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ON THE SII{GULARITIES OF CERTAIN I{ONLINIEAR
PARTIAL DIFFEREI{TIAL EQUATIONS

PATRICIO AYILES and ALLEN WEITSMAN*

0. Introduction. In this paper we shall study some aspects of the singularities
of equations -/ru:fpc, ru) where lou=div(lYule-zYu) (p=l) is the so-called
p-Laplacian, and f a continuous function subject to certain growth restrictions.
Equations of this type have been studied in connection with a variety of problems
(cf. references in [0]).

Theorem I of this paper complements a recent series of works on removable
singularities [3], Ul, [2], Ull. In [11] the following is proved:

Theorem A. Let Q be an open set in R',q€Q, and Q':Q-{q\. Suppose
l-p=n, that f is a continuous real function on QXR satisfying

(1) timrgVffi5=0, ,1T::, ffiR=5 =o

uniformly in Q, that u€W!;!(O'\nL;"(Q'), and /St€L!".(Q') (in the sense of dis-
tributions). Then if u is a solution of
(2) - Åou*f(x, u) : 0

in 9' (Q'), there exists a locally Hölder continuous function il, defined in all of Q,
which coincides with u a.e. in Q and satisfies Q) in 9'(A).

We have

Theorem 1. If in Theorem Awe take p:n and replace condition (2) by

(3) 1i-;r1-4{4 =s, llT:*, $p =o

for some fixed ö>1, then the conclusions of Theorem A again hold.

In §5 we shall discuss examples to show ä>l in (3) is essential.
In [10], interior estimates are derived for functions z satisfying

(4) -/ou+f(u)=s (a.e.)
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in the case of "weak diffusion for large intensities" :

(s)

(1.1)

i n,(/(,)a,)-'t'=*.

For p-2, conditions of this type have been usedinconnectionwithnonexist-
ence of entire solutions by numerous authors [14], [3],161,171, [2]. In our next result
we study this effect for the p-Laplacian.

Theorem 2. Let f(s) be a positiue nondecreasing locally Lipschitz function de-

fined on R and satisfying (5).

(A) If l<p then($ has no subsolutions u with u€Wfo"(R")nz,l"(ff) and /S.t€
Zil"(R) (in the sense of distributions).

(B) If l<pt<.n and S is any compact subset of R" then there are no subsolutions u
of (5) with ueWlr;!(R"-^S)nZ,l"(P-§) and /nu€LL"(R'-,S) (in the sense of
distributions).

I. Preliminary lemmas. There are general comparisons theorems which cover
the p-Laplacian. We require only a very simple version (cf. [ll; p.5]).

Lemma A. In a region OCR' suppose u,u(14/l;!(A)n2f;"(O) (l-p),
Åru, lruQLlro.(A) (in the sense of distributions) ancl (u-u)*elyt'o@). ff S is a non-
decreasing function on R and

- /ru+ g(u) 
= 0 in 9'(a)

- lno* g(u) > 0 in 9'(8),
then u<,- a.e. in Q.

Proof. Let Y(Gt(R) be bounded, vanishing on (- -, 01, and strictly increasing
on [0, -). Then, since Y(u-a)€Wt,p(A), (1.1) implies

I {lv 
"1, 

- rv u - lv olr - zv o) . (y u - y r) v' (u - u) d x = I G @) - c @)) y (u - u) d x.

Now, p=1 so (lYult''yu*lYo1o-'rr.1vu-vrl=0, and v'>o as well.
Thus, it follows from the Poincard lemma that u<u a.e. on g.

Lemma 1. Let Q=R" be a region and Q€e,e':e-{q}. Suppose
u€Wl;!(9')aLfi.(A) and /,u(Ilo.(Q') (in the sense of distributions in e,). If
for some constants a>O,C>O,ö>l

- lnu+eouu = C

a.e. on {x€ O: u(x)=0}, then u+ €.L;"((2).
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Proof We may take q:g and O:{lxl<g} for some 0=g=1. Given xo
such that O<lxol=pl2 we define, for ä>1

(r.2)

v(x) : Y*o(x) :(,"r#"' (* : $, , -'ol= ^).
Now z as defined is radial about xs, and hence writing v:lx-xsl and taking

differentiations with respect to r we have (n-t1t"-'z(i;+1llr)t):7,y. Now,

ti : 
ö (,, - t)-!- 

("r *^*,.Åt"u'-' (r#F*-,'=r) :

: 
#ivt-6ev6 rli(n-t)

t : 
ö #Tt€# (t"u eo.-,*zo-. --,,) "'" 

-' 
( *ffi=)'

* [',, G,*+"r,-)""'-',

"(6=nr#ffi-,7n#w=,i)
= # v, -, (!!t!!-1 . #) =, (fi) y, - ö,2v a,e - i) / (n - 7 ) .

Thus,

(1.3) /,Y = @#VG-»U-D) e(l.-z)vö r@-z)t(t-r)(2vt-6 ezlö l"Q-n)t(n-t)

+VO- 6) ev 
6 

r@- n)/(n_r)1 
= qS- y O - 6)(n -r) env 

6 
.

Let u:a-6-'nV. Then, from (1.3) it follows that

(|.4)Ana<WyQ_ö)(n_t),nV,=ffffV(|-öllil_|)eoUö,

From (1.2) we find that for xo and hence R sufficiently small, z and a can be
made arbitrarily large. It then follows from (1.4) that there exists Ao:lQo(n,ö)
such that for all x, with Q<lxol--R6, the corresponding a(x):a*o(x) all satisfy

(1.5) Ånu = {uo -C.



150 Parrucro Avnrs and AnEN Wnrskr.tN

Comparing (1.1) and (1.5) and taking account of the fact that o is infinite for
x on |r-xol:lxsll2 we may apply Lemma A and obtain for a.e. xo such that
0<lxol<Rs the estimate

(1 .6) u (xo,) = v(xo) - a-ä 
-' nY (xo) - a-ö - L n(Xlos #)"'

To complete the proof we show that (1.1) and (1.6) imply that u+ (L-(lxl<Ro).
If we replace uby (J:xu (x>l) then /n(J:xn-L/,u>-x'-redx-6(Jö-C. Thus,

we may fix z sufficiently large so that a.e. for O<lxi =Ro

(1.7)

and

ÅnU >- eauu (ä - 0)

u(*) = %a-ö- 'n(*Tlos#)"'

Thus, ws may choose M >0 such that for any r >0,

(U - M *e log (1/lxi)*ewt''(lxl = Rr).

Wittr Z,(elog(l/lxl)):0 along with(1.7) we may again apply Lemma A and
conclude that U(x)=M-ftlog(l/lxl) a.e. in lxl=Å0. Since e>0 was arbitrary
and u:x-rU the proof is complete.

II. Proof of Theorem 1. Theorem I now follows in a standard way (cf. [11 : p. 9])

from Lemma 1. Briefly, it suffices from [8; p.2691to show thatu is a weak locally
I- solution of (2), since/is continuous. Assume 4:0. Now (3) and Lemma 1

imply that uQLi""(A). Let O=ry€Gf(O) and (",€V-1a1 such that

(r,, (x)

rr I
lxl : 2*

lxl = 
1

rrm

:I if

if
0 = (* = 1-, lv(l = un.

Then, if tl is a relatively compact neighborhood of the origin in o, and containing
supp 4

u (x)) (,nedx - 0,

so it suffices to show

(2.r)

{ f"lYul'-2v u -Yq dx* { nlY rln-'Y u .v(.clx* { f(*,

that

! ntvuln-'Vu.Y(*-*Q as m -+*.
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We must show first that lYule Li."(A). Now, u(W!;!(A), so the rest follows
from

"l,ri,i7iJrr;.':.:,'!.','{^:'*,"()^'AA

=llhlvullli-"o-nllhlvulllL;tolluv(^lluurt
since the left-hand side remains bounded, as well as the term lluY(*ll;*«,rt, &s ttt*O.

Thus, returning to (2.1) we have

| ! nlv ul'-'v u.Y(*dxl = (r,r*-,{r-r,*lyrl")@-')/n (r,r^-,f,=r,.lrty(-1")'''

which tends to zero as m+@.

III. Proof of Theorem 2(A). The proof is based on the following

Lemma 2. If f satisfies (5) then the ordinary dffirential equation

(3.1) lo1{t-zt (rr- rlrf.l* 9+ og1):y1u1,1y

has solutions for r>Q with the following properties

8.2\ {d(O):0,o(0):a,a(R,ö>0 if r>O
[u(r) *- a§ t + ro with ro { -, vQGz (0,r).

Proof. We first construct a solution of (3.1) with a:0. For, we consider the
formula

(3.3) a(r):j (* { r'7(u1t1a4'r<'-'»)0,.

Applying to (3.3) the Picard iteration process with ao:0 we obtain a local solution
of

(3.4) ,a-»(b-1)ä(,)+g+ 4r1):7g1
with the properties

(3.5)

o(0) : 0, d(0) : 0, ö(r) = 0 and u(Gz whenever defined for r = 0.

If there is ro as in (3.2) we are done. Otherwise, with the usual existence and unique-
ness theorems, , may be continued to a solution of (3.4) with the properties in (3.5)
in a larger interval. Since ri(r)=0, this local process may be repeatedindefinitely
unless there is ro=- such that u(ro):*. We now prove that (5) forces this situa-
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tion. We observe that (3.4) can be written as

(3.6) j{r,o-"r'-L)),dr: jf@)r'-",r.

Since / and a arerrorrtl""r"urrrg, (3.6) ,.rr'r*
(3.7) (p-I)'ö > ölr.

Substituting (3.7) into (3.8) we have

(p-l)nöOrP-'t =f(u).
Multiplying by ri and integrating we get that there is a positive constant C such that

o(r)t([ rcla')-''' = r.

From here we obtain 
u0) t

(3.8) { (l rcil,)-'/'dt = c,.

From (5) and (3.8) it follows that there exists ro=- such that a(r)** as r+,b.
To obtain solutions for arbitrary a we consider

lrl(I,-D (p - 1)ä(r) + ((n - t)l Q)ö (r)) : s(u (r))

with g1t'):71/*a). Since g(r) also satisfies (5) there is a satisfyinc (3.1), (3.2) with
a:0. Now it is enough to take D:u*a. This completes the proof of the lemma.

To prove Theorem 2(A) we observe that 1)(r) is a radial solution of Aru:f(u)
if and only if u satisfies (3.1) for r>0. On the other hand it is easy to see that if u

satisfies (3.1) and (3.2) then ts, in fact, satisfies

/;::f(o) in 9'(B(0,r))

with B(0,ro):{x: llxll=ro}. Therefore, from Lemma A it now follows that

(3.9) u(x) = u(x) in B(0, ro).

Taking in (3.2), a:ess inf,661s,,oy n(x) we get a contradiction. Therefore,

Theorem 2(A) is now comPlete.

Iy. Proof of Theorem 2(B). Given -@<.d<6, fr*o, the ordinary differen-

tial equation

(4.r) lrilr;;,-' («r- rX,«.1* 9? og1) :7p1

can be solved uniquely with initial data

(4.2) u(l): q, ö(l): B

and continued in each direction'
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Now, for r)>-0 (4.1) is the same as (ri(r1o-tr"-'),:'n-'-f(a(r)) and for Ö=0

(4.1) becomes (1-O1r;;r-tr"-t),--r"-af(u(r)). Thus, we may continue a to the

left and right from r:1 until either Ö:0 or ?):@- If neither of these occurs on a

side of r:1, ttre continuation proceeds indefinitely in that direction.

We wish to show first that, given numbers u, M there exists fr:fi(q, M) such

that the solution u ot (4.1) with initial condition (4.2) satisfies

(4 3) ,(+)= M
In fact, with § =o and r <l' 

,
rn-t(-t(r)),-l - (-P)'-1+ [ t-'-f(u(t))dt

which shows d stays negative. Hence from (4.1) we have (-01o-'1r-l)ö>f(u)
so (-r)P-l@-l)b>-uf(u) and integrating we obtain for 0<r<1

S/ Cri(r)), = r-+Y - i our rr"o) at : r-+Y * t" f@a,.

Thus,

-ö(,) = (-ot,*f7f flio,)''',

- ,j oor(f'n,,rq- ,,o d, ={,i u r,li flia,)-'+-J-)''o a,,

and

(4.4) '!'" ( j ,uro4-''o d, = (,i e », (f' xi a,)-' + f-- )''' a,.

For fixed a, it follows from (5) that the left hand side of (4.a) is bounded, inde-

pendent of f. on the other hand, if a(r) were to remain bounded with -B large on

the right-hand side, we would have a contradiction.

Having established B<0 so that (4.3) holds, we now apply (6) to show that

there exists a value 16>1 such that ri(r)*g iIS /+/0.
Integrating the relation (1-01r1;'-1r'-t),: -r'-'f(a) we obtain for r>l

(4.s) (- t(r)), -L rn-r - (- P)o-] - i r-'-f (u(t))dt.

It follows that r(n-r)t@*t) ö is increasing so for some K>0
fr

u(r) - a+ f öG)dt - d,+ { OQ)t@-Dt ;,-t) t-@-t)t@-L) dt
if

> d,+ § j ,"-n)t@-L) d,t > - K.
1
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We then have

(- u(l,))o -t 
'n 

-L - ? P)o -' {-'"f(D(t))dt = (- §)r-'-"f(-K) f
1

r-t
1

tn -1 dt,

and the right-hand side will eventually be negative. Thus, r)(ro):0 for some ro>1,
To summarize we have now shown that, given numbers a, M, there exists

§:fl(a, M) such that if u satisfies (4.1) and (4.2),then a(tl2)=M and there exists
ro > 1, such that u may be continued from r : I to r :to, at which point r) becomes 0.

To complete the construction of a past ro we continue by the equation

u(r): 
"{,,t+ d 

(# 
,1,,-'^,(e))r/(o-t) 

n,

as in §3. Also as in §3 there exists rr>ro such that u(r)** as r+r7.
with c now completely described, the proof is now easily completed by com-

parison.
We may assume Sslxl<l/4. Suppose z satisfies (4) outside S,

'= ,zu,:1l'- ""' 
o = r,":t iltr'{')

and u is the radial function previously constructed with B:B1a,M).Then, c is
Gl and satisfies (4.1) a.e.; hence o is a radial solution to (4). But o(r)*- ?s F+rt,
so by choice of M and a, Lemma A gives a contradiction. Hence ucannot satisfy
(4) in R'-,S.

V. Some examples. Let V(r):l6g ((t +a0lrr), (fr, y=0). Then,

/,,v (r) : (n - ul*' - Thl*' (f#E)
so, for §-y=-2n*1 v is a radial subsolution /nv>-ev for r sufficiently large.
This shows that p<n is needed in Theorem 2 (B). If y=2n-3, Zis a subsolution
for sufficiently small q in {0<lxl=q}.

Regarding Theorem 1, to show that ä > 1 is essential, we verify that the equation
lntt:eu has a solution in some set {0<lxl <q}, which is singular at x:0. In fact
the radial form of -/nu*eu:O is the Euler equation for the functional llul:
{{lu"l'+rÖro-rdr. For y<2n-3,let V be a subsolution as above and M,:V(r)
(0<r<g). The functional llul has a minimizing function u,(r) [4; p.24] on
fSln, S] for each n:2,3,..., with un(q):M* u,(qln):Mnt,. This u,(r) is a solu-
tion of the equation and by Lemma A u,(r)>v(r) on leiln, d. To show that as
n*@ we obtain a solution with the desired properties, we need only bound the
u,'s from above. Tothis end,let {lx-xsl<R} be any closed ball in {0<lxl=q}
and nbe sufficiently large so that it is contained in {qln=lxl-q}. Let u be the com-
parison function of §1, with ä:1, a:l in (1.4). since a(R):-, it follows from
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LemmaAthat u,<u, for allsufficientlylarge n,in {lx-xol <R}. Thus,ttleun's

are uniformly bounded in compact subsets of {O<lxl=q}.
Finally, to see that condition (5) is sharp for Theorem 2(A), suppose/is a po'

sitive nondecreasing locally Lipschitz function with

(5.1)

Then, there is a solution of (3.1) such that

(5.2) ri(O) : 0, ri > 0 if t = 0, uCGLf\, *lnG2(0, -).
Indeed, as in the proof of Lemma 2 we can construct a solution a of (3.1) that will
have the properties in (5.2) unless there is ro such that lim,-'o a(r):-- We note

that if this happens then (5.1) does not hold. For, since r)(r)>0 from (3.1) we obtain

ö@-2)(@-1)ö)=flo). Hence, since without loss of generality we may assume

a(0):0, we have

155

,f n,(uf /(o cts)-'ro

u(r) t

! U ra)d{-L/P dt -
Making r*rowa obtain a contradiction with (5'l).

On the other hand, it is not difficult to see that in fact we have

loo:f(u) in g'(N).

VI. Concluding remark. In the case ä:1, comparison of a solution of Åou:e"
in {0=lrl=e} withthefunctionaof§lyields /(')-Cllxl fot some C=0. Hence,

e"@)€L,/n-, (e>0) and by [9; Theorem ll, if u is a positive solution then

Crlog (lllxl)=u(x)=Czlog(t/lxl). This estimate generalizes a theorem of Nitsche

151 for n:2.
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