Annales Academia Scientiarum Fennicx
Series A. I. Mathematica
Volumen 7, 1982, 189—195

ON THE STRUCTURE OF SELF-SIMILAR FRACTALS

PERTTI MATTILA*

1. Introduction

A subset E of the Euclidean n-space R" is called self-similar if there are simili-
tudes S;, ..., Sy of R" such that

E =

IC =

S,E

1

and the different parts S; E are “nearly” disjoint; more precisely, if s is the Hausdorff
dimension of Ethen #°(S;EnS;E)=0 for i#j. Here #*is the s-dimensional Haus-
dorff measure. By a similitude we mean a map S: R"-R" such that for some r,
O<r<l1, |Sx—Sy|=rlx—y| for all x,y€R". The term fractal, appearing in the
title, is a general name introduced by B. Mandelbrot for sets whose Hausdorff and
topological dimensions differ from each other.

In [3] Mandelbrot has studied the connections of self-similar fractals to various
physical phenomena. In [2] J. E. Hutchinson showed that to any finite family
& ={S;, ..., Sy} of similitudes of R" corresponds a unique compact set KCR"
such that K=u} , S;K. This set will be denoted by |&|. Also several properties of
selfsimilar fractals were proved in [2]. One of them was that if m is a positive integer,
O0<m=n, and & satisfies certain natural separation conditions (which are valid,
e.g. if the sets S;K are disjoint), then the intersection of K=|%| with any m-dimen-
sional C?! submanifold of R" has m-dimensional Hausdorff measure zero. In this
paper we prove that under a slightly stronger separation condition, the Hausdorff
dimension of such an intersection is always at most m—e where ¢>0 depends
only on & and not on the submanifold in question. This result has some content only
if the Hausdorff dimension of K, dim K, is not less than m. We also study the case
s=dim K=m, and we show that then there are only two possibilities; either K lies
on an m-dimensional affine subspace of R" or #°(KnM)=0 for every m-dimen-
sional C! submanifold M of R"
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2. Preliminaries

We follow the notation and terminology of Hutchinson [2]. In the whole paper

— m and n are integers, O<m=<n,

— & ={S1, ..., Sy} is a finite family of similitudes of R",

=|7],

— s=dim K, the Hausdorfl dimension of K,

— C,(N)={l, ..., N} for p=1,2,...; we denote a<p if a€C,(N),
BEC,(N), p ¢, and B is an extension of «, that is, a=(,...,i,),
ﬁ (119' ik p, p+17' ° .q)a

— §,=8; 0. oS for a=(, ..., 7,)€C,(N)

— A,=S, A for ACR”

— r; is the Lipschitz constant of S; for i=1,..., N and O RN that
of S, for a=(y,...,i,)EC,(N). We assume O<r=..=ry<l.

Observe that if BCR" is bounded, then for a€C,(N)

dB) =r,dB)=r§d(B) -0 as p —oo,

where d denotes diameter.

We say that & satisfies the open set condition if there is an open bounded set
OcR" such that U\, 0,cO and O, NO;=0 for I#j.

If & satisfies the open set condition w1th O, then 00; 30 .., KcoO,
K,c0, for all «, and

oo

K= U O

P ar
p=1a€C (N)

(See[2,5.2 (3) (ii) and 3.1 (3) (viii)]. ) Moreover, s is uniquely determined by the con-
dition 2” =1, and 0<H#*(K)<eo, [2,5.1(2)and 5.3 (1)]. Observe that neither
the sets K; nor O; need to be disjoint. But if K;’s are disjoint, then & always satisfies
the open set condition with O =an e-neighborhood of K for sufficiently small &>0
[2, 5.2 (2)].

The lower and upper s-dimensional densities of a set ACR" at a point x€R"
are defined by
H(ANB(x, 1))

o (s)rs ’

05%(4, x) = ]ilg %nf

H*(ANB(x, r))
a(s)r

O*(4, x) = limsup
ryo

where B(x, r) is the closed ball with centre x and radius » and «(s) is a positive nor-
malization constant.
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3. The case m=s

In this section we prove

3.1. Theorem. Suppose that & satisfies the open set condition with the open
bounded sets O and U, OcU, and that the following separation condition holds:

Iflis aline in R" such that 0;017#050;nl for some i+j, then (U~JI_, O)nl
#=0.

Then there is ¢=>0 such that for any m-dimensional C' submanifold M of R",
dim (MnK)=m—es.

Proof. We shall show that there is ¢=0 such that, given M, every point xEéM
has a neighborhood Wc<R" such that dim (MnK,)=m—e whenever U,CW.
To see that this implies dim (MnK)=m—e¢, we choose compact subsets M; of M
such that | J; M;=M. Each M, can be covered with a finite number of such neigh-
borhoods ¥, and for every i there is p such that each U,, a€C,(N), which meets M;
is contained in some such neighborhood W. It follows that dim (M;nK)=m—e;
hence also dim (MnK)=m—e.

Since the closures O; are compact, since the function

N
leup{A: B(a, A)OIC[U ~ i!la)ﬂl for some ael}

is lower semicontinuous in the space of all lines in R" and since it is positive on the
compact set of all lines / for which 0;nI7#050;nl for some i+, it has a positive
minimum on this set (cf. [2, 5.4 (1)]). This means that there is 1>0 such that
0:nl1#0#0;nl for some iwj implies B(a, )nIc(U~UY, 0)nl for some

acl. Applying the similitudes S,, «€C,(N), we find that for any line /
) 0,nl # 0 # 0,;nl for some is; implies

N
B(a, /'Lra)ﬂlc[Ua ~ U Ga,-]ﬂl
i=1
for some ac€l.

Let x€M and let V be the tangent plane of M at x. Given u, 1<u<2, there
are a neighborhood W of x in R" and a diffeomorphism fof WnM into ¥ such that
the Lipschitz constants Lip (f) and Lip (f~1) are =u. We denote

A = fANWNM)
_for any AcCR". Choosing u sufficiently close to 1 we obtain from (1) for any line /
in R
) 0,;NI#00,;NI for some i j implies
N
B ) Nic(vi~ U oy
i=1

for some acl/ whenever U,CW.
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Let 0=0 be such that U contains a ball radius o, let
» = (8/ory)" and # = min {1/(474), ‘2/(8%d(U))},

and let ¢ be the smallest positive number with the following property: If I is any
interval, Acl and I~A contains an interval of length nd(I), then 4 can be covered
with two intervals 7;, I, such that d(L)' +d(L,)'=d(I)' and dist (I,, I,)=nd(I).
One of the intervals 7,, I, may be degenerate. Clearly 0<r<1, and ¢ depends only
on 7.

Let «, be such that U, CWW and set

H = f(K,, M).

Let / be a line in R". We shall show that there exist closed intervals

Ijl...jpcl, ji=1,2,i=1,...,p, p=1,2,..., such thatforall p
(3) HVUC:JUJ I; . .»
(4) [j i UI~1 ..jp2C111 Jp?
(5) ;. ,,,1> +d( iy =AU, )
(6) dist ([, 15 1y jp0) =0, 5),
@) d(1;,..;,) = Q=ndd;, ;). j=12.

We first choose two closed intervals I3, I, so that Hnlc/yul, and d(/;)=
d(U,) for j=1,2. Suppose then that ¢=1 and that /; vd, for p=1,...,q have
been chosen so that (3)—(7) hold. Fix I=I; i . We shall show that 7 rvH contains
an interval of length nd(I), whence the reqmred intervals 1; wdgi> j=1,2, can be
found by the choice of 7.

Let JcI be the interval in the middle of I of length d(7)/2. Let A be the set
of all those multi-indices « for which «y<a, 0,NnJ=0,

® rd(D/8 =dU,) < d(Df8,

and which are maximal (in the order <) with respect to these properties. Then
U.nlcI for acA, because U,nJ#0 and d(U,)<d(I)/4. For acA4 let o’ be
the (unique) minimal sequence such that a<a’ and 0 ;n/=0= 0, ;nl for some
i+J, if such a sequence exists. We then set P,=0,nl. If such a sequence does not
exist, then either there are a<o;<o,<... such that ()2, 0,/ is a singleton
{x,} or there is «’ such that a<a’, 0,0 and 0,;nI=0 for all /. In the first
case we set P,={x,}, in the second P,=0, and we agree d(0)=0. Then
© HNJc | P,.
at A

To see this let x€ HnJ. Then there is an infinite sequence (7;, 75, ...) such that
x€0, nl where o,=(iy, 1, ..., i) for p=1,2, ... and ay=a, for some p,. Since
for ] 1 or 2, d(l)<d(1)<d(U ) and since rld(UapH)érld(Uap)éd(UapH),
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it follows from (8) that for some p=p,, #,€ A. Then one readily checks that x€P,
which proves (9). ’

By the definition of g, each U, contairs a ball of radius od(U,). Since the elements
of A are maximal, the sets U,, a€A, are disjoint. Moreover, they are contained in a
ball of radius d(Z). If k is the number of the elements of 4, we see comparing volumes
that k(orid(1)/8)"=d(1)", that is, k=ux.

Let Be€A be such that d(P,) is the largest of the diameters d(P,), a€4. If
2xd(Py)<d(J), then by (9) I~H contains an interval of length d(J)/(2%)=nd(I).
If 2xd(P;)=d(J)=0, then P, =0pnl and 05:nI#0#0p ;nl for some i,
and (2) implies that (U ~\J;L, 03;) NI contains an interval /, of length

Jry = 1d(U,)]d(U) = 2d(Pp))(2d (V) = 2d(1)/(4xd (U)) = nd (D).

If B€C,(N) then UpnU;=0 for yeC,(N), y#f’s hence HnUpC UL, 0% i
and it follows that I, is contained in /~H. This completes the induction.
From (5) we obtain for p=1,2, ...

) 2 Ay, ,) = d(I)'+d (L',
Jy iy

hence (3) and (7) imply

H(HND) = d(L) +d(I) <<=,
and dim (Hnl)=t.
We set e=1—¢. Then dim H=m—e. For otherwise it would follow from [5,
Theorem 6.6] that for some lines /, dim (Hnl)=dim H+1-m=>t. Since H is
diffeomorphic to K, NnM, we have dim (K, "M)=m—e. This completes the proof.

3.2. Remarks. If the lines are replaced by m-planes in the assumptions of
Theorem 3.1, then #™(MnK)=0 by [2,54 (1)]. I do not know whether
dim (MnK)<m in this case (except if m=1).

On the other hand Theorem 3.1 and also [2, 5.4 (1)] are false without some
assumption in addition to the open set condition. For example, if O is an open equi-
lateral triangle in R?, O;, O,, O,C O are homothetic to O in ratio 1/2 each having
one vertex in common with O and two sides contained in boundary O, and if
S,. Sy, S; are the obvious similitudes (without rotation) with S;,0=0;, then
& =181, S,, S;} satisfies the open set condition with O, dim K=log 3/log 2=>1,
but K contains countably many line segments. In this case the other separation con-
dition fails for the lines containing the boundary segments of O.
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4. The case s=m

Marstrand considered the concept weakly tangential in [4]. We give the following.

4.1. Definition. Let ECR" and 0=t=n. We say that E is weakly (t,m)
tangential at a point acR" if O*(E, a)=0 and there is an m-plane V such that
acV and for every 6=0

li%%nfr“]f‘(EﬂB(a, r) ~ {x: dist(x, V) = 6r}) = 0.

V is then called a weak (t, m) tangent plane of E at a.
In general there may be several or no weak tangent planes. In the following recall
that K=|¥|, s=dim K and O0<i#*(K)<o due to the open set condition.

4.2. Theorem. Suppose that & satisfies the open set condition. If K has a weak
(s, m) tangent plane V at some point a€kK, then KcCV.

Proof. We first show that K lies on some m-plane. Suppose this is not true. Then
there is a subset {a;, ..., a,,} of K which is not contained in any m-plane, and we
can find ¢, 0<g<1, such that if W is an m-plane, then dist (q;, W)=¢ for some
i=1,...,m+2. The lower densities O3 (K,q;) are positive by [2, 5.3 (1)]. Hence there
are ry, n such that O<r,<g/2 and

H(KNB(a;,re)) =qry for i=1,...,m+2.
Let O<r<r; and let ¢ be a minimal sequence such that ac€K,cB(a, r/2).

We may assume d(K)=1. Then r,=r/2=r,/r,. By the choice of ¢ there is 7 such
that dist (S; (V). a;)=¢. Then

B(S,a;, r,rCB(a, r)~{x: d(x,V) = or,/2}.
Hence with §=¢r,/4, we have dr=gr,/2 and
H(KNB(a, )~ {x: d(x, V) = or})=#*(K, N B(S,a;, r,1y))
= 1S5 (KN B(ay, 1)) = qrsry = n(riro/2)°r .

This contradicts the fact that V' is a weak (s, m) tangent plane for K at a. Therefore
KcWw for some m-plane W.
Suppose that W= V. Letting X be the orthogonal complement of VW, we

have
c=distWNXN{x: [x] =1}, VNX)=>0.

Then one checks cdist (x, VaW)=dist (x, V) for x€W. Since KcW and
O (K, a)=0, it follows that 1=dim (VnW )<m and that Vnl¥ is a weak tangent
plane for K at a.

Let k, O0<k—<m, be the smallest integer such that K is weakly (s, k) tangential
at a. Then by the above proof K lies on some k-plane UcCW. Then UcV, because
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otherwise UnV would again be a weak tangent plane for K at ¢ with 1=dim
(UnV)<k, which would contradict the choice of k. Thus Kc V.

4.3. Corollary. Either K lies on an m-plane or #°(MnK)=0 for every m-
dimensional C' submanifold M of R".

Proof. Suppose H*(MnK)=0 for some M. For H* aa xEMnNK,
O™ (K~M, x)=0 by [1,2.10.19 (4)], and at these points the tangent m-plane of M
is a weak (s, m) tangent plane of K. Hence K lies on an m-plane.

4.4. Corollary. If either s is non-integral or s is an integer and K lies on no

s-plane, then
$(K, x) < O(K, x) for #* a.a. xcK.

Proof. If s is non-integral this follows directly from Marstrand’s result [4]. If
s is an integer set E={x€K: O (K, x)=0%(K, x)}, then by [4] K is weakly (s, s)
tangential for s#° a.a. x€E. Hence by Theorem 4.2, #°(E)=0.

4.5. Remark. If s is an integer and K lies on no s-plane then Theorem 4.2
implies that K is purely (o, s) unrectifiable in the sense of [1, 3.2.14]. It is not known
whether the conclusion of 4.4 is true for all purely (5, s) unrectifiable sets K< R"
with #°(K)<eo, except if s=1.
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