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ON THE GROWTH OF THE SPHERICAL
DERIYATIYE OF A MEROMORPHIC FUI{CTION
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1. Introduction

Let "f be meromorphic in the plane. We denote

and

a(f(z)\ - -l['L'l- 't L+lf@)l')

p(r,f) : sup {e(f@), lrl - r}

A(r,f) : inf { e(fk»: lrl - ,}.

In this paper, we shall give some estimates on the growth of p(r,f) and )r(r,f).

2. On the growth of )"(r, f)

We shall employ the usual notation of the Nevanlinna theory. First we shall
estimate the growth of i(r,/) from below.

Theorem l. Let f be a transcendental meromorphic function of finite lower
order. Then

(2.1) rimsup W*>-€.
This result need not hold for functions of infinite lower order. If we take f(z):

exp {e"}, then

, los 1(r, f) = log q(/(r)) = -(t *o(r))e"

and T(r, f)-s(s'1 ^t r+@. These estimates imply that

(z.z) rimsjrp W*:-@.
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If / is a meromorphic function of lower order zero, then / satisfies

(2.3) ri^wffi*:l.
For this class of functions we prove

Theorem 2. Let f be a transcendental meromorphic function satisfying Q.3).
Then

Q.4) limsup \ff=_ -t.

This does not hold for all functions of positive order. If we take .f(z):e', then

and since 
1('''f) = su@) € €-"

T(r, f): (t+o1t1l
we deduce that

(2.5) liy,lilpw=-n-<-r
for this function I

In the other direction we have

Theorem 3. Let f be a transcendental meromorphic functiott of finite order.

Then

(2.6) tiyr_*rW=--6(*,f).

Theorems 2 and 3 together show that if/ is an entire transcendental function of
finite order satisfying (2.3), then

e.7) rimypfffi:-r.
The conditionQ.6) does not hold for all meromorphic functions of inflnite order.

Theorem 4. There exists an entire function of infinite order and of lower order

zero such that

(2.8) rimsup lffi#:-.
For meromorphic functions without Nevanlinna deficient values the following

theorem gives in some cases a sharper estimate than (2.6).



On the growth of the spherical derivative of a meromorphic function l2l

Theorem 5. Let f be a transcendental meromorphic function. Then

(2.s) timsuvffi =*.

On the other hand, we have

Theorem 6. Giuen any increasing and positiue function <p(r) such that

E(r)** q.s r-*, there exists a transcendental meromorphic function f satisfying

(2.10) T(r, .f): o(E(r)(log r)'z) as r + 6
such that

(2.rt) Iimsup ffi=o
and that

(2.12) Iimsup ffi:*.
The function E@) in (2.10) cannot be replaced by a positive constant. We have

Theorem T. If f is a transcendental meromorphic function satisfying

(2.t3)
then

(2.14)

T(r, J') : o((1og ,)') os r * *,

riys3nffi o

3. On the growth of p(r, f)

The following theorem gives a lower bound for the growth of 1t(r,f).

Theorem 8. Let f be a transcendental meromorphic function. Then

(3.1) ti-*r+f*>-l.
In the other direction, we have

Theorem 9. Let f be a transcendental meromorphic func'liort .tatisfying (2.3).

Then

(3.2) riny,tSffr=-ä(-,1').
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Combining Theorems 8 and 9, we deduce that

(3.3) tiyyr+f*:q
for transcendental entire functions satisfyins Q.3).

The following theorem shows that (3.2) need not hold if the order of/is positive.

Theorem lO. Giuen d,0<d<1, there exists a meromorphic function f of
order d with 6(*, f)>Q such that

(3.4) tiy.",r##=0.

On the other hand, the following theorem shows that a transcendental mero-
morphic function of lower order zero cannot satisfy (3.4).

Theorem 11. Let f be a transcendental meromorphic function. Then

(3.s)

(3.6)

and if the lovyer order o"f "f is finite, then

riyyrffi{-,

tipinf W-<oo.
If, further, the lower order of f is zero, then

(3.7) timiot'!!" f,) : s.r+- l'(r, J )

If the order of/is infinite, then (3.6) need not hold. We take

f(r): exP {ie'}.

Then f'(z):ie'f(z), and since lf@)l:l on the positive real axis, we get

(3.8) p(r, .f) = ,l o.

Since

T(r,.f): o(d) as r + @,

we get from (3.8)

timnffifir:*
for any positive constant K.
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4. ProofofTheorem I

We use Lemma 3 of Hayman [4] in the following form.

Lemma A. Let an)n:|,...)p, lie in 0<lzl<-. For any B=9, there

exists a set E which is a countable union of discs lz-col=.do such thqt

(4.t) Z += 4000e-B
- lc*l

and that

(4.2) z rcrl:=+!{=rn
lz|z<dl-zlzl " lz-a,l

when z*O and z lies outside E.

Let f be meromorphic in the plane and let an be the a-points of f We write

l-ltl^ I

s (z' a) : 
1,yr-ls-r1"rtos iffi '

Lemma l. Let f be q non-constant meromorphic function. Thenfor any complex

ualue aandany B>12 there exists aset Ewhichis acountableunionof discs lr-rol=
do such that

(4.3) Z +=16000e-Br<lcul<zr lcll
for all positiue r and that

(4.4) S(2, a) = n(4lzl, a, f)B
when z*O and z lies outside E.

Proof. It follows from Lemma A that

(4.5) S(2, a) = n(2k*r, a,.f)B = n( lzl, a, .f)B

if t-1=lzl<2k and z lies outside a set,Eo satisfying (4.1). We select from each E1,

those discs which have at least one common point with the annulus TJ-r =lzl=/'
and denote the union of these discs by .E It follows from (4.5) that ,S(2, a) satisfies

(4.4) outside E when z*0. Since B>12, it follows from (4.1) that all discs which
are selected from Ey are contained.in t-2=lzl=2!*', and (4.3) follows from (4.1).

Lemma I is proved.
Letfbe as in Lemma 1. We choose B:20 and a:- in Lemma 1, and denote

the corresponding exceptional set E by E.

Lemma 2. I4/ith the aboue notation we haae

(4.6) toglf (z)l = 377 (8lzl, .f)

when lzl>l and z lies outside E, where E satisfies (4.3) with B:20.
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z

J
R'-60
w6(4.7) los lf(r)l = 3nr(R, f)*,rÅ los

If Rl4=lbol=lR, then

Proof. Let b1,be the poles of f and lzl > I . Applying the Poisson-Jensen formula
with R:2lzl, we get

I

"rlff:*l =,*##+rog8,
and for other terms in the sum of (4.7) we get the upper bound log8=3. These
estimates together with (4.7) imply that

log lJ'(z)l <- 3 T(2lzl, .l) -t 3n (2lzl, -, ,f) f S(2, -1,
and we deduce from Lemma I that

(4.9) los if@l = 3rQlrl, "f)*23n(4lrl, *,_f)

when lrl=t and z lies outside ä. Since

n(r, *, f)logz + j ng, *, J)t-rdt : N(2r, *,.f)- N(r, *, f) < T(2r, f)

for r>1, (4.6) follows from (4.8). Lemma 2 is proved.
Now we prove Theorem 1. Let/be a transcendental meromorphic function of

finite lower order. Then there exist Kr=O and a sequence rn)rn+@ as n+@,
such that
(4.9) T(32rn, .l') = KrT(r,, .f)
for all n. Since

nt(r, f') = m(r, f)+m(r, 7'11,

we deduce from the lemma on the logarithmic derivative [Nevanlinna 7 p. 245) that

m(l6rn, -f') = m(16r,, f)+o(f pZr,, .f)) as n * @t

which together with the fact that N.(r, f 'S=2797r, 7S implies rhat

(4.10) T(16r,, -f') = (Z+o1t))T(32r,, fl as n * @.

Using Lemma 2, we deduce that there exists ttr, 1.,<tn<2r,, such that

_ loelfl)l = o(r$lzl, .f)) : 0(r(6r,,, .f))
and

-log lf'(z)l = o(r(}ttzl, rlf)) : o(r(t6f ,, f'))
for all z lying on lzl-to, andwe deduce from (4.9) and (4.10) that

-los i(t,, J) = o(T(32r,, f)) : o(r9,, n) as n + @,

which proves Theorem I.
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5. Some properties of functions satisfying (2.3)

We denote by f<o) the k-th derivative of f
Lemma 3. Let f be a transcendental meromorphic function satisfying Q..3),

and let k be a positiue integer. Then there exists a sequence Fp)rp+@ as p+a,
such that
(5.1) T(pzr* f(k)): (t+o(l))T(ro, fl as p * *
and

(5.2) T(pzro, f$)): T(ro, f{k))ao(f@r, f))
as p+o, andthatfor any complexualue a

(5.3) n(pzro, a, f) : o(f@,, f)),
(5.4) N(pzr, a, f) : N(r* a, f)+o(T(re, f)),
(5.5) n(pzr, a, f {re)1 : o(T(r* f))
and

(5.6) N(pzr* a, f$)) : N(ro, a, f«t)+o(T(r, f\)
AS P+a.

Proof. It follows from (2.3) that there exists a sequence tn,tn-* &s n+@t
such that
(5.7) T(2t,,f): (l+o(t))T(t,,.f) as n + @.

We choose rt:2. Let p>2 be a positive integer and

1

^ - vLeze 
'

Since 7(r, /) is an increasing and convex function of log r, we get

r(t^, f')-r(xt,, f) =wP(r1zt,, f)-r(t,, f)),
and we deduce from (5.7) that

T(t,, f): (t+o1t1)r(xt,,, J') as n * @.

We choose n so large that xtn>-pzrr-r and

(5.8) T(t,, f) < 2T(xt,, f)
and we set rp:xt..

Let a be a complex value. We get from (5.8)

(5.9) 
ezp r

n(epro, a, f)p = ! ' nG, a, f)t-rdt = (1+o(1))r(e2tro, fl< (2+o(1))T(r* f),
eptp
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which proves (5.3). From (5.9) we get

(s.10)

N (pz r,, a, .f) - N (r o, a, f) = 2n (p, r o, a, -f) log p 
= f, @ + " Ol)r (r,, f) lo1 p,

which proves (5.a). If we choose a such that /(a, f):0, we get from (5.4)

(5.11) T(pzr* f)-T(ro, .f) : N(p'rp, a, f)- N(r,, a, f)+o(f@'r,, .f))
: o(T(pzro, f)),

which proves (5.1).

It follows from the lemma on the logarithmic derivative that

T(t,12, f{x)) = (k+1)N(t"12, -,.f)+m(t,12, *, f)+m(t,12, *, f(k)lf)

= (t<+t+o(r))T(t,, f),
and we deduce from (5.8) that

(s.t2) T(t,12, f(o)) = (zn+z+o1t))T(rr,.f)

äs p+o. Just as in the proof of (5.9), we deduce from (5.12) that

(s.13)

n(epr,, a, f {D1= 1 (r -lo(t))T(ezo r,, f(o)) = L pt+z+o(1))T(r,, f),p' p

which proves (5.5), and just as in the proof of (5.10) and (5.11), we deduce that (5.6)

and (5.2) follow from (5.13). Lemma 3 is proved.
We choose B:20 in Lemma 1, and deduce that there exist sets Er, Ez, Erand

Ea each of them satisfying (4.3) such that

(5.14) S(r, *, .f) : S(2, *) = 20n(4lzl, *,.f)

outside E1,and that corresponding estimates hold for S(2,0,f), S(2, -,f<k)) and,

S(2,0,/(k)) outside the union of Ez,E, and Eo. We write

,: !,ro.
Let z:reie lie in ro=lzl=prr. Let ä" be the poles of I Applying the Poisson-

Jensen formula with R:pzrp, we get

(s.ls) toglf(z)l = 
!+ m(R, *, n-# m(R,o, f)

*,,Å"r1,{d*l
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If lzll2<lb"l=.2lzl, then

",\ff:*l =.,f# *bsepz1,

and for other terms in the sum of (5.15) we get the upper bound log (4p2). These

estimates together with (5.15) imply that

toglf(z)l = fi ffi(R, *, fl-# m(R, o, f)
*S(2, -)f n(.rR, *, J)log(4p2),

and we deduce from (5.14) that

loglf(z)l = Ir(iR;o,f)-N(R, *,f)

-r(!JL -,, 
\

'-(P-r '''o(lUr(R'f)
* n (R, *, f) (20 +loc @p'))

if z lies outside ,8. Therefore we get from (5.1), (5.a) and (5.9)

(5.16) loglf(z)l< N(rr,0, /)-N(ro,*, f)+o(T(r* f))
for all z lying in rr<lrl=-pr, outside E. A similar estimate holds for l// and using
(5.13) and Lemma 3 we get a similar estimate for llf@ andf@. We have proved

the following result.

Lemma 4. Let f and k be as in Lemma 3. The sequence r, in Lemma 3 can be

chosen such that

(5.17) loglf(z)l: N(r,0, f)- N(r,, *, f)+o(T(r,, f))
and

(5.18) loglf(k)(z)l: N(rr,O, /(t'))-N(rr, *, f(o))*o(f Q, f))
as z+ @ through the rmion of the annuli rr=lztSpr, outside a set E which is the union

of four sets satisfying @.3) with B:20.

6. ProofofTheorem 2

Letf be as in Theorem 2. We may suppose that /(0):0, because in other cases

we can consider llf or the function

f(,)-f(o)
t+f (o)f (z)

Let
(6.1) f(z): cozk+co*rzk*'+...
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be the Laurent expansion of f at the origin. Then ft>l, and from (6.1) we deduce

that there exists l, 0<t<1, such that if }-:lal<t, then

n((lall(Zlcrl))'to, at, .f) : 0
and

n((zlalllcejttk, a, f) : k.

These estimates imply that if O<.lal<.t and.

r >9(l*lllcrl): so,

then

(6.2) lroglall-ff(r, a) = lloglatl-klog(r(1c ollQlol))'tr) =rcrffi=0.
Let 0<lal <.9. lt follows from the first main theorem of the Nevanlinna theory

that
m(r, a) = T(r,.f)-N(r, c)+lloglall*log+la! *1og2,

and we deduce from (6.2) that

(6.3)
m(r,a) = T(r, f)+loe2+log(llt)a2log9 < T(r, f)+61log(Ut)

if 0<lal<9 and r>.r0.
We write

M(r,.f): sup {l/(z)l:lzl :11.

We apply Lemma 4 with .f&):f ', and choose a sequence r, as in Lemmas 3 and 4.

We may assume that the circle lzl :rp lies outside the exceptional set,E of Lemma 4,

because in other cases we may choose r'n, rr=r'r-2r0, such that the circlelzl:r'o
lies outside E, and consider ),(r'r, f) instead of ),(ro, f ).

Let zp, f(zr)-*O, lie on lzl:/p. We get for any zlying on lzl:r,

(6.4) l-fQ)-f(z)l:l I t't*lctwl=n,'o*(r.,1').

It follows from (5.18) that 'o

(6.5) loslf'(z)l : los MQ',, f')+o(T{rp, J))

on lzl:rr and from (5.17) we get

(6.6) toglf(z)l : toelf|)i+o(r(r,, f))

for all z lying on lzl:ro.
We consider flrst those values of p for which lJ'@o)l=4. From (6.4) we deduce

that
m(ro, fko), f) = -loe M(r* J'')-log (nr'r),
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which implies together with (6.3) that

(6.7) log M(r* f) = -T(r, f)+o(T(r,, f)).
Combining this with (6.5) and (6.6) we get

log ).(r* f) = log M(ro, f')+o(r1rn, f)) =- -r@o, f)+o(T(r,, f)),
which proves Theorem 2inthe case where lf@)l=a for an infinite number of values
of p.

Let us suppose that lf(z)l>4. Applying the Jensen formula we get

rogl/(0) -/( dl = + f bg VQ ) -f(r,et)ldu + N (r,, *, f),

and since "f(0):0, it follows from (6.4) that

loelf!)l <-log M(ro, f')+ N1ro, *, f)+o(T(ro, f)).

This implies together with (6.5) and (6.6) that

log ).(rr,,f) = log M(ro, f')-Zlog M(ro, f)+o(f1r,, n7
> - N(r,, *, f)-loglf(2,)l+o(fQo, f)),

and using (5.17) we deduce that

log ).(rr,.f) = -T(r* nao(r(ro, f)).
This completes the proof of Theorem 2.

7. ProofofTheorem 3

Letf be as in Theorem 3. Let zlie on the circle lzl:r. Since

tos+ tr(z)t = "r(l#lffi) = b*.l#l- bg ). @, n,
we get

(7.1) m(r, f) = m(r, f'lf)-loe 1(r, f).
Since/has finite order, it follows from the lemma on the logarithmic derivative that

m(r, f lf): o(r@, f)) as r + @,

and we deduce from (7.1) that

log )"(r, f) = -m(r, f)+o(rg, /)) = (-41-, f)+o1t1)rg, 71 as r + @.

This proves Theorem 3.
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8. Proof of Theorem 4

We set

f(,): å Qh,)*,

where r,:log.r, 11:100, and ,o, n=li,' sn is a positive integer such that

(8.1) log log sr > sr-1.
Then

.f' (z) : 
^) 

t,l r,\ {, lr,)', -'.

It follows from (8.1) that

(8.2) log M(rn, f) € t,-rlog r, = (log r,)2,

which implies that the lower order of/is zero. For lzl :ro it follows from (8.1) that

toglf' (z)l= l"* e - ä +*) = (r + o 1r) tog s, : (1 + o 111) r,,,

and we deduce from (8.2) that

.loe!"Qfl- = 
(1,1'(t))',. *- as n+@.

log M(r,, f) - (log r,)2

This proves Theorem 4.

9. ProofofTheorem 5

Let f be a transcendental meromorphic function. We write

(9.1) n(r) : n(r,0, J)+n(r,1, f)+n(r, *, f).
we have 

zr

n(3r12)tog(413) < I "@rrdt = (3+o!))rQr, f) = 4T(2r, f\
3t/2

for r>ro. This implies that for all large values of r we may choose z,lying on lzl:r
such that/does not take any ofthe values 0, I and - in the disc

(9.2) lr-r,l = Wä, fl.
It follows from Schottky's theorem that there exists an absolute constant Kr such

that if lf@)l=l, then
(9.3) lJ'Q\l = K,
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tn
(yl

D,: lz:lr- r) - W65
and if lf(2,)l>1, then llf satisfies (9.3) in D,.

We write g(z):f(z) if lf(2,)l=1 and s@):Uf@) if lf(2,)l>I. Integrating
along the boundary of D" we get from (9.3)

tc'@,)t:l+l#a*l=*8,
which implies that(s.4) ffi-TYffi=zq#åL,
and we deduce that

g4=32Kr
T(2r, f) -

for all large values of r. This proves Theorem 5.

10. Proof of Theorem 6

It does not mean any restriction to assume that the function E(r) given in Theo-
rem 6 satisfies the condition

(10.1)

is a positive integer,

(10.2)

(10.3)

and
(10.4)

We set

and

Then

log log rn > t',t-L,

s, ) Snsn -1log rn

s,, < E({,11ogr,,.

r / -\ (- 1)" ('l'u)'"
rtt\-'t l+ Plrn)'"

.r(,) - ,å1,(,).

(- 1 )" (snl, n) Q l, 
")s,. 

- 1

E (r) - o (log log r) as r -+ oo.

We choose rr:8, rr-100, and for n>2, .r, and rn are chosen such that so

"f,i Q) - (1 + (zlr*)'")z
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and

f'(r): 2n<rl.n:L
We choose tn such that
(10.5) (t,lr)*:2.

Suppose that t,=lzl=lE; For k<n we get from (10.2) and (10.3)

(10.6) lf*Q)-?rll : l,*fu*l=z@rlr,f. = e'k.

For k=n we get from (10.2) and (10.3)

(10.7) l.f*Q)l =z(ffi,1r)'. = e-k.

It follows from (10.5) that lf"(z)l=2, which implies together with (10.6) and (10.7)

that
(10.8) lf(z)l=a
for all z lying in t,=lzl=/fi.

Let t,=r=lr,lr. We get from (10.3)

(10.9) N(r, f)€ sn log (rfu)+loer"i ,o=s,log (rlr)+2s*-rlogr.
k:1

This implies togetler with (10.8) and (10.4) that

(10.10) T(r,f)<2snlogr*1og +=Z,p({il(logr)2+log4

for t,=v=1f-. Since T(r, f) is an increasingfunction of r, we get for {f,,='r=.to

T(r, .f) 3 T(2rn, n = zq(r)(log (2r2))2+log 4,

which together with (10.10) proves (2.10).

From (10.9) and (10.5) we deduce that

N(t*, .f) < log2*2sn-, log ln
and

N(2tn,.f) = s*log 3*3s,-1log rn.

These estimates combined with (10.3) and (10.8) yield

(10.11) T(tn, f) E 3sn-1 logrn = snf n

and
(10.12) T(2t,, f) = 4sn.



On the erowth of the spherical derivative of a meromorphic function 133

Suppose that lzl:t,. We get from (10.5)

lf'Q)l = q-, å"(sylr)(rolr,)u+r -2 Z (s*lr)((zrS1r)"*-r

- §, 2 
=^= q-T å"so-2 ) sof rr,

and we deduce from (10.3) and (10.2) that

tf'@)t=*-+-#=#.
This implies together with (10.8) that

to)"(tn,r=16b.

This together with (10.11) and (10.12) proves (2.12) and (2.11). Theorem 6 is proved.

11. Proof of Theorem 7

Let f be as in Theorem 7. Let n(r) be defined by (9.1). We have

n(r)log , = i n(t)t-tdt= (3+o(t))r (rr, f),

and we deduce from (2.13),t*,t"r" exists K>0 such that

n(r) <. Klogr

for all large values of r. This implies that for any large r, there exists 2,, lr,l:r,
such that/does not take any of the values 0, 1 and - in

(11.1) lr-r,l=&V,
and just as in the proof of (9.4), we deduce from (11.1) that

x(,,.f): , P,aa) as r +@.

Since / is transcendental, we get

il'(r, f): O(log r): o(T(r,f)) as r +@,

which proves Theorem 7.
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12. Proof of Theorem 8

Contrary to the assertion of Theorem 8, let us suppose that there exists a tran-
scendental meromorphic function / such that

(12.t) tirl yf W* = -L-ed

for some d>0. Just as in the proof of Theorem 2, we may assume that /(0):0,
and deduce (6.3) so that there exist r>0 and so>0 such that

(12.2) m(r, a) = T(r, f)+6+log(1lt)
if 0<lal<9 and r>so.

It follows from (12.1) that there exists an increasing sequence Fn,Fn+@ as

7*-, suCh thät
(12.3) tos q(J'e)) = -(1 -tqd)T(r,. f)
on lrl:r, for all n. Since ffi(t, -, f)=T(r, f) and,

m(r,0, "f) a (t+o(t))T(r, g as ,. +€,

we may choose a point zn lying on lrl:rn such that

{12.4) llog l/(2,)ll = (t+d)r(r,, f)
if n is large enough.

Let us suppose that
(12.s) ilog l/(w,)ll = (ta2d)r(r,, f)
for some wi lying on lzl :r,. Then we may choose an arcd contained in lzl:rn
such that zn€J,,
(t2.6) jtog 1/(w111 = (t+2d)r(r,, f)
for all w€Jn, and that
(12.7) ltog 11wo;11 : (t+2d)r(r,, f)
(k:2,3) for the end points w, and u, of the arc J,. For z(J, we get from (12.3)
and (12.6)

toglf' (z) lfe)l : los (q/(z)) + log (lf Q)l + t I lf@D < - (6tt + o (t))r (r,, f),
and integrating along J, we deduce that

(12.8) ltoglf(z)l f(2,)n =1,! # a*l =exp{-(6rl+ o(r ))z(r,, f)} : o(r)

for all z(J,. This implies together with (12.4) that

ltog l/(w)ll = (t+a+o(t))r(r,, f).
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This is a contradiction with (12.7) if n is large, and we conclude that

(12.e) ltoe l/k)ll = (r+za+o1))r(r,, f)
for all z lying on lzl-rn, andthat (12.8) holds for all z lying on lzl:rn.

Let us suppose that there exist large values of n such that

(12.10) lf(2")l = 4.

Then it follows from (12.8) that lf(z)l<-A on ;r; -r,, andfrom (12.3) we get

(12.11) los lf'(z)l = - (1+ 8d) 7 (r,, f)+lag 65

on lzl:rn. lntegrating along the circle lzl:r,, we deduce from (12.11) that

lo g lf (z) -f (2,)l 
= - (l + 8 d) T (r,, f) + lo e 65 * 2 to s r,

on lzl:ro, which imPlies that

m(r, f(2,), -f) =- (t+8d+o!))r(rn, f).
This contradicts (12.2) and we deduce that (12.10) is not possible if n is large. There-
fore we have

<t2.t2) lf(2")l = 4
for all large n.

It follows from (12.8) that

lfQ)1: $+o1t\112"11
for all z lying on lrl:r,, and we get from (12.12)

(t2.r3) loslf(z)l: (t+o1t))m(rn, -, f)
for all zlying on lzl:rn. This implies together with (12.3) that

loglf'(z)l = -(1+Sd+o(1))Z(r*, f)*2m(r,, -, f)
on lrl:ro, and integrating along the circle lrl:r,, we get

(12.14) loglf(z)-f(2,)l = -(t+8d+o(l)r(rn, f)+2m(rn, *, f)
on lzl:ro. Applying the Jensen formula to the function f(z)-f(2,), we -qet from
(12.14), since /(0):0, 

t 2n

loglf(z)l = + { 
toglf(r,ei")-f(2,)lda+ N(r,, *, J-)

= -(1 +8d+o(l))T(r*, -f)+ N(r,, *,f)t2m(r,, *, f),
which together with (12.13) implies that

(1 +8d+o(l))T(r,,.f) = T(r,, .f) as n +@.

This is a contradiction, and we deduce that (3.1) holds for all transcendental mero-
morphic functions. Theorem 8 is proved.
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13. Proof of Iheorem 9

Let f be as in Theorem 9. Since

m(r,.f) = m(r, fl+o(f|,9)
outside a set of finite linear measure, it follows from Lemma 4that we may choose a

sequence fnrTn** as n+@rsuch that

(13.1) loglf(z)l: ffi(tn, *, f)-m(rn,O, f)+o(T(r*, f))
and
(13.2) loe lf k)l: ffi(rn, *, f')-m(rn,0, f')+o(T(r*,.f))

=- fri(r,, *, f)+o(T(r,,1))
on lzl:rn.

lf m(ro,O,.f)=0, we deduce from (13.1) that

tn(rn, *, f) : o(T(r,, /)),

and if ffi(rn,*,.f)=0, then

m(r,,0, f): o(T(r,, f)).

These estimates imply together with (13.1) that

(13.3) log (1+ lf@H: 2m(rn, f)+o(T(r", f))
on lzl:rn for all n. From (13.2) and (13.3) we get

logp(rn, f) =-m(r,, 
*, n+o(T(r,, f)) = -(ä(-, f)+o(D)r@", f) as n +a,

which proves Theorem 9.

14. Proof of Theorem 10

Let d satisfy O<d<I. We set

.f(r): fr'"*' .
a=1 f r_ Z,

whete t,:r2lld. We have

.f'(z) _ § 2r,
m - n4-,44i'

and since lf(ir)l:L for any real r, we get

(14.1) p(r,f)=m=,2,#
for any r>0.



From the choice of ro we deduce that

n(r,O, n: O+o(l))f as r +@,

which implies that
(14.2) n(2r,0,.f\-n(r,0, f): (2d-l+o(l))f

as r+6. It follows from (14.1) and (14.2) that

(14.3) u(r, f) = ,=?^=r,*- 
> (n(2r,0, f)-n(r,0, fl)#

-i,> (2d-l+ottD s, as r +6.

If lzl:7 nnd larg zl<nf6, then

lo gl f (z)l =-, 
=V^= 

r,lo rl#l
= (n(2r,0, f)-n(r,O, /)) log (514\ =- (2d-L+o(l))rdlog§lq.

This implies that

(14.4\ nt(t, *,71 = f ros( sl4)Qd-r+o(r))1.

On the other hand, since

n(r,O,.f): n(r, *,.f): O(f) as r +@,

we have (see e.g. Nevanlinna 17, p. 223\)

(14.5) T(r, f) : O(rd) as r +@.

From (14.4) and (14.5) we deduce that ö(*,f)>0 and that the order of / is d.

From (14.3) and (14.5) it follows that / satisfies (3.4). Theorem 10 is proved.
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15. Proof of Theorem 11

Let f be a transcendental meromorphic function. Let n(r) be defined by (9.1).

Just as in the proof of Theorem 5, we deduce that there exists ro such that

(15.1) n(3rz)=T#B
for r>rs.

If the lower order of/is infinite, we choose tn:en for any positive integet n.

Let us suppose that

(1s.2) r^wffi:*.
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Then we have for any K>1,

(15.3) T(2r, f) > KT(r, f)
for r>16. This implies that

T(Tr*, J') >K"T(ra, f)
for all n, and we deduce that if 7n-tr*=1=2ry, then

loeT(t,f) _ (n-1)logK+log T(r*, f).
logt nlog2llogra

This implies that

(1s.4) 1;-;n1J9{:-1{- = losK,r+@ log r

and we deduce that if (15.2) holds, then the lower order of./ is infinite. Therefore, if
the lower order of/is finite and positive, we may choose a sequence Fn, rn+@ as
12* -, SUCh that

(1s.5) 9Y4=aT(r", f)
for all n, A being a constant.

If/satisfies (15.3) for some K=1, we deduce from (15.4) that the lower order
of/is positive. Therefore, if the lower order of f is zero, then/satisfies (2.3), and it
follows from Lemma 3 that there exists a sequence rnttn** &s /t+@t such that

(15.6) n(3r,12) : o(T(r., f)) as n +@.

In all cases, we write, if n(r)>|,
:-rn
"' - 4i6r,l2)'

Then there exists t,, ro=to=3rnf2, such that/does not take any of the values 0, 1

and - in the annulus
Bn: {z:tn-dn < lzl < t,*d.,\.

Since the disc lz-wl=d, is contained in B, for all lr,, satisfying lwl:t,, we get, just
as in the proof of (9.4),

s(.(,)) =+:gTJz
for all w lying on lzl:t,. This implies that

(15.7) t,F(to, f) = rcXrn(3r/2).

Combining (15.1) and (15.7), we get

(15.8) tory(t,, f) : O(rQr,, f)) as n +@.
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This proves (3.5), since rn€tn42rn and T(r,f) is an increasing function of r. Simi-
larly, combining (15.8) and (15.5), we get (3.6) for functions of finite positive lower
order. If the lower order of f iszero, then (3.7) follows from (15.7) and (15.6). Theo-
rem 1l is proved.
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