis zero, then f satisfies (2.3), and it
follows from Lemma 3 that there exists a sequence r,, 7, as n—oo, such that

(15.6) n(3r,/2) = o(T(r,, f)) as n —oo.

In all cases, we write, if n(r,)=1,
rn
= 4n(3r,/2)

Then there exists #,, r,=1,=3r,/2, such that f does not take any of the values 0, 1

and o~ in the annulus
B, = {z:t,—d, < |z| < t,+d,}.

Since the disc |z—w|<d, is contained in B, for all w satisfying |w|=t,, we get, just
as in the proof of (9.4),

o(f(w) = {di - w

for all w lying on |z|=¢#,. This implies that

(15.7) tott(tay 1) = 16Kyn(3r,/2).
Combining (15.1) and (15.7), we get

(15.8) tult,, f) =0(TQr,, /) as n —oo.
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This proves (3.5), since r,=t,=2r, and T(r,f) is an increasing function of r. Simi-
larly, combining (15.8) and (15.5), we get (3.6) for functions of finite positive lower
order. If the lower order of f'is zero, then (3.7) follows from (15.7) and (15.6). Theo-
rem 11 is proved.
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