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QUASICONFORMAL SEMIFLOWS

JUKKA SARVAS

1. Introduction

Let R'be the n-dimensional euclidean space n>2, and let F: [0, 1]XR'*R,
be a function such that the differential equation

(1. 1) QO - F(r, q(t)), (p(0) : x, (n.,. eU):y(4)
1 value x€ R". Let E (t, x), 0 = t = 1,

ng (t , x)* qt (t , x), (t, x)€ [0, 1] x R"
has a unique solution in [0, 1] for every initia
denote this solution for n€ R'. The mappi
is called a semiflow generated by F.

Write F,(x):F(t,x) and Er(x):rp(t,x). If F is continuous, bounded and

ll^SF,ll-<ft=- for all l([0, l], then F generates a semiflow E such that the

mappings Eri R"tR" are quasiconformal, abbreviated qc, with maximal dilatation

(1.2) K(E)=e"k'for 0=/=1.

Here § is a differential operator defined by Ahlfors as follows: If /: -R'*R" has

first order partial derivatives Drf(*), i:1,2,...,n, at x and Df(x) is its Jacobian

matrix at x (i.e. the nXn-matrix with column vectors D,f(x)), then

sÅx) : ! torut * tr6>l -l t(of1x1)r,

wnere fr(| is the transpose and tr (Of(x)) the trace ot Df(x) and ,1 is the identity
matrix. Results of type (1.2) are proved by Ahlfors [lj, Reimann [Rr] and Semenov

lsel.
The result (1.2) raises the following question: If f: R"-R' is qc, is there a qc

semiflow E: [0, ljXA'*R" of the above type such that f:Er? Actually, this is
the case if n:2, see [G-R]. For n>3 the question is still open.

The purpose of the first part of this paper is to enlarge the class of qc semiflows

to cover the case where F need not be continuous and ll §.F,ll - not uniformly bounded.

One aim of this generalization is to provide a larger and more flexible class of semi-
flows in which to consider the above open question. We shall prove the following
result. Suppose that
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(i) F: [0,1]XR'*R" is locally integrable and

(ii) for almost every t€[0, 1] the mapping F,: R'*R' is continuous and in
nz,ll1n,;, ana /ä llsr.,ll_ar=-.

(iii) If n:2, we also assume that lim1,1--lrl-'lltr(x)l:0 for almost every
r€[0, 1].

Then F generates a semiflow E:[0, 1]XR'*R' such that rpr: R'*R' is qc with
K(EJ=exp (rzlillSr"ll-ds) for all r€[0, 1]. Here Wl;L@\ refers to the Sobolev
space of mappings f: R"-R' which have locally integrable distributional first
order partial derivatives Dif, i:1,2, ..., n. The space R' is the one point compacti-
fication of R'. In the special case F(t, x):f(x) with f: R'*R' this result also im-
proves lAz, p.9], where a stronger -erowth condition than (iii) was required for all
n>2.

The method of proving the above result applies to other operators than §, too.

In the second part of this paper (Chapters 6 and 7) operators S,f:(U2)(Df+;fl+
d.tr(Df)l, a*-lfn, and div/:tr(D/) will be studied; the,S, operators lead to
'Lipschitz semiflows' and the div operator to semiflows E with a bounded Jacobian
determinant J r,. The case of div is interesting because the generating process of the
corresponding semiflow can be reversed. In fact, making use of the possibility to
express the fundamental solution of the differential equation div f:y in terms of
Riesz potentials, we will prove that for any measurable g: R'*R+ with 1og q€
LrnL* there is a semiflow E such that the Lebesgue (volume) derivative of E,
equals (e(r))'for a.e. x€R'. Related results are proved by Riemann [Rl for a con-
tinuous g and by Moser [M] for a smooth g; however, their methods differ from the
method used here.

Notation. For an nXn-matrix I we use the sup-norm lllll :sup1*1:1llxl,
x€R". For a measurable function f: D-R^, DcR", we write feLp(D), l<p-.*,
if the l,p-norm il,fllr:(/Dlfledm)ue is bounded; for p:- we write f(L*(D) it
ll,fll-:esssupr€Dl,f(Dl=-. Often we abbreviate Le(D):Le. We write f€Ct or

fcc* if fhas continuous partial derivatives offirst order or ofall orders, respectively.
The notation f€Cf means that fiC- and/has a compact support in its open do-
main of definition.

Suppose that
q: [0, u xR'*R'.
in (t, x), then q is

(2.1)

2. Smooth qc semiflows

F: [0, 1] X Rn* R" is continuous and generates the semiflow
If the derivative DFr(x) exists everywhere and it is continuous
unique and (see, for instance, tC-L])

eri Rn -' Rn is diffeomorphism and

@E,(r))'-DFt(q,(*))DE,@) for Q= t=1", and
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for all x€R'. The next theorem shows how Sfr(x) aflects K(E). Let D,D'cR"
be domains. Recall that the maximal dilatation K(/) is defined for a diffeomorphism

f: D*D' by K(fl:n1ax{K:(f),KoU» with fo(/):sup,.pKr(x,f), Ks(x,f):
llDf(x)ll" I ldet Df (x)1, and K,(f) : Kr(.f -').

2.2. ^Iheorem. I"f E is as aboae, then

Ko(x, E) = exp (n(2.3) j ilsn(p"(x)lld,), 0< t=1, x€R,

and K(<p)=exp (n Ii a(s)ds) with a(s):supxeR" llS4(x)ll.

Proof. (Ahlfors's method). Write O(r): DE,@) and X(t):(det @(r))-1t'O(t).
Then Ko(x, E):llx(t)|11". By (2.1)

(2.4) ö1t1: AQ)aQ), @(0) : 7, with A(t): or,(<p,(x)).

We apply the formula (aetitt1t11.:@etM(t))trlM(t)-1M(t)l were M(t)
is a differentiable matrix-valued function with det M(t)*O. After differentation we
get (note that det O(t)*O)

By transposing this equation we get
Therefore

(2.5) trt)x(t)t'_

x (t)' * 
lo r,, - + tr (A(,))/] x Q), /€ [0, 1].

fry-T,)lfid)-(l ln)tr (eQ))/1, os t=1.

/^-/ 
-X(t)'X(r)+ X(t)X(t)'

: f(,)lnrr*t(o-1"@urlr)*al:z?6sp,(q,(x))x(t1, 0 <, 
= 1.

Note that lltttyz:yfrttt ll and 11ft11:111rt11 for any matrix M. We get

(il x(,)lt ). : 111?(1 x 1t1lt ). = I &oxo». tt

= 2117(q s r, (q, (x)) x (t)ll = 2ll s F, (E, @)) I I I I 
x (r) Il,,

for a.e. te [0, 1]. This implies

(roellx(r)ll'z) : ('i+[l]ill 
= 2llsd(e,(x))ll, ror a.e. r€[0, 1],

and integration yields (2.3). From that we get Ko(p,)=exp(nlia(s)ds) with a(s)
as in the theorem.

It is easy to see that for any le [0, 1] the function r!(s, y):EQ-r, r), !:et(x),
is the solution of ,ir@,y):-F(t-s,rlrG,D), ,lr(o,y)--y, for all 0=s=t and

/(R'. Because ry',(y):E(O, x):x for !:e,(x), we have tr:er'. Apply the
above result to {,, and get Ko(r/)=exp (n[ia(s)ds):K. Thus K(E):
max {rKo(q,), K'(E;L))= K.
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3. Non-smooth semiflow

In this chapter we relax the assumptions on F and show that it still generates a

unique semiflow E such that Er: R'*.R' is a homeomorphism with certain equi-

continuity properties which are important for our later constructions. Suppose that
F: [0, l]XR'*R' is measurable and

(3.1) (i) for all x€R' the function t»F(t, x) is measurable,
(ii) for a.e. r([0, 1] we have: lF(t,x)l<a(r) for all x(R", and lF(r,x1)-

F(t, xr)l=a(t)lxr-xrl (t +tos. 
E-) 

for all x1, x2CRn with a: [0, 1]*Å€I1.

Here log+ u:O if O<u= 1 and log+ u:logu if u>1. Then (see [C-L, Chapter
2l) the initial value problem

(3.2) QG) : r(t, q1t)) for a.e. /€[0, 1], and EQo) : x,

has an absolutely continuous solution g: [0, l]*ft' for any l0([0, 1] and x€R'.
Write ry'(ro, t, x) t€10,11, for this solution, i.e.

(3.3) Y(to, t, x) - x+ F(r, V (to, s, x)) ds, /€ [0, 1],f
to

(3.5)

(3.6)

which is the equivalent integral form of (3.2) (tor absolutely continuous solutions).

If to:O, we again write ry'(0, t,x):E(t,x):Er(x). With these notations and the

assumptions (3.1) we get two theorems.

3.4. Theorem. For tt,tz€l}, 1l and x1,x2€R"

lE Ut, xr) - xr 
I

a (t) dt a (t) dt - I, and

lE\tr, xr) -E(tr, xr)l = *,(l*, 
_ x2)+l j'rft)clrl,

tL

where w; [0, -)*[0, *) is an increasing function depending only on I such thot if
O=r<exp (l - eI) :q then w1(r) :q"re*P(-t).

Proof. The formula (3.5) follows directly from (3.1) and'(3.3). To prove (3.6)

suppose first that tt:tz:t(l},1l. We may suppose xr*x2. Let o(t1:lE1,*r)-
EU,xz)l, r€[0,1]. Then by (3.I)

6 (t): lr, - xz* [r(r, E(s, xr))- F(r, E(s,xr))]arl

=f
tt

i
! ,(s) h (o (s)) ds

(3.7)
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with h(u):u(l +1og+ lf u) , u>0. Next we employ a standard differential inequality

technique. Define

r(t): lxr-xrl+ / a(s)lz(o(s))as

for /€[0, 1]. Then z is absolutely continuous and t(t):a(t)h(o(t))=a(t)h(r(t))
for a.e. r€[0, 1] by (3.7) and because h is increasing. This implies i(t)lh(x(t))=a(t)'
and integrating yields (the change of variable in the integral is possible because z is

increasing and absolutely continuous)

, = lc(s)ds = l#t» o,: 
",{" 

#b: GGG))-Gcx1-x2l),

where G: (å, -) * (0, -) is the increasing homeomorphism

G(u) : i #: {# 
0";*) 

=r, 

o < u = t'

Therefore, o(t)=c(t)l<G-l(G(lxL-xrl)+I):wr(lxr-xrl) for all r€[0, 1]. This

gives (3.6) for tr:\r-t. lf tl<tz, we get by (3.1)

which proves the theorem.

3.8. Theore m. The aboue rp is the unique semiflow generated by F, and the map-

pings rpr: Rn*Rn, 0<l<1, are homeomorphisms such that

lEUr, xJ -E$r, xr)l = lEQr, xr) -EQ', xr)l+ {' to(r,E(s, xr))!ds
tL

tr

(3.9) lE;'(r)-xl = [ ,Q)ctr,

t2

(3.10) lE;'{xr)-EA'(xr)l = w,(lxr-xrl +l t ,OV,l)
t,

for all tytr(\}, ll and x1,x2QR". Here w1 is as in Theorem 3.4.

ProoJ'. Theorem 3.4 implies that the solutions of (3.3) are unique for fn:g
for any x€R', and also thatthe function x-Er(x):rlt(0, l, x), x€R', is continuous.

To apply Theorem 3.4 to {t(to, t, x) of (3.3), note that for any lo€[0, U the solu-

tion of the initial value problem
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is given by 0("r, x):rlr(to,to-s,x). Theorem 3.4 applies to 0(s,x) and we get

(3.t2) lt(to, t, xr)-rlt(to, t, xz)l: l0(to-t, xr)-|(to-t, xr)l: w1(xr-xrl)
for all 0= r= ro= L we see that the solution of (3.3) in unique for r€ [0, /o], and the
assignment x*t(to,0, x), x€R', defines a continuous mapping. Due to the uni-
queness, it is easy to see that gtui R"*R" has an inverse mapping which is given by
E;t1):{t(to,o,!), ycR", unä thrrs etoi Rn*R' is a homeomorphism for all
r0€[0, I]. The inequalrty (3.9) follows immediately from (3.3) and (3.1). To prove
(3. 10) note that by uniqueness rlt (tr, O, x) :{ (tr, O, t (t r, rr, x) ) for all O< t r< t r< "1.,

x€R', and using (3.12) and (3.1) we get

lE;, @) _ E;' (xJl : lt $r, 0, xr) _ { (tr, O, xr)l

This proves the theorem.

4. Potentials

A large class of functions which satisfy conditions (3.1) are obtained by formation
of potentials with (1 -n)-homogeneous kernels.

4.I. Definition. Let G be the set of all (kernel) functions g with the properties

(i) g:Å\{o} * rR€Cl,

(ii) g(tx) : tr-n g(x) for all t > 0, x I O.

4.2. Lemma. I.f gcG, x, z, (R" and O=lzl=lxll2, then

ls@+z)-s@)l = dlrllxl-, with d: t\?x{ilag(y)ll :tl2 = lyl = 312} =.*.
Proof. We have lg (x + z) - g(x)l : lxll-'lg(lx l-Lx + lxl-rz)-s(lxl -'x). Here

U2=l(lxl-1x+lxl-izll=3f2 because llxl-rrl=112. TJse the mean vatue theorem
and the lemma follows.

4.3. Theorem. Suppose that gec,

.f :R -* R(LL n L*,

the g-potential of "f.

- lrt, Qr, 0, xr) -r!(tr,,0, * (tr, tr, xr))l € wt (lr, -rl, (tr, tr, ,Jl)
t,)

- ,,(lr, -x2- fF(r, {(rr, s, xz))dr[ s wr(lrr-rrl +l j' ,(fidtl),
tz 't"

(i)
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Then the conuolution integral defining F conuerges absolutely and

(4.4) lr(x)l = cr(ll"fllr+ll"fll-), x€.K, and

(4.s) lr(x)-r(xJl = c,(ll,fll,+ll,fll-)lx,-x,1(t+tog*lt:;i-)

for all xy x2(Rn, with cr, cz<6 depending only on g and n.

Proof. Note that \S!)l:lzlt'"g1121-rz)=clzll-" for z*0 with
c:max1y1:rl8(y)l=-. We get for any x(R'

lr(xyl : | [ s(x- t) f o)dyl= 
" J #=0,

=',. -[ =,]# 
d v + c 

o -{,-,1 
"f o)l a v = c (o)' - tll f ll - + ll'rll J'

where coo-r:mn-LSo-7, which proves (4.4). To prove (4.5) let Z:xt-xz*0. 'Then

(use change of variable x:xz-! below)

lr(x)- r(x,)l : 
11 G@,- » - s@,- y)) f(y)dyl

= ! lst*,- v)- s(xz- v)llf1)lav : ! ls(* + r)- g(x)i lf(xz- x)ldx

: I ls@+r)-g(x)llf(x,-x)ldx+ I ls(*+ r)-g(x)llf(x,-x)ldx,
I*l=.0 lxl=ro

where ro:rnax{1,2lzl} (then rollzl>2). Call the integrals on the last line above

I and 1r. We first estimate 1, (below use change of variable u:xllzl):

,, = o,f , 
"l 

s (x + z) * s (x)l, f , * d x : W,., !,,1r 
(ä. fl-, (ä)V.

: M)- 1,1n f I"(
lzln - t'-' t,i=!ot,,r l" 

* h)- 
g@)lau

:ttrti*t'11,,,[,lr(".fr)-s@)lou*,=,,,f, 
,",,",1r("*h)-sa>la"J

-|f|_lzll2 [ls{olau+ [ a1r;"a,\,- ttr 
Isl=e z=rur=tolrzl

where we have used Lemma 4.2 in the last inequality. Because g is (1 -n)-homo-
geneous, ltul=rlS@)l6ly:s'<.*. We also get

'=*'f,-'o,o,lul-' 

du : @n-r'* (#) =''-'toe*#'
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Therefore, I;llfll*lzl(2c'+dan-rlog +(1/lzl)). Next we estimate /r. Note that
ls@+z)-s@)l=dlzllxl-" in Irby Lemma 4.2, and note that lrl-'=l in 1, be-
cause lrl=.0= I . We get

Iz : I ls(*+ r)-c(x)llf(x,*x)ldx = dl| I lJ'(x,-x)ldx : dlzlllfll,.
Ixl>ro Rtr

Combine the above estimates and get lF(x)-F(xr)l=1r+lr=
maxp,c',dr,-r,d|(llfllr+llfll-)(l+1og+ (tllrD)lzl. This proves the theorem.

5. Non-smooth quasiconformal semiflow

In this chapter Ahlfors's formula for recovering/from S/plays a crucial role-
We need it in the following form:

5.1. Lemma. I"f f: R"*R"eWlå!(R'), Sf€LLaL-, f is continuous anc{

f(x)*0 as jxl--, then for all x(R"

(s.2) .f(x) : ',,å{o[ ,,ä,y,ii(x-y)tsf),i0),tt)ru.

Here e1,...,en is the standard basis of Ro, co:nf ()(n-l)a,_r) and
yli@):lxl-"(öi1,xi*ö;1,xi-öiixp)-@+2)lxl-'-zx,xix1,, where öij:0 if ilj
and 6tt:7 if i:j.

Proof. Let f:(fl, ...,f,). By Ahlfors [,4r, p. 80]

(s.3)

fo(x): c, f Z vfi@- y)(sJ),i(y)dy-c, f lyo(x-y)f(y)).( ,v-*,)ay
a" 1!, ,1i, i s,'- (-, ,; \ ly - xl )

for any r>0. Here yo(x-y) is the linear map R'*Ro with matrix (yfi@-y)),
and the dot (. ) refers to the scalar product in Ro. Let lr(r) and lr(r) be the integrals
above. Because yf;e G and (Sf)rr(LLaL- for all i, j,we get as in Theorem 4.3

I1(r) * ," 
J å 

yfi@- y)(sf),i!)dy as / *6r

and the integral over Än converges absolutely. If r>7, we get

Itr(r)l < c'c,, I j-Vrr»dy : c'c, .f lfeflt,cty,
§tr-l(r,r)' S"-I1x,t)

where c':rn€rxl,l:r llyu(r)ll. Because l,/(x)l*0 as lxl*-, then lr(r)*g as
r*0. Therefore (5.3) yields (5.2) äs /+@r and the lemma is proved.
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In the next lemma we need mollifiers. Let 0: RXRn*Rn be a C--function such
that
(D 0(u, u) > 0 and 0(u, u) : g for l(u, o)l = t

(iD I u@,u)d(u,u):1.
RXRN

Define
(5.4) 0"(u, o) - e-"-10(e-rl!, e-ru), for all e = 0.

Then f x?,€C* with (f x0")(t, x): I ,*^"f(t-u, x-u)0"(u,.-)d(u,u) for any
function/which is locally integrable in RXR'.

5.5. Lemma. Suppose that

(i) F: [0, 1]XR'*R, is locally in Lt and (recall F,(g:fg,*11
(ii) for almost eaery l€[0, 1] the function Fr: R'*.Rn ls continuous,

liml,l*- F,(x):O, F,(.W\åL(R') and !!a(t)dt<* with a(r):ll§f,llr+llSP,il-.
Then F generates a unique continuous semiflow g: [0, l]XRo*Rn such that qr:
Ä'*Rn is qc with 

t

(s.6) K(c)=r*o"([ lls4ll-dr) for all 0 = / < 1.

ft

where ä:[0, t1*p is an increasing function with lim"*6ä1s):g so that
tq

lf ,<,ldrl= ö(f,_1,t1
tt

for r., r2€[0, 1] (such ä exists because a€21[0, 1]).

Proof. Let F':Fx0, for e=0 (set F(t,x):g if t([0, 1]). Write ^SF(l,rc)
for §d(x). By Lemma 5.1 and Fubini's theorem we get (write F: (Fr, ..., F,))

(5.7) Ff (t, x) : t fop-u, x-u)O"(u, u)d(u, o)
nx?"

: 
^1, 

k" { ,J v+,,(v)(sp(t-u, x-u-v)),idv)0"1u, u)d(u, u)

: ,"J å*0)(^ I (sr1t-u, x-u-y)),,O,(u,u)ct(u,g)c11,

: cn .Z 7f, x ((Sf x 0),r), (r).
i, j

Let ai,()-ll(sr'*0,),;),11.+ll((sr;@"),j),ll_, r€[0. t]. It is easy to see rhat for
all 7=i,.i<n 1 r
(5.S) [ ai,Q)tlt = [ a1t1at (see the assumption (ii)),

tn

(s.9) l[ ,i,ga\= ä(ir,-rri) for all /r, r2([0, 1],
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Now, Theorem 4.3 and (5.7) imply

1lr'"(x)l < c').aiiQ) (here c'=- depends only on n),
I i'i(s'10) 
ll.,'rr,i-a(x,)l = c'(fi ai,@)lxr-xzl (r*t"*.-6$)

for l€[0, 1] and x, x1, x2(Rn Then Theorem 3.4 with (5.8) and (5.9) yields that F'
generates a semiflow E" with

I'
(s.11) llv"{''x)-xl 

- t, { aQ)dt: I and

[lq" (/r, xr) - e" (tz, xz) I = cz(wr (lr, - x, l) + a ( 
| 
r, - r, l))

for all t, tL, lz<l}, 1] and x, xr, x2QR', where constants c11 c21a only depend
on z. By Ascoli's theorem (g)"=o form a normal family and, therefore, there is a
continuous function g: [0, l]XR"*lt' and a subsequence (g"') with €i*0 as
i-- such that E";*1p locally uniformly in [0, 1]XR' as r*-.

We want to show that cp is a semiflow generated by F, i.e.

Since g",(t, t):x+l'rp€;(s,g"r(s, x))ds and E",*E as ,'*-, we only
prove that

(s.13) , :l!^F(s, e(s, n)or- j F',(s,cp",(s,x))dsl * o

as ,*-. Applying Lemma 5.1 and Theorem 4.3 we get for a.e. l€[0, 1]

(s.14) {l4G)l = c" a(t)'
t I.4 (x,) -.4 (x,)l = c" a 1t) h(lx, - x,l)

for all x1, x2CR" with h(u):a(1+log+ (Ud), u>0. We get

(5.15) , : lj[./ {rtr, E(s, x))-F( s-u, E",(s, x)-.u))0, (u, u)d(u, r)Jctsl

t
€ I (l le(t,e(s, x))-r( s- u, cp(s- u, x))ids)0" (u, u) d(tt, u)

'R4+1 o

(5.12)

Let the

EG,x) : x+ 
! 

,A, e(s,x))ds for /€[0, 1], x€rRn.

Ii and Ii . By (5 .14) we set

need to

u) d (u, u).eu,(s, x) - u)lds) 0,,(u,
t

+ f ({ tr(r -Lt,(p(s -Lt,x))-r(' -u,
6rr+1(er) 0

integrals on the right-hand side of (5.15) be

x) - u l) ds) 0,,(r,fi'
pn + 1(er) 0

ry= " €,ls - u)h(iq (u - Lt, x) - e',(s, u) d (u, ,).
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Here h(lE(s-u, x)-E",(s, x)-al)*0 uniformly as i** because then 8;*0,
u,u*O and tp't*E locallyuniformly. Because aeLL, I'i *g as ,'*-. To estimate
Ii write G(r):p(y,q(r,x)), r€R (recall F(t,y):g if r([0, I]). Then c(Zr(R)
by (5.1a) (the measurability is not difficult to prove). Because G€21 there is an in-
creasing function äo: [0, -)*R such that lilC(s-u)-G(s)lds=äo6zrl)*0 as

lrzl*0 for all r€[0, 1]. We get

r{ - f up,r + 1(er) 0
lG(') - G(s- u)lds)0,,(r,

j

u) d (u, ,)

= ^ I_ 6n(lul)0",(u,a)d(u,u) = än(e,) I 0".d(u,u)
3n + r (er) a"+1 (ei)

:äc(e,)*0 as i*-.
We have shown that 1,*0 as ,'*-, and therefore g is generated by F (it is not
difficult to see that (i) and (ii) of (5.5) imply (i) of (3.1)). From (5.r4) and rheorem
3.8 it follows that E is unique and gr: R'-R' are homeomorphims for all /€[0, 1].
Finally, we prove (5.6). Fix l([0, 1]. We know that Ei,*E locally uniformly in
R'. By Theorem 2.2 we have

K(Efl = exp (n ll,Sft',ll .. dr).

Because D*n(Fx9,):(D,uF)*0., we have sFj,: ((Sny x g,_)", and therefore it
is easy to see that limsup;*-/ill.srj,ll-ds=/i;1s41;-as. By a well-known Iimit
theorem for qc-mappings g, is qc and K(qr)=li^inf ;*K(qi,)=exp (ntillsf"il_ d4.
The theorem is proved.

Next we prove our main result on qc semiflows. We consider R,:R,u- as
a smooth manifold with local coordinates x-x for x€Rn, and x-J(x)€A' for
,r€R'\{0}, where.risthereflection in,S'-1, i.e, J(x):xllylz, x*o. Supposethat
a vector field P on Rn is given in local coordinates by functions f(x), x(R", and
.f*(J(*)), x€R-\{O}. Then by the usual transformation formula for contravariant
vectors lAr, p. 8l

"f. (y) - wr-,(y)l -,f(r(y)) : lyl,Q-zQ(il)"f(r0)),
ylO, where QU) is the matrix (Qj))u:lyl-ry,yi, t=i,i=n. Furthermore, a
function q:la,bl*B is the solution of the differential equation «l(t):F(E(t))
it rl(t):f(E@) for EG)€.R" and, (JoE).e):f*(Joq(r)) for q(r)€R,\{0}.
Especially, if q(t)+0, -, then ,iQ):f(EG)) ifandontyif (J o@.(t)-_.f*(J oq(t)).

Consider a continuous function f: R"-R" as a vector field on -R,. Suppose
that f can be extended continuously to R" as a vector field, i.e. there exists
lim,*s/*(x) (R" fot f* defined by (5.17), and suppose that f generates a unique flow
E(t,x),0=r<1, x€R', on R'. Thenlf* generates the flow {/(t,x), and we have

(s.17)



K(q) = exp(" { Ils4ll-ds) for 0 = / = 1.

Proof.We first show that å, "r"., xslRn, ro>-1,

1

(s.19) t sup lF,(x)ldt =-.
6" lx-xol=ro

Clearly it suffices to prove (5.19) for ro:1. Let l€[0, 1] such that F, is continuous

and lisFrll-=-. Then by (5.3) we get for every x(B"(xo,l)

Ir,(x)l = ci,llsF,ll*m,8"(x, r)*cf,r-o+r I lF,(y)ldm,-ly)
str_t(x, r)

for r=0. By Fubini's theorem choose r€U,27 such that

f lr,O)lamn-r(!): f lr,O\am,(y)= f lF,(y)ldm^(y).
5"-f1x, r) l=ly "xr<2 3"1xi, a)

Thus we get
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$i@):JoEroJ(x) for (/,x) with cproJ(x)**. Similar remarks are valid for
semiflows on Rn.

We are now ready to prove our main result for qc semiflows.

5.18. Theorem. Suppose that F: [0, 1]XR'*R' is locally integrable in

[0, l]XR' andfora.e. t€10,71 thefunction Fr: R"*R" iscontinuousandinW!;l(N)
and [[ll^sF,ll-dr=-. If n:2, we also assume that limpl**lxl-slFr(x)l:o fsv
s.e. t€l}, 11. Then F generates aunique semiflow E(t,x),O<t=I, x(Rn, such that

Er: R"*Rn is quasiconformal with

f .rp lF,(x)ldt= f ,'[ls4tt-+ f 1r,1y11ayl-*
f l,-*ol=r d t n1io,z1

because |tllsfrll*at<- and F is locally integrable in [0, 1]XA'. Here s'<*
only depends on ,?. This proves (5.19).

The inequality (5.19) enables us to apply truncating to F. Let xs(Rn and

{/ectr(B"(xi) with ry'1x;:1 1e1 lx-xol<112. Then for a.e' ,€[0, l] we get

f S(r/r,)(x)ll=2nlD{/@)l lr,(x)l+ lrl(x)lllSF,(x)ll fora.e. x(8"(x0,1), whichimplies
by (5.19) that [ills(/F,)ll-dt<-. Therefore, we may apply Lemma 5.5 to r[F
and conclude that F locally generates a unique semiflow.

Next we consider the semiflow generated by F in a neighborhood of -. We

define the reflection Fx of F in ,S'-1by (5.17): F*(t,y1:lyP(t-2QU))p(t,yllyl\,
y*0. Let l€[0, 1] such that Ft is continuous and ll,SF,ll-=-. Then
esssupr*sll§pf 0)ll:llSr,ll- by lAr, (1.8)1, and lim1,1*olxllrl(x)l:0 by assump-

tion if n:2 and by [Sa, Theorem 3.15] if n>3. By [Sa, Lemma 3.2] then F] has

a continuous extension to Ro such that Ff (Wi;l(n), and so ilSf'Ill-:llsfrll-.
Applying (5.19) and the representation (5.3) we see that F* is locally integrable in
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[0, l]XR'. Now, the above truncating method applies to F*, and we see that F*
generates a unique semiflow locally. This means that we can extend F to [0, UXR'
such that F, is a continuous vector field on Ro for a.e. l([0, l] and F generates a

unique semiflow on R'locally. Because Rn is a compact manifold without boundary,

Fgenerates a unique global semiflow e(t,x),0=/<1, x(R'. The local uniqueness

also implies, by the usual reasoning, that mappings Er: Rn*R are home omor-
phisms for 0<r=1. We stillhave to prove that they are quasiconformal.

Suppose first that EQ,0)€R' for 0<l<1. Define H(t,y):p(7,y+EG,O))-
F(I,EQ,O)) for O<t=|, XR'. Then ä(/,0):0 for every ,€[0, 1]. Applying
(5.19) to H and the inequality lAr,Theorem 1l or [Sa, (2.3)] we get

lH(t, x)l = h(t)lxl(,*ros#)(5.20)

(s.21)

for lxl -- l, 0 < / < 1, with {f,ltg1arc *. Define ä + 
( t, x) : lxf (I -2Q@)) u 1t, x 1 lxlz1.

Then we see, as above, that H!: rR'rR' is continuous, n{<Wl;l(R'), ll,SäIll-:
IISä,ll-:llS4ll- for a.e. l€[0, 1] and H*<L\.". With (5.20) we also conclude t]rat

lH*(t, x)l = k(r)lxl(1 +los*lrl+loe*(rllrl))

for x(R', 0<t=1, with l!*p1at=*. By the above reasoning ä* generates a

unique continuous semiflow t!,x),0</=1, x€R'. We claim that rlt(t,n)€R'
for all l€[0, 1], xQR". Let x(R", and let s€(0, ll such that ry'(r, x)€R' for
0=r<s. Then by (5.21)

(5.22) lrl, U,x)l : lr* {, (u, fl) aul

x) I (1 * log *lrl, (u, x)l + log * (l,l (u, x)l-\) du

for O<r<s. Define r(t) to be the right-hand side of (5.22),0=r<s. Then n(l)<
k(t)r(t)(l+log z(r)) for a.e. 16[0,.r], and we get, as in the proof of Theorem 3.4,

!!k@1au=toe [(l +log z(s))/(l*log r(0))], which implies log lrl(s, x)l=
log z(s)= (t +log (1+ lxD) exp (!!tcg1n). This proves f (s, x)€R' for all s€[0, 1],

x€R".

t

I t,@)lt@,
0

I u* (u,

j
We know

thermore, {,
(5.23)

now that tr: R'*R' is a homeomorphism for every /€[0, l]. Fur-
is qc with

K(,1,) = exp (n ll S4ll ".ds) .

To see this, apply truncating lo H* and then apply Lemma 5.5. Note that the dila-
tation of rlr, in a neighbourhood of x€Ro depends only on the values of §fI, in a
neighbourhoodof {ry'(s,x): 0<s€/} in [0, 1]XR; see(2.3)andtheproof oflem-
ma 5.5. This reasoning proves (5.23).
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Because ä* generates r!(t,x), the flow generated by ä on R' is 0(l,x):
(Jor!roJ)(x). Define Q(t,x1:617,x)+tp(t,0) for x** and 0(t,x)**. Then
Q(0, x):a a16

ii!, i : 6Q, x)+rit(t,o) : H(t,0(t, x))+ F(t, EQ,o))
: F(t,0(t, x)+Eu, o) : r(r, QQ, x\)

for a.e. /([0, 1]. Therefore, q is a semiflow generated by F, and thus @:g by
uniqueness. Especially, e,@):0r(x)*tp,(O):(J orlr,ol)(x)+Er(0) for x€R'
suchthat (JorlrroJ)(x)€R'. Then <pr: R-F is qcand K(Er)--exp (r/ålSAl-a4
by (5.23).

lf E(t,0)(R' for some l([0, 1], we use factorization. For 0<t=1 and an
integer m>l we get, byuniqueness, et:gT oEf-'o ...oE!,, where Ef (x): Ek(1, x)
and qk(t,x) is the semiflow generated by

Fk(s, x) : {iull3;?,:J*, 
*r, 0 = s < tfm,

for all x€R'. By the existence of local solutions in R'(see [C-L, p.43]), we can
choose so large mthat gft(s,0)€R' for all 0--s<l and k:1,2,...,m. Thenby
the above result every gf is qc, and so is E,, and because

K(EI) =

ktl m

exp (n t llsr"ll ". dr) ,
(k-L)t/m

we get K(q,)=K(Eb...x(Eb=explnlills4ll-ds). The theorem is proved.

exp (n i Usrlll ". As) -

6. Operators §o and div

The method of proving Theorem 2.2 and Lemma 5.5

tions of operators Tf:(ll2)(ff+Df) and divf-.tr (Df)
some interest to see how operators So,

applies to linear combina-

as well. Therefore, it is of

s..f : + @f+ 571*atr (Df) I, a *

and div affect the generated mappings gt.
We deal first with ,So. It turns out that if we replace

Lemma 5.5, then again F generates a unique semiflow E
Lipschitz-mapping with the Lipschitz constant

1

)
n

,S with So, d,* -lln, in
and eti R'*R' is a bi-

(6.1) L(E,)
t

= exp (t.,, 
{

for all 0= t=1.

ilS.f,ildr) , +,,:lffil *r,
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We outline the proof of (6.1). Note first that if we consider §, ,Sn and T as linear

mappings from the space R'xn of real nXn'mattices into Rnx', then

2lt

(i)

(ii)

(iii)

(6.2)

(6.3)

Now, (i) and (ii) imply ll,SF,ll--2ll^S,f',ll and, therefore, Fand F" generate q and

E" and E",*E locally uniformly, as in the proof of Lemma 5'5. As in the proof of

Theorem 2.2, we get in the smooth case (llDrP)l\':(ll66,oElD'=2ll6d,llllrF,
19,(x))ll llDE)1, o=t<1, which implies llDE)l<exp (.1'oVr"\-at):t,; thus

L(E)=I, and (6.1) follows from (iii) in the smooth case. Because ElttE, locally

uniformly, we get (6.1) also in the non-smooth case.

For the operator div we get in the smooth case (apply the differentation formula

after (2.4) to (2.1))

det (DE,@)\ - div F,(v,(r)) det Dq,(x), det DEo(x) - l,

,S"^S" -,S,

llSM ll = 2llMll, M( Rn*n,

llrMll = (,ffi*,) ll s, Mll, a, *-tf n, M€Rnxn

JE,(x) - det DE, (x) = exp lldivr,ll".dr) , 0= t=1.
which irnplies

The non-smooth case does not follow immediately from (6.3) because, in general, F
cannot be recovered from div F (i.e. the differential equation div F:Q is underde-

termined) and there is no representation of type (5.2). Therefore, we have to restrict

ourselves to the functions P which have such a representation'

Let Y:(Yr, ..., 7,) with

({

- ,åqYi(x-Y)f(Y)'tY)"

(6.4)

Then every T i€G. For f: R,*R€II .rL* we forrn a vector valued Riesz potential

n

y x "f(x) - .Z (y'x f)(x)e,
i:L

for all x(R'. Then yxf: R"-Ro is continuous and 7 is the fundamental solution

for the operator div, i.e. (see e.g. [St, p. 125])

(6.5) div (y x f) : f for f€Ctr.

We want to extend (6.5) to a non-smooth case. We have

D,yi@): +-(ä;ilxl-'-nl xl-'-zxix), x * o,
@n-l
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and it is easy to see that

(6.6) (1) DtyiQx) : t-nDiy;(x), t > O, x # O, and

(2) 
,l,o,r,tl)d* 

: o

for all l=i,j<n. This means that Dry, is a Calderon-Zygmund kernel and defines
a singular integral operator f,i by

(6.7) (r,1h)(x): 14,._f=" D,y,(x-y)h(y)dy (limes in Ze)

for h: R"tR€Lp. Then f ii: Lp*Lp is a continuous linear operator for all
l<.p<.* [St, p. 39, Theorem 3]. Next we conclude, as in [lr, p. 84], that yixf€Wr'e
for all l<p=:* (i.e. it has distributional first order partial derivatives in Le) and

(6.8) D,(yi*.f): Iö,i.f-r,i(fl for f(LLaL*.

(Note that Lp=LlaL* for a1l 1=p=-.) Therefore, div(yx/):).DiQ,xf):
"f-Z,f t,(f). But ),,I-ri:0 because

å @,y,(x)): (tlo-,-r) j (ä,,lrl-,-nlxl-,-sxf) : 0.i:r ,:1

So we have proved:

6.9. Lemma. If f: Rn-R€LtnL*, then yxf: Rn*R" is continuous,belongs
tu Wr'e(R') for alt l<.p<.* anrl div(yxf):f.

We are now ready to prove the non-smooth form of (6.3). Recall that for a
homeomorphismf RnrR' the limit

uq!$!Y4: tt6),-o mlBn(x, r)t

exists for a.e- x(Rn and is called the Lebesgue derivative of f.lf f is differentiable
at x, then ll,(*)l:FÅx).

6.10. Theorem. Let q: [0, l]XR"-R be locally integrable and fiflS"llr+
IlS"ll-)ds=- (here g"(x):S(s, x)). Define F(t, x):1y xg,)(x), (r, x)([0, t]XR'.
Then F generates a continuous semiflow E such that tpr: R'*R' is a bi-absolutely
continuous homeomorphism with

Fr,(x) = er and trtr-,(x) < et with I : jlle,11-ds

for a.e. xQRn and for all O=t<|.
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Proof. Because F is measurable and the function y x g, is continuous for a.e.
l€[0, l], it is not difficult to see that for every x(R' the mapping t+yxgr(x),
/€[0, 1], is measurable. Let O"be a mollifier as in (5.4) for e >0, and F":Fx0"
(Theorem 4.3 shows that F is locally integrable). Here set Q,(x):0 for r([0, 1].

By Fubini's theorem F'(t,x):pa9":lyx (OxOJ(x). Therefore, we ciln proceed
in the same way as in the proof of Lemma 5.5. Let E" and E be the semiflows generated
by F" and F, respectively, and choose E"r*e locally uniformly as €;+Q. fhsn
rpr: R"*R" is a homeomorphism and Eir: Å'*Ä' is a diffeomorphism for which

(6.11)

(6.13)

J rr,(x) = ll e,ll* dr)
t+e.

e*p(/ 
L

= exp (i ll q, Il- dr)

by (6.3) because div F!:(qxfl)" and /åttte*4)"ll-ds=/å*"lls"ll-dr. Therefore,
the next lemma proves the theorem for E* and a similar reasoning applies to E;r.

6.12. Lemma. Let E,q1,: R"*R", k:1,2,..., be homeomorphisms such that
euery Ekis absolutely continuous and <po*rp locally uniformly as k**. If llltr.ll*=
M<* for euery k, then E is absolutely continuous and p*<M a.e. If, in addition,
p**-J a.e. as k**, then pr:J almost eueryv,here.

Proof. We first show that for any x€R' and r>0

m(qB"(r, .)) - J1g ru(ErB" (x, r)).

Herc m refers to the Lebesgue measure in R'. Fix x and r. Let r>e >0. Take so big
ko that e*Bn(x,r-e)cqB'(x,r)ccpoB"(x,r-le) for all A>ko. Then

lm(qB"(x, r))*ru(q*B,(r, d)l = mleo(B(*, r*e)\8,(x, .-u))]

r-c= lx:yl=r+e

as e*0. This proves (6.13). It follows that m(EB"(x,r))=Mm(n"{x,r)) for all
x and r, and it is easy to see that E is absolutely continuous. It also follows that
pr=M. lf pr.*1 almost everywhere as ,*-, then for an open ball ,B we get

m(EB) - lim m(eiB) : lim
,-+ oo l--+ oo

: 
{ 

rctm

by Lebesgue's dominated convergence theorem. This implies that p*:J a.e., and
the lemma is proved.

! u*,dnt
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7. Semiflow with prescribed Jacobian tleterminant

7.1. Theorem. Suppose that ../: R'*R is measurable, "r(x)>0 a'e' and

logl€LtaL*. Then there is g: [0, l]XR'*R'(LraL* such that F(t,x):
yxg,(x), (r, x)([0, 1]xR" generates a continuous semiflow E such that qr: R'*Rn
is a bi-absolutely continuous homeomorphism with

(7.2) FE,(x) = (,r(r)' for a.e. x(N,

for all 0</= l. If, in addition, J is continuous and

1^ s(r)dr d-, .fo, some 0< a<@
r

with s(r):sup {[r(x)-"r(y)l: lx-71= r], then tp, is a dffiomorphism and J*,(x):
(Y(r))' for all x€N, 0=t<1.

Proof. The theorem will be provedinthree steps. For the first and second steps

we suppose that J(C-,..I>0 and that log-/ has a compact support.

Step 1. Let 0<e<1. We start by constructing G: [0, 1] XR'*R' and a

unique semiflow ry' generated by G such that

G (s, x) : [y x (loe J or!;],)l (x), (s, x)€ [0, 1] X R'

i
0

(7.3)

(7 4) {lll"li:== li"J il,'.;: il, "äo= 
, = ,

Clearly (7.4) is true for O=s<e. Next assume that h", G" and r!"ate defined and

(7.4) is true for 0<s<t, and that h: 10, tTXRn*R' is measurable. By Theorem

6.10 the function ry'": R'*Rn is a bi-absolutely continuous homeomorphism and

Äp.=exp (ars) for 0<s</. For t<s=t+e we -qet ll/z"ll-:lllog"rll- and

llå"11, : I l$ost).{t-"}"ld*: / ltos Jl1t0.-.dx
Åi Rn

Define t,:idfor /<0. we prove that (7.3) defines G and ry' uniquely. Let /z(s, x):
(og.rorl,--1")(x). We show that

= exp (a) lllog "rllr.

So (7.a) is true for /<s<tf e. Define G" by (7.3) for l<.r</*e. Again Theorern

6.10 implies thatG"generates ry'" for 0<s< t+e in a unique way. This completes the

contruction of G and ry' so that (7.3) holds for 0<s<1. Denote G,{ by F" and E"

for e€(0, 1).
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By Q.$ Theorems 4.3,3.4 and 3.8 imply that (g")o="=, and (2")s=,=r, x"(t, x)-
(E)-'(x), are normal families. Choose subsequences such that e,*Q 6n6

(7.5) qptt - E:fl,llX,R' * Jtr and

t<"t * %i10, 1] X-R' * R'

locally uniformly as ,* -. We see that E and x arccontinuous, Q, ' :xr, and there-

fore Er: N*R" are homeomorphisms for 0<l=1. Define

(7 .6) F(t, x) : [y x (log J o tp;t)](x), (r, x)( [0, 1] X R'.

Because logJQCi, we see by (3.9) that there is a compact CcR' such that

(7.7) sptfiog Jo(Eir)-l]cC for all ti, 0 = I 
< 1.

Then also sptlogloE, lcC and logJoErL€LL^L*,0=r<1. Due to (7.5)

(7.7) and the representation

r'f'(x) : [i x(1og.ro (Ef-",)-l)] (x)

we see that F"t(t, x)- F(1, x) locally uniformly as ,* -. Therefore,

Also g",(/, x)*rp(t,x) as z*-, and thus we see that E is generated by F.

Step 2. We want to show that the above F is continuous and has DF,(x)
which is continuous in (1, x). If this is the case, lhen qr: R'*Ro is a diffeomorphism,

and by (6.2) and (7.6)

(d,etOE,@))' : div F,(E,(x))detOq,: [og JoE;t(E,(x))JdetAE, : log./(x) detDrp,

for all 0<l--1 with detDEo(x):|. Then integration yields

(7.8) detDtpr(x): Jr,(x): ettosl(x): (,I(x)', 0< t=1.
The continuity of F is easy to see, and we prove only the existence and conti-

nuity of DFr(x). By Theorem 3.8 q;L(x) is continuous in (1, x) and

(7.9) lE;'@r)-E;'(xJl = clxr-xrl" for lx'-xrl= B,

where c<-,a, fr=0 depend only on lllog-rlll and lllog.r;1-. Write F:(Fr, ..., Fn),

and the formulas (7.6) and (6.8) imply that D,,Fi(t, x):n-t$..g,(x)-(i-;rg,)(x)
with g,(x): (logJoErr(x)). thus we only need to show that .l-,;(sJ(x) is con-

tinuous in (r,x). We have frjg,:1im"*of"(SJ (imes in Ip, l<p<-) with

4(gJ(x): f o,y,(*-y)s,O)dy, x(R'.
l* -Il="

We show that T"(g)(x) is continuous in (r, x) and T"(S)@) converges uniformly
in (r, x) as e*0. Clearly this yields the continuity of f ,,gr(x) in (t, x).

E"(t,x): x+ { ,"(s, g"(r,r)) ds -'x+ { r(t,g(s, x))ds as f **.
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Let 0<6<q<- and write

T"s,(x): f o,y,(*-»s,(y)dy+ f Diyi@-y)g,(y)dy.
6=g!yl=o e=li-y1

It is obvious that the first integral above is continuous in (1, x). For the second one

we get by (6.6) and Theorem 6.10

,=,!- rlD'v 
i @ - v)ll s' o)l dv = # J los r o E ;L (v)l d v

: 3 JlogJ(x)lpr,(x)dx =r'.rrrroerrr-llloe"rllr4 
* o

äs Q+o and uniformly in (l,x). This proves the continuity of (f g)(x) in (r,x).
We still have to show that lT",g r(x) - T",S r@)l :l{ 

",=1,1=", 
D I i @ - l) S lil dyl* O

as O<er<er*Q uniformly in (r,x). Because logl(Cf,,
a1

(7.10) 
{ ; t{r)d, -*, for all § <. s <. *,

with s(r):sgp {llog"r(x)-loyJ(y)l: lx-yl=r}. We get by (6.6)

I 

",=,, {, = ",, 
it i (x - t ) tt(v) d vl : 

I "l' 
t, I,o,, i ? v) s, (x * r v) d v) r' -' drl

e2: l.l" (rl o",t»lg'(x-rv)- g'(x)|dt)r-'drl
€1

=,i' r!,+l(los,D 
(e;' (x - r y)) -(log .r) (E,- I (x) )ld ydr

< cij@n-r i'' l rrrr'ror : ciie)n-1d.-' i' L s(u)du * o
rt 

""7

as O<er<ez*0 due to (7.10). This completes the proof of Step 2'

Step 3. Here we deal with the general "I satisfying the assumptions of the theo-

rem. Because logJ(LLoL* we have J-l67tn1- (because llog"r(x)l>
e-tttocrtl*lJ(x)-11 a.e.). For any e>0 define

J": l*l(J-t)74)x0",

where x" is the characteristic function of B'(l/e) and 0, is a mollifier in Ao as in (5.4).

Then ./">0 and

(7.11) 10 log ,I"( C6- (R'),

20 lllog "r"ll- = lllog "r[-, lllog.r"ll' < e2rrrocrrr-Jllog "Illr,
30 J"*J a.e. as e*0.
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Thbn by Steps 1 and 2 there is F" which generates g" such that

(7.12) F'(t,x): [yx(log,r"o(9f)-1)](x)

and Ei: .R'*R' is a homeomorphism with

(7.t3) tri@):1J"1x))" x€R, o=r=1.
This implies by 20 of (7.1,1)

(7.t4) lllog "I" o (Ef)-'ll, = exp(3lllog,rll-)lllog "rll' and

lllog "/" o (Ef )-'ll- = lllog ,ril -.
By (7.12), (7.14) and Theorems 3.4, 3.8 and 4.3 we see that (Ei)"=s ana ((ei)-')"-o
form normal families and we can choose subsequences such that e,- 0 and

(7.15) q\(t, x) * E(t, x) and (E?')-'(x) * x(t, x)

locally uniformly in [0, UXR' as z*-. Therefore, E and x are continuous,

Er: R"*N is a homeomorphism and gr-'(x):ti(t,x). Furthermore, by parts 20

and 30 of (7.11), (7.13) and Lemma 6.12 we see that g, is absolutely continuous and

F*"(x):(l(r))' for a.e. x(R' and all O<t=l. This proves (7.2). Define

F(t, x): (7 x r)(x)
with g(r, x):(logJoE;)(r), (r,x)([0, l]XR'. We want to show that rp is gener-

ated by F and g satisfies the claims of the theorem.
We first show that for any (t,x)([0, l]XR'

(7.16) F(t, x): lim F€r(/, rc).

Let 0<rr<r2<.o vv1fl Bi:B"(x,ri), i:1,2.. Write F"':(Fi',..., Fi') and get

Ff,(t,x): .f n@-t)flog.Iq "(E])''l})ay: ( fi+( /)*( I )aX 'nl' 'r,l.B, 'R"\B;

It is not difficult to see that the integrals ! u, and .["\r, tend to 0 uniformly in e,

as h+0 and rr*-. For the middle integral we get

(7.t7) Ii: [: I yo(x-qi,O))[og.r",(y)](t",(y))'cly.
aNB, t,r!r)-rtrrr.ar)

Note that in the integral lx-Ei'Q)l="'. By (3.9) we see that (Ei';-t(Br\B) is

contained in a compact set C which is independent of i. On the other hand, for a

fixed rr, the integrand on the right-hand side of (7.17) is uniformly bounded and

tends to y(*-E,0))llogJ(y)lJ(y)' for a.e. y(R" as i*-. Then Lebesgue's

dominated convergence theorem yields

[gr, : I yo(x-E,O))(rog,r0))(,r1))'rtv : [ "to(x- i(tos J oq;L)(v)dv.
o.-'{rr1a; Br\B,
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Furthermore, the last integral above tends to Fo(t,x) as rr*g and rr*-. JHg
proves (7.16).

It follows that F is measurable, and then also BU, x1:1sgt(Or'@)):div F,(x)
is measurable in [0, l]XR'. Because lllog.rog,-rllr=ll/'il- lllog"rlll<
exp (lllog"rll-)lllog"rllr<-, g€ar([0, 1]XR'). Also llg,Jl---lllog"rll- because rp,

is absolutely continuous. Next we show that E is generated by F. We have

where we write F",(s, e",(s, x)):p',(t,E(t, x))+F',(s, rp"'(s, x))-F"'(s, g(s, x)).
Here F",(s, E(s, x)*F(r, E(r, x)) boundedly as r*-, and Theorem 4.3 with
(7.14) implies that lF",("r, E",(s, x))-F",(s, E(r, r))l=exp (3ar)(a1*ar)hfE"'(r, x)-
g(s,x)l*g uniformly in s as i*-, where ar:lllog/ ll, and ar:llloglll- and
h(u):s71+log+ u-t), u>O . Therefore, we obtain

for all 0=t=1, x€R". Thus E is generated by F.
Finally, we suppose that J satisfies the regularity condition [ielissglar-=*

for some 0<.a<.*. Because llog.r(x+y)-log"r(x)l=exp fllog.rll*lJ(x+y)-J(x)1,
we can prove that <pr: R"*Rn is a diffeomorphism and J*,(x):(l(r))' precisely
the same way as in Step 2. This completes the proof of the entire theorem.
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