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QUASICONFORMAL SEMIFLOWS

JUKKA SARVAS

1. Introduction

Let R" be the n-dimensional euclidean space n=2, and let F: [0, ]]XR">R"
be a function such that the differential equation

(1.0 o) = Fi, o), o0 =2 [here o) =22 ()

has a unique solution in [0, 1] for every initial value x€R". Let ¢(f, x), 0=t=1,
denote this solution for x€R". The mapping (¢, x)—@(t, x), (¢, x)€[0, 11X R",
is called a semiflow generated by F.

Write F,(x)=F(t,x) and ¢,(x)=¢(t, x). If F is continuous, bounded and
|SF,|.=k=<o for all t€[0,1], then F generates a semiflow ¢ such that the
mappings ¢,: R"—R" are quasiconformal, abbreviated qc, with maximal dilatation

(1.2) K(p)=e™* for 0=t=1.

Here S is a differential operator defined by Ahlfors as follows: If f: R"—~R" has
first order partial derivatives D;f(x), i=1,2, ..., n, at x and Df(x) is its Jacobian
matrix at x (i.e. the nXn-matrix with column vectors D;f(x)), then

/) = - (Df )+ D) - (D)L,

where l/)}(j) is the transpose and tr (Df(x)) the trace of Df(x) and / is the identity
matrix. Results of type (1.2) are proved by Ahlfors [4;], Reimann [R,] and Semenov
[Se].

The result (1.2) raises the following question: If f: R"—~R" is qc, is there a qc
semiflow ¢: [0, 1]XR"~R" of the above type such that f=¢,? Actually, this is
the case if n=2, see [G—R]. For n=3 the question is still open.

The purpose of the first part of this paper is to enlarge the class of qc semiflows
to cover the case where F need not be continuous and || S F,|| ., not uniformly bounded.
One aim of this generalization is to provide a larger and more flexible class of semi-
flows in which to consider the above open question. We shall prove the following
result. Suppose that
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(1) F: [0,1]XR">R" is locally integrable and
(i1) for almost every 7€[0, 1] the mapping F,: R"—R" is continuous and in
Wie(R"), and [ |SE,| .. di<eo.
(ii)) If n=2, we also assume that lim .. [x|73|F(x)|=0 for almost every
t€[0, 1].

Then F generates a semiflow ¢:[0, 11X R"~R" such that ¢,: R">R" is qc with
K(p)=exp (n [{|SFl.ds) for all 1€[0,1]. Here Wj;;(R") refers to the Sobolev
space of mappings f: R"—R" which have locally integrable distributional first
order partial derivatives D,f, i=1,2, ..., n. The space R" is the one point compacti-
fication of R". In the special case F(z, x)=f(x) with f: R">R" this result also im-
proves [A4,, p. 9], where a stronger growth condition than (iii) was required for all
n=2.

The method of proving the above result applies to other operators than S, too.

In the second part of this paper (Chapters 6 and 7) operators S, f- =(1/2)(Df+1;)+
atr (D), a —1/n, and div f=tr (Df) will be studied; the S, operators lead to
’Lipschitz semiflows’ and the div operator to semiflows ¢ with a bounded Jacobian
determinant J,, . The case of div is interesting because the generating process of the
corresponding semiflow can be reversed. In fact, making use of the possibility to
express the fundamental solution of the differential equation divf=u in terms of
Riesz potentials, we will prove that for any measurable ¢: R"—>R* with log o€
L*NL™ there is a semiflow ¢ such that the Lebesgue (volume) derivative of o,
equals (g(x))' for a.e. x€R". Related results are proved by Riemann [R,] for a con-
tinuous ¢ and by Moser [M] for a smooth ¢; however, their methods differ from the
method used here.

Notation. For an nXn-matrix A we use the sup-norm [ 4| =sup,j_|4x],
x€R". For a measurable function f: D—~R"™, DCR", we write f€L?(D), 1=p<-oo,
if the L?-norm || f|,=([p|/|"dm)"? is bounded; for p=co we write fcL™(D) if
| fllo=ess sup,cp|f(x)|<e-. Often we abbreviate L¥(D)=L"?. We write fcC! or
JECT if fhas continuous partial derivatives of first order or of all orders, respectively.
The notation f€Cy means that fEC™ and f has a compact support in its open do-
main of definition.

2. Smooth gc semiftows

Suppose that F:[0, I]XR"—~R" is continuous and generates the semiflow
¢: [0, I]X R"—~R". If the derivative DF,(x) exists everywhere and it is continuous
in (¢, x), then ¢ is unique and (see, for instance, [C—L])

2.1) @, R" - R" is diffeomorphism and

(D¢, (%)) = DF(¢,(x))Dp(x) for 0=¢=1, and
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for all x€R". The next theorem shows how SF,(x) affects K(¢,). Let D, D’CR"
be domains. Recall that the maximal dilatation K(f) is defined for a diffeomorphism
i D~D" by K(f)=max {K;(f), Ko(f)} with Ko(f)=sup,epKy(x,f), Ko(,f)=
IDf(x)II"/|det Df(x)], and K (f)=K,(f™1).

2.2. Theorem. If ¢ is as above, then
t
(2.3) Ky(x, ) = exp (n f HSFS((pS(x)Hds), 0=tr=1, x€R",
0

and K(p,)=exp (n [ a(s)ds) with a(s)=sup,¢gn [|SF,(x)].

Proof. (Ahlfors’s method). Write ®(1)=Dg,(x) and X(¢)=(det di(t))'l/"tb(t).
Then K,(x, 9)=[X(®)|" By (2.1)
2.9 (1) =ANP(), D0) =1 with A = DF,(¢,(x)).

We apply the formula (det M(¢))-=(det M(t)) tr [M(t)~"2 M(t)] were M({)
is a differentiable matrix-valued function with det M (¢)0. After differentation we
get (note that det ®(r)#0)

Xy = [A (t)~%tr(A G)4 ] X, t€[0,1].

By transposing this equation we get 5?(7)'=%) [2(7)-(1/n) tr (4(1))1], 0=r=1.
Therefore

2.5) XOXO = XOXO+XDOX @)
= X0 [A (t)+227)~—fl-tr(A (t))I] X(0) = 2X() SF,(,(3))X(1), 0=1=1.
Note that |M|>=||MM]| and ||M|=||M| for any matrix M. We get

IxXOI = (1XHXOI) = I(XDXO)]
= 2|X(SF(p.(0) X0 = 2| SE(e: NI X DI,
for a.e. t€[0,1]. This implies

2\
(log | X @) = % = 2SE(p()l. for ae. €[, 1],

and integration yields (2.3). From that we get K,(¢,)=exp (n[; a(s)ds) with a(s)

as in the theorem.

It is easy to see that for any #€[0, 1] the function ¥ (s, y)=¢(t—s, Xx), y=¢,(x),
is the solution of (s, y)=—F(t—s,¥(s,»), ¥(0,y)=y, for all 0=s=¢ and
YER". Because ¥,(y)=¢(0, x)=x for y=¢,(x), we have ¥,=¢; . Apply the
above result to Y, and get Ky(Y,)=exp (n[,a(s)ds)=K. Thus K(p)=
max {Ko(@,): Ko(o; )} =K.
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3. Non-smooth semiflow

In this chapter we relax the assumptions on F and show that it still generates a
unique semiflow ¢ such that ¢,: R"~R" is a homeomorphism with certain equi-
continuity properties which are important for our later constructions. Suppose that
F: [0, 11X R">R" is measurable and

(3.1) (i) for all x€R" the function #—F(t,x) is measurable,
(ii) for a.e. r€[0, 1] we have: |F(f, x)|=a(z) for all x€R", and |F(t, x;)—

F(1, xy)|=a(1)

X=Xy (l+log+ ] for all x, x,€R" with a: [0, 1]~ RELL

|2, — X,
Here log* u=0 if O<u=1 and logt u=logu if u=1. Then (see [C—L, Chapter
2)) the initial value problem

3.2) (1) = F(t, p(1)) for a.e. 1€[0,1], and ¢(t) =x,

has an absolutely continuous solution ¢: [0, 1]-R" for any 7,€[0, 1] and x€R".
Write (t,, 1, x) t€[0, 1], for this solution, i.e.

(3.3) Wty 1, x) = x+ [ F(s, ¥ (1o, 5, %)ds, 1€[0, 1],

which is the equivalent integral form of (3.2) (for absolutely continuous solutions).
If 7,=0, we again write ¥ (0, #, x)=¢(t, x)=¢,(x). With these notations and the
assumptions (3.1) we get two theorems.

34. Theorem. For t,1,€[0,1] and x;, x,€R"

t 1

(3.5 lo(ty, x)—x,| = fla(t)dté fa(z)dr:], and

3.6) ot XD = (12, 3] = willv x| [ a(0d],

where wy: [0, )—[0, o) Is an increasing function depending only on I such that if
O=r=exp (1—e")=a then wy(r)=ar™*".

Proof. The formula (3.5) follows directly from (3.1) and"(3.3). To prove (3.6)
suppose first that #;=1,=¢€[0, 1]. We may suppose x;#x,. Let a(t)=|p(t, x;)—
o(t, x5)|, 1€[0, 1]. Then by (3.1)

(3.7 o(f) = lxl—xz-}— f [E(s, @(s, x1)—F(s, @ (s, xz))]dsl

= ]xl—x2|+fa(s)h(a(s))ds
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with h(u)=u(l1 +log* 1/u) ,u=0. Next we employ a standard differential inequality
technique. Define

T(f) = |x;— x|+ fa(s)h(a(s))ds

for €[0, 1]. Then 7 is absolutely continuous and t(t)=a(t)h(o(t))=a()h(z(?))
for a.e. #€[0, 1] by (3.7) and because A is increasing. This implies ()/h(z(¢))=a(?),
and integrating yields (the change of variable in the integral is possible because 7 is
increasing and absolutely continuous)

t t . (1)
= of a(s)ds = Ji—‘&(i—i»ds = t(ﬁ)/ hd(ss) = G(t (1)~ G(Ix1—x2)),

where G: (0, =)— (0, =) is the increasing homeomorphism

G(u):f“__‘?s__ —log[log%] if 0<u=1,
R logu if 1=u.

Therefore, o(1)=1t(t)|=G (G (jx1—xz])+1)=w;(]x;—x;|) for all 7€[0,1]. This
gives (3.6) for t=t,=t. If 1,=1,, we get by (3.1)

lp(ty, x)—@(fa, xz)] = 1‘/’([1, x)—@(t, xz)l'l' f2 IF(S, (s, xz))EdS

1

>

= e | [ atar

which proves the theorem.

3.8. Theorem. The above ¢ is the unique semiflow generated by F, and the map-
pings ¢,: R">R", 0=t=1, are homeomorphisms such that

1

(3.9) o7 () —x = [ a(dr,

0

(3.10) 0 (0 — 0 )l = wi (=l +| [ ()]

for all ty, ,€[0,1] and x,,x,€R". Here wy is as in Theorem 3.4.

Proof. Theorem 3.4 implies that the solutions of (3.3) are unique for #,=0
for any x€R", and also that the function x—¢,(x)=y/(0, , x), x€ R", is continuous.

To apply Theorem 3.4 to Y (%,, 7, x) of (3.3), note that for any #,£[0, 1] the solu-
tion of the initial value problem

(3.11) 0(s, ) = x— [ Flto—u, 0(u, x))du, 0=s5 =1,
0
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is given by 0(s, x)=vy (1), t,—s, x). Theorem 3.4 applies to 0(s, x) and we get
(312) Wty t, x) =V (1, ¢, x9)| = 10(to—1, x)—0(t,—1, X9)| = wi(|x;— X))

forall 0=t=ty=1. We see that the solution of (3.3) in unique for ¢€ [0, #,], and the
assignment x—/(t, 0, x), x€R", defines a continuous mapping. Due to the uni-
queness, it is easy to see that ¢;,: R">R" has an inverse mapping which is given by
P, ") =¥ (%, 0,»), y€R", and thus ¢;;: R">R" is a homeomorphism for all
t,€[0, 1]. The inequality (3.9) follows immediately from (3.3) and (3.1). To prove
(3.10) note that by uniqueness V/(t,, 0, X) =y (t;, 0, Y/ (5, #;, X)) for all 0=t,=1,=1,
XER", and using (3.12) and (3.1) we get

lo5t (x) =05  (X)| = [ (81, 0, x)— Y (15, 0, x)|
= M(tb 0, xl)_‘//(fb 0, ¥ (s 1y, xz)) = WI(!xl_l//(tm Iy, xz)[)

= w (le—xz— le(s, W (ty, s, xz))dsl) =w ([xl—x2|+l f2a(t)dt|).

23

This proves the theorem.
4. Potentials

A large class of functions which satisfy conditions (3.1) are obtained by formation
of potentials with (1 —n)-homogeneous kernels.

4.1. Definition. Let G be the set of all (kernel) functions g with the properties
) g:R"™\{0} ~ ReCY,
(i) gltx) =1""g(x) for all ¢=0, x3=0.
4.2. Lemma. If g€G, x,z, €R" and O<|z|=|x|/2, then
lg(x+2)—g(x)| = dlz||x|=" with d= max{|Dg(y)|:1/2 = |y| = 3/2} <<.
Proof. We have |[g(x+2)—g(x)|=|x["""|g(]x|"2x+|x|"2z)—g(]x|~1x). Here

12=|(]x| 7%+ |x|~'2)|=3/2 because |lx|='z|=1/2. Use the mean value theorem
and the lemma follows.

4.3. Theorem. Suppose that gcG,
(i) fiR" -~ ReL' A L=,

(ii) Fx) = (g*)®) = [gx—»)f()dy, xcR', ie. Fis
Rn

the g-potential of f.
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Then the convolution integral defining F converges absolutely and

4.4 IFG)| = a(IfIi+1f1<), x€R", and

@9 P Fe)| = el 11—l (1-+10g L)

for all xy, x,€R", with ¢, cs<oo depending only on g and n.
Proof. Note that |g(z)|=lz|""g(]z|"12)=c|z|"™" for z#0 with
c=max),_{|g(y)|<e. We get for any x€R"

IF(x)I—Ifg(x NfWdy| = e /l If(yi?,‘ -dy

”f||°° dy+ec f |f(y){dy = c(co,,_lllflloo+||f”1),

Ix__yln |x—y|>1
where ®,_,=m,_,S""", which proves (4.4). To prove (4.5) let z=x;—x,70. Then

(use change of variable x=x,—y below)
— =8 (=) f)dy|

= R[Ig(xl—y)—g(xz—y)llf(y)ldy = [|g(x+z)_g(x)|;f(x2_x)ldx

[ e+ —g@)fCe—x)ldx+ [ [g(Gc+2)—g(®)||f(ra—x)ldx,

[x|=ry

|x|=rg

where ro=max {1, 2|z|} (then ry/|z|=2). Call the integrals on the last line above
I, and I,. We first estimate /; (below use change of variable u=x/|z|):

- _ nfuo° Xz (x
11—|x|_<=/;0lg(x+z) g fllwdx = |z|"= 1| ]f (|Z|+|Zl] g(|zi) dx
e -
= 1l g(“m] g (u)| du

[u]=ry/|2!

du+

2=(u|=rg/|z|

du]

g[”ﬂizl) —g(u)

—g(w)

= fll«l2| glut
Lk

t I)
=fl-lz[2 [ lg@ldut+ [ dul=du],
lu|=3 2=u|=ry/|z|
where we have used Lemma 4.2 in the last inequality. Because g is (1 —#»)-homo-
geneous, [, =3l gw)|du=c' <. We also get

"o ) = co,,_,logtél—.

ul™"du= w,_,lo (_
|u] 1108 SIE]

2=|ul=ry/|z|
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Therefore, I,=||f]|.|z|(2¢"+dw,_, log *(1/|z])). Next we estimate /,. Note that
lg(x+2z)—g(x)|=d|z| |x|~" in I, by Lemma 4.2, and note that |x|~"=1 in I, be-
cause |x|=ry=1. We get

= Sl =gl fe—ldx = dlz| [1fe-0ldx = diz|Ifls.

]x!>r

Combine the above estimates and get |F(x;)—F(xy)|=L+1,=
max {2¢/, dw,_, d} (| f+1f)(1+1og* (1/|z])) |z]. This proves the theorem.

5. Non-smooth quasiconformal semiflow
In this chapter Ahlfors’s formula for recovering f from Sf plays a crucial role.
We need it in the following form:

5.1. Lemma. If f: R">R'¢Wt(R"), SfELnL™, [ is continuous and
f(xX)=0 as |x|-co, then for all xcR"

52) 0= Z( [ 2 He-nsn,00)e.

Here ey, ..., e, is the standard basis of R", c¢,=n/(2(n—1w,_,) and
Pi 0 =[x 7" ax;+0 =8 x) —(n+2) x| 7" Pxyx . where 5,;=0  if iz
and 6;;=1 if i=j.
Proof. Let f=(fi, ....f,). By Ahlfors [4;, p. 80]
(5.3)

L@ =c [ IHE—»Sy0dy—c, [ DE-» ol (l x[]dy

B"(x, ntJ sn-T(x,r)

for any r>0. Here y*(x—y) is the linear map R"—~R" with matrix (i (x=»).
and the dot (- ) refers to the scalar product in R". Let /;(r) and I,(r) be the integrals
above. Because yf-‘jEG and (Sf);;€L*nL” for all 7,/, we get as in Theorem 4.3

L)~ [ IhG=y(Ny()dy as 1o,

Rn i, J

and the integral over R" converges absolutely. If r=1, we get

B =¢e, [ S lf0dy = [ femldy,

S"*l(x, r) Sn-1(x,1)

where c’:max]x]=1||y"(x)]|. Because |f(x)|—~0 as |x|->oo, then I,(r)—~0 as
r—0. Therefore (5.3) yields (5.2) as r—<, and the lemma is proved.
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In the next lemma we need mollifiers. Let §: RXR"—R" be a C*-function such
that

i) Ow,v) =0 and O(w,v) =0 for |(u,v) =1
(ii) [ 0@, v)d(u,v) = 1.
RXR™
Define
(5.4 0,(u,v) = e " 10(e u, e~ ), for all &=0.

Then [f%0.C™ with (f*0,)(z, x)=fR><R,. Sft—u, x—v)0,(u, v)d(u,v) for any
function f which is locally integrable in RXR".

5.5. Lemma. Suppose that

(i) F: [0, ]XR">R" is locally in L* and (recall F,(x)=F(t,x))

(i) for almost every t€[0,1] the function F,: R"-~R" is continuous,
lim, ... F(x)=0, FEWi(R") and [la(t)dt<oo with a(t)=||SF,,+|SF...
Then F generates a unique continuous semiflow ¢: [0, 11X R">R" such that ¢,:
R'—~R" is gc with

t
(5.6) K(p)=expn( [ |SF~ds) forall 0=r=1
0

Proof. Let F'=Fx0, for ¢>0 (set F(z,x)=0 if #¢[O0, 11). Write SF(1, x)
for SF,(x). By Lemma 5.1 and Fubini’s theorem we get (write F=(Fy, ..., F,))

67 Ftx= [ F@—ux—0)0,(u v)d(u,v)

RXRn
= [ (& [ ZO0)SF—u, x—v—3));;dy)0,(u, v)d (u, v)
RXRn Rn L J
= [ I ([ (SFa—u, x=v—Y));0,(. v)d (u, v)) dy
Rn 1, J RXRn»

= C,, Z V?,*((SF* Bs)ij)t (x)

Let af(t)=|/((SF*0,);))|[s+ || (SF*©,),;)]
all 1=/, j=n

.+ t€[0.1]. It is easy to see that for
1 1
(5.8) fafj(t)dré‘ _/a(r)dt (see the assumption (ii)),
0 0

Iy
(5.9) | f afj(t)dt| =6(l,—1,) for all 1, 5,€[0, 1],
t'.l
where 0:[0, I]-R is an increasing function with lim,_ ,d(s)=0 so that
Iy
| [ a@di| = s(lt—1])
tl

for 1, 1,€[0, 1] (such & exists because a€L[0, 1]).
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Now, Theorem 4.3 and (5.7) imply
|[F{(x)| = ¢’ 3] aj;j(1) (here ¢’ <<= depends only on n),
iJ

(5.10)

B ) = Fylova)| = ¢ (2l (0) by — [1 +10g+|71_'x—2|)

for t€[0, 1] and x, x;, x,€ R". Then Theorem 3.4 with (5.8) and (5.9) yields that F*
generates a semiflow ¢° with

1

o' (t, ) —x| = ¢, [a(ddi =1 and
l@*(t1, x1)— @°(ty, x5)| = 02(W1(|x1"x2f)+5(ifl—lzl))

for all ¢, 1, £€[0,1] and x, x;, x,€R", where constants c;, c,<e<= only depend
on n. By Ascoli’s theorem (¢°),., form a normal family and, therefore, there is a
continuous function ¢: [0, I]XR">R" and a subsequence (¢*) with &-0 as
i—~< such that ¢%—¢ locally uniformly in [0, I]XR" as i—co.

We want to show that ¢ is a semiflow generated by F, i.e.

(5.11)

(5.12) o(t, X) =x+/F(S, @(s, x))ds for t€[0, 1], x€R".
0

Since @i(t, x)=x+ [ F*(s, ¢%i(s,x))ds and ¢®%-—>¢ as i—cs, we only need to
prove that ‘

(5.13) I = |ij(s, (s, x))ds—fthi(s, @5 (s, x))dsl -0

as I—eo. Applying Lemma 5.1 and Theorem 4.3 we get for a.e. 7€[0, 1]

{lE(x)! =c"a(t),
|F () — F,(x9)] = ¢”a () h(|x;—x,))

for all x;, x,€R" with h(u)=u(1+log* (1/u)), u=0. We get

(5.14)

(515) I, =| f [ [ (G, 0(s, )= F(s—u, (s, X)—0))0,,(u, v)d (u, v)] ds|
0 R+l

= [ [f [E(s, (s, X)) — F(s— 1, ¢ (s—u, x))|ds) 6, (u, v) d (u, v)

Rn+1

t

+ f (f |F(s—u, ¢ (s—u, x))— F(s—u, ¢ (s, x)—v)lds) 0,,(u, v)d (u, v).

Br+li(e,) 0
Let the integrals on the right-hand side of (5.15) be /] and I;. By (5.14) we get

I = f (f c"a(s—wh(jo(s—u, x)—@=(s, x)—vl)ds] 0., (u, v)d (u, v).
Rr+l(e) 0
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Here h(lp(s—u, x)—¢"(s,x)—v|)>~0 uniformly as i—< because then &0,
u,v—~0 and ¢‘—¢ locally uniformly. Because acL!, I/ ~0 as i—o. To estimate
I write G(r)=F(r, ¢(r, x)), r€R (recall F(t, »)=0 if 14[0, 1]). Then GeL'(R)
by (5.14) (the measurability is not difficult to prove). Because G¢L! there is an in-
creasing function 6g: [0, «)>R such that [} |G(s—u)—G(s)|ds=d5(|u])~0 as
[u|~0 for all r€[0,1]. We get

t

= [ ([16©)—Gs—wl|ds)o,(u, v)d(u,v)

Bn+1(5i) 0
= [ S6(udb.(uv)d(w, v) = 66e) [ 0,d(u,v)
Br+i(e) Br+l(e)

=05(¢) -0 as i -—oo.

We have shown that /,~0 as i—<o, and therefore ¢ is generated by F (it is not
difficult to see that (i) and (ii) of (5.5) imply (i) of (3.1)). From (5.14) and Theorem
3.8 it follows that ¢ is unique and ¢,: R"-~R" are homeomorphims for all #€[0, 1].
Finally, we prove (5.6). Fix 7€[0, 1. We know that ¢fi—¢, locally uniformly in
R". By Theorem 2.2 we have

K(pi) = exp(n [ ISF|.ds).

Because D, (F#0,)=(D, F)*0,, we have SFg=((SF)x* 0. )s» and therefore it
is easy to see that lim sup;.., [(|SFyl..ds= [}|ISF,|..ds. By a well-known limit
theorem for qc-mappings ¢, is qcand K(¢,)=liminf;_ .. K(¢f)=exp (nfy ISF . ds).
The theorem is proved.

Next we prove our main result on qc semiflows. We consider R"=R"Uc as
a smooth manifold with local coordinates x—~x for x€R", and x—J(x)éR" for
x€R™ {0}, where J is the reflection in S"7%, ie. J(x)=x/|x]>, x=O0. Suppose that
a vector field F on R" is given in local coordinates by functions f(x), x¢R", and
F*(J(x)), x€R™{0}. Then by the usual transformation formula for contravariant
vectors [4,, p. 8]

(.17) F O = DI M VB)) = YE(I-200))/ (),

y#0, where Q(y) is the matrix (Q(»));;=|y|72y:y;, 1=i,j=n. Furthermore, a
function ¢:[a, b]>R" is the solution of the differential equation ¢()=F (o(2))
it ¢()=f(p(1)) for @(DER" and (Jog)(t)=f*(Jop(n) for ¢(1)eR™ {0}.
Especially, if ¢ ()0, =, then ¢(1)=f(¢(¢)) ifand only if (o) (t)=f*(Jop(1)).

Consider a continuous function f: R"—~R" as a vector field on R". Suppose
that f can be extended continuously to R" asa vector field, i.e. there exists
lim, ., f*(x)€R" for f* defined by (5.17), and suppose that f generates a unique flow
¢(t,x), 0=r=1, x€R", on R". Then f* generates the flow Y (7, x), and we have
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Yi(x)=J op,o0J(x) for (¢, x) with ¢,0J(x)7#e. Similar remarks are valid for
semiflows on R".
We are now ready to prove our main result for qc semiflows.

5.18. Theorem. Suppose that F: [0,1]1XR"~R" is locally integrable in
[0, 11X R" and for a.e. t€[0, 1] the function F,: R"—R" is continuous and in Wit (R")
and [{|SF|ledt<e. If n=2, we also assume that limy, . o |x] 73| F,(x)| =0 for
a.e. t€[0,1]. Then F generates a unique semiflow ¢(t, x), 0=t=1, x€R", such that

¢,: R">R" is quasiconformal with
t
K (p) = exp(n JISF.ds) for 0=1=1.
0

Proof. We first show that for every x,€R", ro=1,

1

(5.19) [ sup |F(x)|di <.

0 |x—xg=r,
Clearly it suffices to prove (5.19) for ro=1. Let #€[0, 1] such that F, is continuous
and |SF,.<<. Then by (5.3) we get for every x€B"(x,, 1)

|E,(3)| = I SE)wm,B"(x, ) +epr=+t [ [F(y)dm, ()

sn-i(x,r)

for r=0. By Fubini’s theorem choose r€[l,2] such that

EWdm, () = [ [EOdm,0 = [ [E@ldm, ).
Sn-1(x, r) 1=|y—x/=2 Br(x,, 3)
Thus we get
[ sup_ IE@ldi= [ ¢ (ISFl-+ ( [ IEG)dy) <=
) x—xg|=1 0 Bn(x, 3)

because [g[SFy|..di<= and F is locally integrable in [0, I]XR". Here ¢'<o°
only depends on n. This proves (5.19).

The inequality (5.19) enables us to apply truncating to F. Let x,€R" and
YeCT (B"(xy)) with y(x)=1 for |[x—x,|=1/2. Then for ae. €[0,1] we get
IS (W F) () =2n|Dy (x)| |Fo(x)| + W ()| [SF,(x)]| fora.e. x€B"(x,, 1), whichimplies
by (5.19) that f(l) |S(YF,)||.dt<oo. Therefore, we may apply Lemma 5.5 to yF
and conclude that F locally generates a unique semiflow.

Next we consider the semiflow generated by F in a neighborhood of «. We
define the reflection F* of Fin §" by (5.17): F*(t, »)=|y|*(I—20(»))F(t, y/|y?)s
y#0. Let ¢€[0,1] such that F, is continuous and |[SF,|.<<. Then
ess sup, ol SF; (Ml =IISFll. by [41, (1.8)], and limy _olx| [F7(x)|=0 by assump-
tion if n=2 and by [Sa, Theorem 3.15] if n=3. By [Sa, Lemma 3.2] then F; has
a continuous extension to R" such that FfeWpi(R"), and so || SF¥|w=|SF,|ee.
Applying (5.19) and the representation (5.3) we see that F* is locally integrable in
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[0, 1]X R". Now, the above truncating method applies to F*, and we see that F*
generates a unique semiflow locally. This means that we can extend F to [0, 1]XR"
such that F, is a continuous vector field on R" for a.e. €[0, 1] and F generates a
unique semiflow on R” locally. Because R" is a compact manifold without boundary,
F generates a unique global semiflow ¢(7, x), 0=7=1, x€R". The local uniqueness
also implies, by the usual reasoning, that mappings ¢,: R"—~R" are home omor-
phisms for 0=¢=1. We still have to prove that they are quasiconformal.

Suppose first that ¢(t, 0)€R" for 0=t=1. Define H(t, y)=F(t,y+¢(t,0))—
F(t, @(1,0)) for 0=r=1, yeR" Then H(t,0)=0 for every ¢c[0, 1]. Applying
(5.19) to H and the inequality [4;, Theorem 1] or [Sa, (2.3)] we get

(5.20) \H(, )| = h())x] [1+1og %]

for |x|=1,0=t=1, with [{h(t)dt<e. Define H*(t, x)=|x[*(I—20Q(x))H(t, x/|x|*).
Then we see, as above, that HY: R"—~R" is continuous, Hf¢Wt(R"), |SH]|.=
ISH,||..=|SF,|.. forae. t€[0,1] and H*cLj,. With (5.20) we also conclude that

(521 |H*(t, %)| = k(®)x|(1+log*|x|+log* (1/x])

for x€R", 0=t=1, with f;k(t)dt<w. By the above reasoning H* generates a
unique continuous semiflow ¥ (7, x), 0=¢=1, x€R". We claim that y(z, x)€R"
for all 1€[0,1], x€R". Let x€R", and let s€(0,1] such that (s, x)éR" for
0=t=s. Then by (5.21)

(5.22) W (& ] =[x+ [ H*(u, ¥ (u, x))dul
= L+ x|+ [ k@I (u )| (1+1og W (u, x)|+log* (I (4, x)| ™) du

for 0=t=s. Define 7(¢) to be the right-hand side of (5.22), 0=t¢=s. Then 1(f)=
k(t)r(t)(1+log1(r)) for a.e. 1€[0,s], and we get, as in the proof of Theorem 3.4,
[ok(u)du=log [(1+log t(s))/(1+log 7(0))], which implies log [¥/(s, x)|=
log 7(s)= (1+log (1+|x[)) exp (f5 k() du). This proves y (s, x)€R" for all s€[0, 1],
x€R".

We know now that ,: R"—R" is a homeomorphism for every ?€[0, 1]. Fur-

thermore, ¥, is qc with
t

(5.23) K@) =exp(n [ ISE.ds).

0

To see this, apply truncating to H* and then apply Lemma 5.5. Note that the dila-
tation of Y, in a neighbourhood of x€R" depends only on the values of SH, in a
neighbourhood of {Y(s, x): 0=s=¢} in [0, I]XR ; see (2.3) and the proof of Lem-
ma 5.5. This reasoning proves (5.23).
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Because H* generates y(f, x), the flow generated by H on R" is 0(¢, x)=
(J oy, 0J)(x). Define @(t, x)=0(t,x)+¢@(t,0) for xs#c and 6(f, x)# . Then
@0, x)=x and

(1, %) = 0(t, )+ (1, 0) = H(1, 0(t, X))+ F(1, 9 (¢, 0))
= F(1, 00, )+ (1, 0)) = F(t, §(t, %))

for a.e. 1€[0, 1]. Therefore, @ is a semiflow generated by F, and thus ¢=¢ by
uniqueness. Especially, ¢,(x)=0,(x)+¢,(0)=( o, o) (x)+¢,(0) for xER"
such that (J oy, oJ)(x)€R". Then ¢,: R"~R"is qcand K(¢,)=exp (n [} | SF.ds)
by (5.23).

If @(,0)¢R" for some t€[0, 1], we use factorization. For O<¢=1 and an
integer m=1 we get, by uniqueness, @, =@y 0@} ‘o... 0}, where ¢ (x)=0"(1, x)

and ¢*(z, x) is the semiflow generated by
F(s+ (k—1)t/m,x), 0=s=t/m,
0 otherwise

F*(s, x) ={

for all x€R". By the existence of local solutions in R" (see [C—L, p. 43]), we can
choose so large m that ¢*(s, 0)€R" for all 0=s=1 and k=1,2, ..., m. Then by
the above result every ¢ is qc, and so is ¢,, and because

kt/m

1
K@) =exp(n [|ISFH|ds)=exp(n [ |SE]ds),
0

(k—1)t/m

we get K(p)=K(¢1)...K(p1)=exp (n[; |SF,..ds). The theorem is proved.

6. Operators .S, and div

The method of proving Theorem 2.2 and Lemma 5.5 applies to linear combina-

tions of operators 7T, f=(1/2)(137+ Df) and div f=tr (Df) as well. Therefore, it is of
some interest to see how operators S,

S.f = —;—(Df+137)+cxtr (DNI, o —-}11—,

and div affect the generated mappings o,.

We deal first with S,. It turns out that if we replace S with §,, a# —1/n, in
Lemma 5.5, then again F generates a unique semiflow ¢ and ¢,: R"~R" is a bi-
Lipschitz-mapping with the Lipschitz constant

t
) on
6.1) L((p,):exp(cn’a(i/'HSanlldS], o= [y 1

for all 0=¢=1.
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We outline the proof of (6.1). Note first that if we consider S, S, and T as linear
mappings from the space R"™" of real nXn-matrices into R™", then

(@) So§, =S5,
(i) ISM| =2|M]|, MecR™",

(iii) IT™| = [ﬁdﬂ-}—l] IS, M|, o=—1/n, MER"™".
Now, (i) and (ii) imply |SF,|=2|S,F,| and, therefore, F and F*® generate ¢ and
¢°and ¢%—~¢ locally uniformly, as in the proof of Lemma 5.5. As in the proof of
Theorem 2.2, we get in the smooth case (| D)%) =(ll Do, Do) =2| Do, I TE,
(@:IIDe,ll, 0=t=1, which implies [Dg,=exp ([4 ITF||.ds)=1; thus
L(¢,)=1,, and (6.1) follows from (iii) in the smooth case. Because ¢;'—¢, locally
uniformly, we get (6.1) also in the non-smooth case.

For the operator div we get in the smooth case (apply the differentation formula
after (2.4) to (2.1))

(6.2) det (Do, (x))" = div F,(¢,(x)) det Do, (x), det Doy(x) = 1,

which implies
t

(6.3) Jo,(x) = det D, (x) = exp ([ [l div Fj.ds), 0=t=1
0
The non-smooth case does not follow immediately from (6.3) because, in general, F
cannot be recovered from div F (i.e. the differential equation div F=¢ is underde-
termined) and there is no representation of type (5.2). Therefore, we have to restrict
ourselves to the functions F which have such a representation.
Let y=(yy, ..., ¥,) With

(64) 7 =—

n—1

|x|7"x;, x#0, i=1,2,...,n.
Then every 7;,£G. For f: R"->ReL'nL” we form a vector valued Riesz potential

P f) = 3G NWe = 3 [nx=0fe)dy)e

Rn

for all x€R". Then y*f: R"—R"is continuous and y is the fundamental solution
for the operator div, i.e. (see e.g. [St, p. 125])

6.5) div(yx f)=f for feECs.

We want to extend (6.5) to a non-smooth case. We have

1
Di?j(x): ®

n—1

(0% " —nlx|7"2x;xp), x =0,
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and it is easy to see that
(6.6) (1) Dyy;(tx) = t7"D;y;(x), t=0, x#0, and

2 Dy, (x)dx =0
) Snfl y; () dx

for all 1=/, j=n. This means that D;y; is a Calderon—Zygmund kernel and defines
a singular integral operator I';; by

6.7 (T (x) = lim [ Diyj(x=y»)h(»)dy (limes in L?)

[x—yl=r

for h: R">RELP. Then I;;: L—~L"” is a continuous linear operator for all
l<p<-eo [St, p. 39, Theorem 3]. Next we conclude, as in [4,, p. 84], that y;* feW™"?
for all 1<p<-<= (i.e. it has distributional first order partial derivatives in L?) and

639) Dy f) = 0y f~Ty(f) for feLln L=

(Note that L”DI'nL™ for all 1=p=-<.) Therefore, div(yxf)=:D;(y;*f)=
f—eru(f) But Z,Ti,-=0 because

i=2';’ (Diy;(0) = (e, -) i;’;' ©Oulx|™"—nlx|="2x}) = 0.

So we have proved:

6.9. Lemma. If f: R">REL'™L™, then yxf: R"—R" is continuous, belongs
1o WYP(R") for all 1<p=<eco and div(yxf)=f.

We are now ready to prove the non-smooth form of (6.3). Recall that for a
homeomorphism f: R"—~R" the limit

m(fB"(x,1)
B )

exists for a.e. x€R" and is called the Lebesgue derivative of f. If £ is differentiable
at x, then |J (x)|=p(x).

6.10. Theorem. Ler g: [0, 1]XR"~R be locally integrable and [} (|o,l,+
loll<)ds<co (here o (x)=0(s,x)). Define F(t,x)=(y*0)(x), (1 x)€[0, []XR"
Then F generates a continuous semiflow ¢ such that ¢,: R"—~R" is a bi-absolutely
continuous homeomorphism with

Hp () =€ and p,-a(x) =€ with I= fIIQsHmdS
0

for aee. xcR" and for all 0=t=1.
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Proof. Because F is measurable and the function y* g, is continuous for a.e.
t€[0, 1], it is not difficult to see that for every x€R" the mapping #+—y x g,(x),
t€[0, 1], is measurable. Let 6, be a mollifier as in (5.4) for ¢=0, and F*=F %0,
(Theorem 4.3 shows that F is locally integrable). Here set ¢,(x)=0 for #¢[0, 1].
By Fubini’s theorem F*(t, x)=F % 0,=[y * (¢ #6,),](x). Therefore, we can proceed
in the same way as in the proof of Lemma 5.5. Let ¢° and ¢ be the semiflows generated
by F* and F, respectively, and choose ¢‘—¢ locally uniformly as &—0. Then
¢.;: R">R" is a homeomorphism and ¢}i: R"~R" is a diffeomorphism for which

t+e; 1

(6.11) Jp@) = exp( [ llg,ll.ds) = exp( [ lle,ll.ds)

0
by (6.3) because div Fi=(0¢*0,); and [(l(¢*0,)l.ds= [(**|el..ds. Therefore,
the next lemma proves the theorem for ¢,, and a similar reasoning applies to ¢, .

6.12. Lemma. Let ¢, ¢, R*>R", k=1,2, ..., be homeomorphisms such that
every ¢y is absolutely continuous and @,— ¢ locally uniformly as k—eo. If || o =
M<co for every k, then ¢ is absolutely continuous and p,=M a.e. If, in addition,
to,~J ae. as k—oo, then p,=J almost everywhere.

Proof. We first show that for any x€R" and r=0
(6.13) m(eB"(x, r)) = Jlim m(¢, B"(x, r)).

Here m refers to the Lebesgue measure in R". Fix x and r. Let r=¢>0. Take so big
ko that ¢, B"(x, r—e)C@B"(x, )T B"(x, r+¢) for all k=k,. Then

!m (pB"(x, r))—m(p, B"(x, r))] = m[@p(B"(x, r+e)\B"(x, r—¢))]

= f Up (V)dm(y) = Mm[B"(x, r+e)\B"(x, r—¢)] - 0

r—e=i{x—y|=r+e
as ¢-0. This proves (6.13). It follows that m(pB"(x,r))=Mm(B"(x,r)) for all

x and r, and it is easy to see that ¢ is absolutely continuous. It also follows that
uo=M. If p, ~J almost everywhere as i—oco, then for an open ball B we get

m(@B) = lim m(p; B) = lim fyq,idm = dem
e T E B

by Lebesgue’s dominated convergence theorem. This implies that u,=J a.e., and
the lemma is proved.
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7. Semiflow with prescribed Jacobian determinant

A 7.1. Theorem. Suppose that J: R'-=R is measurable, J(x)=0 a.e. and
log JEL*nL™. Then there is g: [0, IIXR">R"€L’AL” such that F(t, x)=
y%g,(x), (1, X)€[0, 11X R", generates a continuous semiflow ¢ such that ¢,: R'>R"
is a bi-absolutely continuous homeomorphism with

(7.2 o (X) = (J(x))"  for ae. XxER,

for all 0=t=1. If, in addition, J is continuous and

f %s(r)dr <oo, for some 0 <a <o,
0

with s(r)=sup {J(x)—=J(3)|: |x—y|=r}, then ¢, is a diffeomorphism and J, (x)=
(J(x)) for all xcR", 0=t=1.

Proof. The theorem will be proved in three steps. For the first and second steps
we suppose that J€C”, J=0 and that logJ has a compact support.

Step 1. Let 0O<e<1. We start by constructing G: [0, I]XR"~R" and a
unique semiflow ¥ generated by G such that

(7.3) G(s, x) = [y (log J oy )] (%), (s, X)€[0, 1]XR™

Define y,=id for t=0. We prove that (7.3) defines G and  uniquely. Let ii(s, x)=
(log J oy;!,)(x). We show that

{!Ihsllm = [log /| = a, and

4
a4 I = llog J|l,en for 0=s=1.

Clearly (7.4) is true for 0=s=e. Next assume that hy, G, and y, are defined and
(7.4) is true for 0=s=e, and that h: [0, {]} R"~R" is measurable. By Theorem
6.10 the function ,: R"~R" is a bi-absolutely continuous homeomorphism and
Hy =eXp (a,5) for 0=s=t. For t=s=r+¢& we get [h].=|log/] and

Iy = [IQoglyoyitldx = [ llog Jluy,  dx
Rn Rn

= exp (a))[log /1.

So (7.4) is true for t=s=t+e. Define G, by (7.3) for r=s=t+e. Again Theorem
6.10 implies that G, generates i, for 0=s=¢+¢ in a unique way. This completes the
contruction of G and ¥ so that (7.3) holds for 0=s=1. Denote G, ¥ by F* and ¢°
for e€(0,1).
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By (7.4) Theorems 4.3, 3.4 and 3.8 imply that (¢%)g<,~1 and (%*)oe<1, ¥°(f, X)=
(¢5)~1(x), are normal families. Choose subsequences such that &—0 and

(7.5) @% — ¢:[0, 1]XR" -~ R" and
& - x%:[0, I]XR" -~ R"

locally uniformly as /- oo. We see that ¢ and x are continuous, ¢, '—y,, and there-
fore ¢,: R"~R" are homeomorphisms for O0=¢=1. Define

(7.6) E(t, x) = [y*(log Joo D](x), (¢, x)€[0, 1]XR".
Because log J€Cy, we see by (3.9) that there is a compact CCR" such that
(7.7) sptllog Jo (pi)~lcC forall g, O0=i=1

Then also sptlogJop, '"cC and logJog;'€¢L'nL”, 0=t=1. Due to (7.5)
(7.7) and the representation

Ftei (x) = ['y * (log Jo ((Pi— Ei) _1)] (x)

we see that F%(t, x)~ F(t, x) locally uniformly asi—eoo. Therefore,
t t
Q% (t, x) = x+ f Fei(s, @%(s, x))ds - x+ f F(s, (s, x))ds as i—oo.
0 0

Also @%(t, x)—~@(t,x) as i—oo, and thus we see that ¢ is generated by F.

Step 2. We want to show that the above F is continuous and has DF,(x)
which is continuous in (¢, x). If this is the case, then ¢,: R"—R" is a diffeomorphism,
and by (6.2) and (7.6)

(det Do, (x))" = div F,(¢,(x)) det Do, = [log J 0 ¢; (¢, (x))] det Do, = log J(x) det Do,
for all 0=r=1 with det Dpy(x)=1. Then integration yields
(7.8) det Do, (x) = J, (x) = /™ = (J(x)),, 0=¢=1

The continuity of F is easy to see, and we prove only the existence and conti-
nuity of DF,(x). By Theorem 3.8 ¢, '(x) is continuous in (7, x) and

(7.9 lor ' (x)— @i M (x| = clxy—xp* for  |xy—xol = f,

where c<<o, o, B0 depend only on [logJ |, and [[log J ||... Write F=(Fy, ..., F,),
and the formulas (7.6) and (6.8) imply that D, F;(t, X)=n"10;;g,(x)—(I;8)(X)
with g,(x)=(logJ oo, 1(x)). Thus we only need to show that I';;(g,)(x) is con-
tinuous in (7, x). We have I;;g,=lim,.,7,(g,) (limes in LP, I<p=<o) with

T.(8)® = [ Diyj(x—»g()dy, xER"

|[x—y|=¢

We show that 7,(g,)(x) is continuous in (7, x) and T,(g,)(x) converges uniformly
in (¢, x) as e—0. Clearly this yields the continuity of I;;g.(x) in (Z, X).
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Let O<eg<g<ec and write
Tg®= [ ; Dipy(r=DaNdr+ [ Dy(x—»e)dy.
e=|x—y|=e e=|x—y|

It is obvious that the first integral above is continuous in (#, x). For the second one
we get by (6.6) and Theorem 6.10

Cij -
J = plle0ldy =% [llogJoert(»ldy
Rn

e=|x—y|

Ci; 1
= o f 108 Ty () dx = cyyetes " =|log Ty~ 0
as o— <o and uniformly in (#, x). This proves the continuity of (T, g,)(x) in (¢, x)-
We still have to show that |7, g,(x)—T,g,(x)|=]| Jei=ixi=e, Div; (x—3)€:(») dy| >0
as O<g=g—0 uniformly in (#, x). Because logJeCy,

(7.10) f %s(r)dr <o, forall 0<a< o,

0
with s(r)=sup {|log J(x)—log J(»)|: |x—y|=r}. We get by (6.6)
s
] Dy =gy = | [ ([ Div;ry)gx—ry)dy)r=tdr|
s =lx—y|=¢, ey snt1

= , f2[Snleivj(y)[g,(x—ry)—g,(x)]dy]r—ld,.l

£,
[ o[
,

IIA

(log 1) (¢ (x—ry)) — (log J) (¢ (x))| dydr

g snt1
£y 1 ceg
o — -1
=€ Wp-1 f 7s(cr Ydr = ¢;;,_1a f ;s(u)du -0
&y cel

as O<eg;=¢—~0 due to (7.10). This completes the proof of Step 2.

Step 3. Here we deal with the general J satisfying the assumptions of the theo-
rem. Because logJE€L'nL” we have J—1€L'nL” (because |logJ(x)|=
e~ ""¢71=7(x)—1| a.e.). For any &=0 define

JE=14+[(J— Dyl *0,,
where y, is the characteristic function of B"(1/e) and 6, is a mollifier in R" as in (5.4).
Then J®=0 and
(7.11) 1° log J*€ Cs (R"),
2° |log /¥ = [log J]l., [log J?[, = e*los7l=[log J 1y,

3 Jgt~J ae as &¢—0.
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Then by Steps 1 and 2 there is F* which generates ¢° such that

(7.12) Fe(t, x) = [y*(log J=o (¢f) 1) ] (x)
and ¢;: R"->R" is a homeomorphism with
(7.13) Jpe (x) = (%), x€R', O0=t=1.

This implies by 2° of (7.11)
(7.14) llog J°o (9f) |, = exp(lllog /|| )[log J|; and
llog J#o (¢7) 7w = [|log 1.

By (7.12), (7.14) and Theorems 3.4, 3.8 and 4.3 we see that (¢;).~o and ((¢7) ! )=o
form normal families and we can choose subsequences such that ¢-0 and

(7.15) @%i(t, x) ~ @(t,x) and (@)~ (x) > x%(4 )

locally uniformly in [0, 1]XR" as i—<. Therefore, ¢ and x are continuous,
@,: R">R" is a homeomorphism and ¢, '(x)=x(t, x). Furthermore, by parts 2°
and 3° of (7.11), (7.13) and Lemma 6.12 we see that ¢, is absolutely continuous and
po (x)=(J(x))" for a.e. x€R" and all 0=¢=1. This proves (7.2). Define

F(t, x) = (y* &) (x)

with g(t, x)=(log J 0 @; )(x), (1, x)€[0, 11X R". We want to show that ¢ is gener-
ated by F and g satisfies the claims of the theorem.
We first show that for any (7, x)€[0, 1]X R"

(7.16) F(t, x) = lim F(1, x).
Let O<ry<ry<ee and B;=B"(x,r), i=1,2. Write Fii=(Fy, ..., F)) and get
Fe(t,x) = [nG—plogJuo (e 1dy = ( [)+( [)+( [)-
R» B, B,\B, RN B,

It is not difficult to see that the integrals f B, and f renp, tend to 0 uniformly in ¢
as r;,—~0 and ry,—~co. For the middle integral we get

(7.17) L= [ = [ nx—er@)log J5MI(“() dy.

B\B, (9D (By\B

Note that in the integral |x—¢fi(y)|=r;. By (3.9) we see that (¢;) Y(By\By) is
contained in a compact set C which is independent of 7. On the other hand, for a
fixed r,, the integrand on the right-hand side of (7.17) is uniformly bounded and
tends to y(x—¢,(»))logJ(»)}J(y) for ae. yER" as i—ec. Then Lebesgue’s
dominated convergence theorem yields

imL= [ p(x—())(logJMIM)dy= [ nlx—y)logJoo;H(»)dy.

i—>oco
07 (Bo\By By\B,
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Furthermore, the last integral above tends to F(t, x) as r,—~0 and ry—~oo. This
proves (7.16).

It follows that F is measurable, and then also g(t, x)=log J (¢, 1(x))zdiv F,(x)
is measurable in [0, 1]X R". Because |logJ oo |;=|/]. [logJ|,=
exp ([log Jll)llog J [ <ee, g€LM([0, 11X R"). Also |gl..=[logJ[.. because ¢,
is absolutely continuous. Next we show that ¢ is generated by F. We have

t
Q%i(t, x) = x+ f Fei(s, @%(s, x))ds,
¢

where we write F%i(s, ¢ (s, x))=F"(s, ¢ (5, X))+ F*i(s, 9" (s, x))— F*(s, @ (s, x)).
Here' Fi(s, (s, x)~F(s, ¢(s,x)) boundedly as /oo, and Theorem 4.3 with
(7.14) implies that |F%(s, ¢®i(s, x))— F*i(s, (s, x))| =exp (3az) (a,+a)h[¢% (s, x)—
@ (s, x)]>0 uniformly in s as /—~ece, where a,=|logJ||; and a,=|log/||.. and
h(w)=u(l+log* u='), u=0 . Therefore, we obtain

t t
(1, x) = lim ¢*(1, x) = lim [x+ [Fa(s, ou(s, 0)ds| = x+ [ F(s, ¢(s, x)ds
0 0

for all 0=¢=1, x¢R". Thus ¢ is generated by F.

Finally, we suppose that J satisfies the regularity condition f o (1/r)s(r)dr<oo
for some O<a<-<o. Because |log/J(x+y)—logJ(x)|=exp (|logJ| [/ (x+y)—J(x)],
we can prove that ¢,: R"—>R" is a diffeomorphism and Jo,(x)=(J(x)) precisely
the same way as in Step 2. This completes the proof of the entire theorem.
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