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ON THE SINGULARITIES OF CERTAIN NONLINEAR
PARTIAL DIFFERENTIAL EQUATIONS

PATRICIO AVILES and ALLEN WEITSMAN*

0. Introduction. In this paper we shall study some aspects of the singularities
of equations —A,u=f(x,u) where Au=div(|VulP~2Vu) (p=>1) is the so-called
p-Laplacian, and f a continuous function subject to certain growth restrictions.
Equations of this type have been studied in connection with a variety of problems
(cf. references in [10]).

Theorem 1 of this paper complements a recent series of works on removable
singularities [3], [1], [12], [11]. In [11] the following is proved:

Theorem A. Let Q be an open set in R", gcQ, and Q' =Q—{q}. Suppose
I<p=<n, that f is a continuous real function on QXR satisfying

L fGe, 1) . S, 7)
) i il Sy = 0 Hmsup ot Sy =<0

F—> —oo

uniformly in Q, that u€ W2 ()AL (), and AucL} (Q) (in the sense of dis-
tributions). Then if u is a solution of

?2) —Ad,u+f(x,u) =0

in @’ ('), there exists a locally Holder continuous function i, defined in all of Q,
which coincides with u a.e. in Q and satisfies (2) in D’ (Q).

We have

Theorem 1. If in Theorem A we take p=n and replace condition (2) by

3) lim Lnf J (;’6 r) =0, limsup J! S|Cr,|ar) <0

P> —oco

for some fixed =1, then the conclusions of Theorem A again hold.

In §5 we shall discuss examples to show §=1 in (3) is essential.
In [10], interior estimates are derived for functions u satisfying

@ —A,u+f(u) =0 (a.e)
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in the case of ‘“‘weak diffusion for large intensities™:

) fdr(jf(s)ds)—l/p < oo,

For p=2, conditions of this type have been used in connection with nonexist=
ence of entire solutions by numerous authors [14], [13], [6], [7], [2]. In our next result
we study this effect for the p-Laplacian.

Theorem 2. Let f(s) be a positive nondecreasing locally Lipschitz function de-
fined on R and satisfying (5).

(A) If 1<p then (4) has no subsolutions u with ucWf, (R")n Ly (R") and 4,u¢
L,.(R") (in the sense of distributions).

(B) If 1<p<n and S is any compact subset of R" then there are no subsolutions u
of (5) with ueWpl(R"—S)n L, (R"—S) and AucL (R'—S) (in the sense of
distributions).

I. Preliminary lemmas. There are general comparisons theorems which cover
the p-Laplacian. We require only a very simple version (cf. [11; p. 5]).

Lemma A. In a region QSR" suppose u, veW P (Q)NL(2) (1<p),

loc
4,u, 4 pveL,loc(Q) (in the sense of distributions) and (u—v)* WP (Q). If g is a non-
decreasing function on R and

—A,ut+gw)=0 in 2'(Q)

—d,v+g@®) =0 in 2'(Q),
then u=v a.e. in Q.

Proof. Let ¥€%'(R) be bounded, vanishing on (— s, 0], and strictly increasing
on [0, ). Then, since ¥(u—v)eWg?(Q), (1.1) implies

[ (VulP=2Vu—|Vo|P=2Vp) - (Vi — Vo) ¥ (u—v) dx = [ (s@)— g () ¥ (u—v)dx.
2 2
Now, p=1 so (|Vul?~2Vu—|Vo|’~2).(Vu—Vo)=0, and ¥'=0 as well.
Thus, it follows from the Poincaré lemma that u=v a.e. on Q.

Lemma 1. Let QSR" be a region and q€Q, Q'=Q—{q). Suppose
UEW ()0 Lis () and Au€ L, (Q) (in the sense of distributions in Q). If
for some constants a=0, C=0, 6=1

(L.1) —Aute™ =C

ae. on {x€Q: u(x)=0}, then u+tcL; (Q).
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Proof. We may take ¢=0 and Q={|x|<g} for some 0<g<I. Given x,
such that O0<|x,|<g/2 we define, for §=1

1.2)

1 e X,
V(x) = Vi () = (IOg Rn/(n_1)",x_xoln/(n_1)) [R = ‘]‘20—” [x—Xo| = R) .

Now V as defined is radial about x,, and hence writing r=|x—x,| and taking
differentiations with respect to r we have (n— 1)17"_2(17+(I/1')V):A,, V. Now,

] " 1 @/3)—1 (/1)
V= 6(’1 _ 1) [log Rn/(n_l)_ rn/€n_1) (R”/("—l)_r"/("—l)) =

_n
T o(n—1)

.. -1_ a/e)-2 1/(n-1) 2
p__n [n(é 1)(10g 1 ) ( r )

o (n — 1) (n_ 1) Rn/(n—l) — pn/(n=1) Rn/(n—l) — pn/(n=1)

P1=6 gV 1/n—1)

1 (1/6)—1
+ [IOg (Rn/(n—-l) — rn/(n—l)] X

pE=n)/n-1) np =1
X ((n _ 1) (.R”/("_l) __ i‘"/("_l)) + (n . 1) (Rn/(n-l) _ rn/(n _1))2J

A

Vé (2—n)/(n—-1) 2V 2
n Vl—a[e r +ne ]§2( n ]V1—662V5r(2—n)/(n—1).

n—1 n—1 n—1 n—1
Thus,
n
(13) A,,V = (n nl)n—l V(l—&)(n—z)e(n—2)V6 ’.(n—2)/(n-1)(2V1—6e2V¢5 r(2—n)/(n-—l)
+pa-gve pE=m0-1) = ( 4"; . ya=8)n-1) nvs.
n—1)"-

Let v=a"°"nV. Then, from (1.3) it follows that

2n-1 ,(1-n)/é 2n—-1 ,(1-n)/
(14) 4= 4"( ‘;) — Y A-a-D v - 4”( a P91 gave
- n—1)"~ - n—1)"-

From (1.2) we find that for x, and hence R sufficiently small, ¥ and v can be
made arbitrarily large. It then follows from (1.4) that there exists Ry=Ry(n, )
such that for all x, with O<|xo|=R,, the corresponding v(x):vxo(x) all satisfy

(1.5) 4,0 = e —C.



150 PaTrICcIO AVILES and ALLEN WEITSMAN

Comparing (1.1) and (1.5) and taking account of the fact that v is infinite for
X on |x—xo/=|x0//2 we may apply Lemma A and obtain for a.e. x, such that
0<|xo|=R, the estimate
2

1/8
(1.6) u(xy) = v(x,) = a—a-an(xo) =q-%"n [—n_r_l_l log[x_ol] .

To complete the proof we show that (1.1) and (1.6) imply that u*€L™(Jx|<R,).
If we replace u by U=xu (x>1) then A,U=:x""1Au=x""1"*""U°—-C. Thus,
we may fix » sufficiently large so that a.e. for O<|x|<R,

(1.7) 4,U = e’ (@ =0)
and
n 2 )1/«5

=xa % ‘n|l— _—
U(x) =xa n(n——llo‘g[x]

Thus, we may choose M =0 such that for any &=0,
(U—M—clog(1/|x))TeW (x| <= Ry).

With 4, (s log (1/]x])) =0 along with (1.7) we may again apply Lemma A and
conclude that U(x)=M+elog (1/|x]) a.e. in |x|<R,. Since ¢>0 was arbitrary
and u=x»"1U the proof is complete.

I1. Proof of Theorem 1. Theorem 1 now follows in a standard way (cf. [11: p. 9])
from Lemma 1. Briefly, it suffices from [8; p. 269] to show that u is a weak locally
L~ solution of (2), since f is continuous. Assume ¢=0. Now (3) and Lemma 1
imply that u€L;,.(Q). Let 0=nc%; (Q) and (,€€~(Q) such that

1
(n(x) = 0=(, =1V =cm.

Ui ] =
m

Then, if A is a relatively compact neighborhood of the origin in Q, and containing
supp n

fC,,[Vu|"‘2Vu-V11dx+ fn]Vu|""2Vu-VC,,dx+ ff(x, u(x))¢,,ndx =0,
A A A

so it suffices to show that

(2.1) [ nlVul"-2Vu-V(, ~0 as m o
2
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We must show first that |Vu|€L},.(Q2). Now, ucWy(Q’), so the rest follows
from

| J7Ce uG)Gudx| = | [ 1Vup=*Vu- @ |

A

= l f[Vul”C',:,dx—}-n f("m‘lqu["‘zVu-VCm[
A A

= (|G Vatll Zncty— 1l [Vl Tty | 20 9, Lt

since the left-hand side remains bounded, as well as the term |uV{,,| Licays as m—0.
Thus, returning to (2.1) we have

, f’?qu{n_zvu.VCm dx| = [ f IVuI")("'D/"( f InVCmI")I/"
Q2

1/2m<|x|<1/m 1/2m<|x|<1/m
which tends to zero as m-—» co.
IIL. Proof of Theorem 2(A). The proof is based on the following

Lemma 2. If f satisfies (5) then the ordinary differential equation

@D 392 (- 1509+ LD 59 = 1)

r
has solutions for r=0 with the following properties

0(0)=0,v(0)=a,acR, 0=0if r=0
v(r) o0 as r ~ry with ry < =, v€G2 (0, 7y).

(3.2) {

Proof. We first construct a solution of (3.1) with a=0. For, we consider the
formula

(3.3) v(r) = fr[-s—,,l_-l—fst”‘lf(v(t)dt)l/(l"l)) ds.

Applying to (3.3) the Picard iteration process with v,=0 we obtain a local solution
of

3.4 7= ((p— )3(r)+
with the properties
3.5

v(0)=0, 9(0)=0, 6(r) >0 and v€¥? whenever defined for r = 0.

(n=1

r

o) = 109

If there is 7y as in (3.2) we are done. Otherwise, with the usual existence and unique-
ness theorems, » may be continued to a solution of (3.4) with the properties in (3.5)
in a larger interval. Since (r)=0, this local process may be repeated indefinitely
unless there is ry<eo such that v(ry))=<. We now prove that (5) forces this situa-
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tion. We observe that (3.4) can be written as

(3.6) f (6®-V -1 dr = f F(w)r-dr.
0 0

Since f and v are nondecreasing, (3.6) implies
3.7 (p—1D7v = ofr.
Substituting (3.7) into (3.8) we have
(p—Dnvd?-? = f(v).
Multiplying by ¢ and integrating we get that there is a positive constant C such that
o(r)

B (f f(s)ds)_l/p =>C.

From here we obtain
u(r) t

(3.8) [ S fsyds)™" dt = Cr.

0 0

From (5) and (3.8) it follows that there exists ro<oo such that v(r)—>o as r—r,.
To obtain solutions for arbitrary a we consider

6|7~ (p— D)+ (1= D/(1)3(r)) = g(2(r))

with g(¢)=f(t+a). Since g(t) also satisfies (5) there is v satisfying (3.1), (3.2) with
a=0. Now it is enough to take “=v+a. This completes the proof of the lemma.

To prove Theorem 2(A) we observe that v(r) is a radial solution of 4,u =f(u)
if and only if v satisfies (3.1) for #>0. On the other hand it is easy to see that if
satisfies (3.1) and (3.2) then v, in fact, satisfies

4,0 =f(v) in 2'(B(O, o))
with B(0, ro)={x: |x||<ro}. Therefore, from Lemma A it now follows that
3.9 u(x) =v(x) in B(O, ry.

Taking in (3.2), a=essinficpeo,ryu(x) we get a contradiction. Therefore,
Theorem 2(A) is now complete.

IV. Proof of Theorem 2 (B). Given —eo<a=<oo, f70, the ordinary differen-
tial equation

@ == (o 1)+ 22

r

809) = 70)
can be solved uniquely with initial data

4.2 v(D)=0a, o(1)=p

and continued in each direction.
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Now, for 6=0 (4.1) is the same as (6(r)?~'#"~"),=r"""f(v(r)) and for v<0
(4.1) becomes ((—o(r))?~*r"~*),=—r"""f(v(r)). Thus, we may continue v to the
left and right from r=1 until either /=0 or v=-co. If neither of these occurs on a
side of r=1, the continuation proceeds indefinitely in that direction.

We wish to show first that, given numbers o, M there exists f=pf(«, M) such
that the solution u of (4.1) with initial condition (4.2) satisfies

4.3) v(%] = M.
In fact, with f<O0 and r<l1,
P (—o(r))Pt = (= prt+ [ (@) d

which shows © stays negative. Hence from (4.1) we have (—0)"*(p—1)0=>f(v)
so (—d)P~Y(p—1)i>—vf(v) and integrating we obtain for O<r<l

B _ o 1 u(r)
Thus,
P v(r) 1/p
—b(r) = ((—/3)”+ =T ; S/ f(S)dS) ;

o(r)

o(r) 1/p
- j 5 ( f f©)ds)” 1/pdr>[ [ f F(s)ds)” +—p-‘1T] dr,

1/2
and

wamy wr) e
@ [ (Jrod) y = [ feor ([ o) ety

For fixed «, it follows from (5) that the left hand side of (4.4) is bounded, inde-
pendent of f. On the other hand, if v(r) were to remain bounded with —f large on
the right-hand side, we would have a contradiction.

Having established f<0 so that (4.3) holds, we now apply (6) to show that
there exists a value r,>1 such that o(r)—>0 as r—rg.

Integrating the relation ((—¢(r))"~"r"""),=—r""'f(v) we obtain for r=>1

4.5) (—o@)P-tr-t = (—pr-t— [t fe@)dr.
1
It follows that 7® Y®~Y3 is increasing so for some K=0

o(r) = a+ f () dt = a+ f o (f) 1= D/p=D = (=D/(2=1) gy
i i

r
=ot+p [O-MIC-Ddr =K.
1
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We then have .
(o)t = =t = [ e@)dr = (— PPt —f(-K) [ -,

and the right-hand side will eventually be negative. Thus, #(r,)=0 for some ro>1.
To summarize we have now shown that, given numbers «, M, there exists

B=PB(«, M) such that if v satisfies (4.1) and (4.2), then v(1/2)=M and there exists

ro=>1, such that v may be continued from r=1 tor=r,, at which point & becomes 0.
To complete the construction of v past r, we continue by the equation

1/(p—1)
)

o(r) = v(re) + f[tL_l [o17005)

as in §3. Also as in § 3 there exists r;>r, such that v(r)—~co as FFy.

With » now completely described, the proof is now easily completed by com-
parison.

We may assume SC|x|<1/4. Suppose u satisfies (4) outside S,

M= liséslillg)l u(x), o< 1/2e§|Sxi|Ilg " u(x)

and v is the radial function previously constructed with f=p(«x, M). Then, v is
%' and satisfies (4.1) a.e.; hence v is a radial solution to (4). But v(r)—>< as r>ry,
0 by choice of M and «, Lemma A gives a contradiction. Hence u cannot satisfy
(4) in R"-S.

V. Some examples. Let V(r)=log ((1+7)*/r"), (B, 7=>0). Then,

: n_2[r(1f-r)2]

2 _

r2 (1+47r)?
so, for f—y<—2n+1 V is a radial subsolution 4,V=¢" for r sufficiently large.
This shows that p<n is needed in Theorem 2 (B). If y<2n—3, ¥ is a subsolution
for sufficiently small ¢ in {0<|x|<g)}.

Regarding Theorem 1, to show that §>1 is essential, we verify that the equation
4,u=¢" has a solution in some set {0<|x|<g)}, which is singular at x=0. In fact
the radial form of —A4,u+e€"=0 is the Euler equation for the functional / [u]=
[(lu,]"+ne")yr"~1dr. For y<2n—3, let V be a subsolution as above and M,=V(r)
(O<r<g). The functional /[u] has a minimizing function u,(r) [4; p- 24] on
[o/n, o] for each n=2, 3, ..., with u,(0)=M,, u,(¢/n)=M,,. This u,(r) is a solu-
tion of the equation and by Lemma A u,(r)=V(r) on [o/n, ¢]. To show that as
n—eo we obtain a solution with the desired properties, we need only bound the
u,’s from above. To this end, let {|x—x,/=R} be any closed ball in {0<|x| <o}
and n be sufficiently large so that it is contained in {o/n<|x| <g}. Let v be the com-
parison function of § 1, with =1, a=1 in (1.4). Since v(R)=-<o, it follows from

A"V(I‘) = (n— 1)
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Lemma A that u,=wv, for all sufficiently large n, in {|x—xo|<R}. Thus, the u,’s
are uniformly bounded in compact subsets of {0<|x|<g}.

Finally, to see that condition (5) is sharp for Theorem 2(A), suppose fis a po-
sitive nondecreasing locally Lipschitz function with

(3.1) f dr(ff(s)ds)—llp = oo,

Then, there is a solution of (3.1) such that
(5.2 20)=0, =0 if r =0, vEFYO0, ==]NE*(0, ).

Indeed, as in the proof of Lemma 2 we can construct a solution v of (3.1) that will
have the properties in (5.2) unless there is 7, such that lim,_.,ov(r)=oo. We note
that if this happens then (5.1) does not hold. For, since #(r)=>0 from (3.1) we obtain
o®~((p—1)v)<f(v). Hence, since without loss of generality we may assume

v(0)=0, we have
v(r) t

1/p
f (ff(s) ds)_l/p dt < (Tpptﬁ) r.

0 0

Making r—r, we obtain a contradiction with (5.1).
On the other hand, it is not difficult to see that in fact we have

4,0 =f(@) in Z'(R").

VI. Concluding remark. In the case =1, comparison of a solution of 4,u=e"
in {0<|x|<g} with the function v of § 1 yields ¢"®=C/|x| for some C=>0. Hence,
&9l -, (¢=0) and by [9; Theorem 1], if u is a positive solution then
C, log (1/|x))=u(x)=C,log (1/|x]). This estimate generalizes a theorem of Nitsche
5] for n=2.
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