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ON THE ORDER OF QUASIREGULAR MAPPINGS

S. RICKMAN and M. VUORII{EN

1. Introduction

A continuous mapping f: G*Rn of a domain G in theEuclidean n-space Rn,
n>2, is called quasiregular (qr) if / belongs to the local Sobolev space W!,,^"(G)
and for some K, 1<K= -,
(1 .1) lf'@)l' = xtr(x) a.e.

holds. Here lf '@)l is the operator norm of the formal derivative f'(x) and J7@)
is the Jacobian determinant at x. Quasiregular mappings constitute a class of func-
tions which is a natural generalization of the class of analytic functions in the complex
plane. Quasimeromorphic (qm) mappings are maps into R':R'r{-} and corre-
spond in this theory to classical meromorphic functions. For some basic parts of the
theory of qr and qm mappings the reader is referred to [5], [6], and [18].

For a nonconstant qm mapping f: R'*R' we define the order F1 and lower
order Å1 of f by

Here A(r) is the average of the counting function n(r, y) with respect to the spheri-
cal n-measure in Rn, n(r,y) being the numberof points of -f-r(y) in the ball B(r),
B(r) : {x€ R"llxl-r}, with multiplicity regarded.

If G is a domain in R'and f: G*R" qr, we write

(1.2)

(1.3)

For a nonconstant qr map
M (r) as well, namely,

Irt

ltf :ligsgrn#,

)., : lim irf lo=g 1 ('') 
.r y*a logr

M(r) - rYglf(,)!'

f : R'* Rn the order of "f can be defined by means oF

-liBSJpfu_r)ry
holds and similarly for the lower order. This will be proved in section 2.
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In Theorem 3.3 we shall give a counterpart of the Phragm6n-Lindelöf theorem

for qr mappings. In a special case it says that if /: R!*p' is a nonconstant qr

mapping of the half space R|:{x€R'lx,=0} with

for all y€AR"+\{-},

,,-,r, loglg€M(r) 
= r(n,K) > o

t.-6 tOgr

where K is the number in (1.1). Another result is the following. Let f; R"*R"
benonconstantqr. If thelower order )"r<c(n,K)l(n-l), then limsup,*-rn(r):-
where

m(r):,j1{, Lr(x)!.

This is included in Theorem 3.5 and it is related to a result of Wiman 116,p.12ll.
We have formulated our Phragmdn-Lindelöf theorem for a qr mapping of an

unbounded domain GcR' such that R\G is thick enough at -. A sufficient

condition for the thickness will be given in terms of the n-capacity. By modifying a

construction of an entire analytic function due to Toppita [5] we shall show that the

thickness condition is in a sense best possible when n:2.
The proofs in Section 3 are based on a two-constant theorem for qr mappings

from [l l], which in turn is based on estimates on solutions of quasilinear partial dif-

ferential equations due to Maz'ja [7]. Results related to those in Section 3 have been

proved also in [1], [3], [8] and by K. Astala and S. Granlund.

limsup l/(x)l = 1

then either lfl=l or

2. Equivalent definitions for the order

Let f: Rn*Rn be a nonconstant and K-quasimeromorphic mapping [6]. The

counting function n(r,y) is defined for r>0, 7€R', by

n(r, y) : 
,ut_wZlnrr,ri(*,f)

where i(x,f) is the local topological index; see [5, p. 6]. For r, t>O we let v(r, r):
v1(r,t) be the average of n(r,7) over the sphere §(r):8317;, ;-"'

v(r, t): fi ! "rr, 
ty)da€'-t(y)

where ff"-1 is the normalized (n -l)-dimensional Hausdorff measure, ^S 
the unit

sphere, and c),-r: tr'-'(S). The following lemma is in a slightly weaker form in

[10, 4.1]. The present form is due to M. Pesonen and the proof can be found in [9]

and [l3].
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2.1. Lemma. For r, s, t>0 and 0>l

v(Lr,t) = vg,s)-ffi.
From 2.1 we get by integration (see [10, 4.8])

(2.2) r,{rrc,t)-ffi=Ae)=v(0r,0*5ffir= , r,t >0, 0>1,

where r>0 depends only on n and t. From Q.2) one gets the following lemma
(see [0, 4.191 and ll2, 2.41).

2.3. Lemma. There exists a set Ecll,-f of finite logarithmic measure, i.e.,

{+{-,
lim o\':2 

- 1Elr-"o A(r)

such that

for all t>0.
Assumenowthat -67Å'. Forgiven r>0 and g>l set t>M(lr) and s:l

in 2.1. This gives

and hence

(2.4)

0>y(r,l)-ffi

lloe M (or)1,-, = $. v (r,1).

Let us look at the case where there exists a limit lim,*_ f(x). Then fextends to
a qm mapf: R'*R', f1*7:*, and this case corresponds to a rational function
in the classical theory. For any />0 there exists ro(r)=0 such that v(r, r) is for
r>roQ) the topologicaldegree offwhich is i(-,f;. By ideas from [4,6.1] we can
deduce that (for details, see [14, 5.4])

(2.5) K-1tt(r,1)+o(1) =...Iffi,F = Kv(r,l)+o(1) (r *-).

We will need in the general case also an inequality in the direction opposite to
Q.Q. We will give that in the following form where the factor (log r),-1 appears
like in (2.5).

2.6. Lemma. There exist 0r:0r(n, I()>l and cr:cr(n,K)>Q such that
for some ro=1

v(o,r,1)=.,ffi}I rf r -- r,.
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Proof. We may assume that - is an essential singularity. We will combine ideas

from u0, 5.41 and Ul,3.2).Let r>L and let -l- be the family of paths in BQr)which
join,B(1) and/-r(n'18(M)) where M:M(r). We may assume M>l' Then,

by an n-dimensional version of [2, Theorem 4],

(2.7) M(r)=@h-, r-r1,

for some rr> I where d, >0 is a constant which depends only on n. We first assume

M(l)<l. Set 
?

eO): @Mlfr if t = lYl = MlB'

s(Y) : 0 elsewhere'

Then g is admissible for the family fl and from the proof of 15,3.21 we get that

(2.8)

M[) = K I nQr,y)oU)'dm(y): ffiT'' +V rr2r.rz)d/rn-tQ))dr.

Let r=rr. The inequalities (2.7) and (2.8) imply that there exists y,l=lyl=M'/',
such that

(2.s) n(2r, y) = ", Prs r)#,
where cr:s1(r, K)>Q. We separate two cases:

Case l. For each x(f-L(y)aB(2r) the x-component of f-'B(M't') is

contained in B(4r).
Let x(f-t(y)oB(2r) and let D be the x-component of f-tB(Mzla;. Then

D is a normal domain ([5,2.5]) and

"qilenoi(" 
f) : 

*e r-?,rtnoi(x' 
f)

for all (e ,S. ny summing over all such components D we obtain for all (€^S

(2.10) n(4r,0>) Z i(z,f):) Z _i(x,f)>n(2r,y).T z€I'L<)nD D x(!-t(Y)nD

C ase 2. There exists x(f -r (y) aB(2r) such that the r-comp onent of f-rB (M zr t1

intersects R'\B(4r).
Let -l-, bethe family of paths inB(4r)which joinf-rB(M') andl-l(R"\B(M)).

Then
M(f ,) >- b : b(n) > O,

and in place of (2.8) we now obtain

M(r,)=ffi_i+r*.
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These imply that there exists tL€IMzlt, M7 such that

,r(4r, t) =- Mr*rur*.

Let 2C:bl(3"-LKan-r). For 0r>4 Lemma 2.1 implies

(2.11) r(0,r,1) =(rr-6#i»-)oo, M)n'r.

we choose g1>4 so that K(log (0rl+1)t-":g' The lemma foilows then from (2'9)'

(2.10), and (2.11).

Let then M1:M(l)>1. Let g be the map y*ylM, and apply the above to

the map h:Eof. If the constants for h ate 0, and cr' then

t(lrr, M',.) : vo(lrr,1) = c, 
gWH:, r 1 ,,1'

Since by 2.1

v(2orr, !) > tt(01r, ar1- K{}oeY!:)|
(log 2)'-1

and since v(7g,M)-@ as r+@ [10,p.455], we obtain

v(2o,r,r) = +ff#+, t'>- ro.

for some ro>-rt. The lemma is proved'

After these preparations we are now ready to express the order and lower order

in terms of the maximum norm function M(r) as follows'

2.12. Theorem. Let f: Ro*R" be a nonconstant qr mapping. Then

(2.13) ,u7: limsuP(n-1) f-y-r11,

(2.t4) /r: li115nr (n-r)r"sYAy(') .

proof. we shall prove (2.13). For (2.14) the proof is similar. Let the right hand

side of (2.13) be a andlet /;+o fs a sequence of positive numbers such that

(n - 1)log log M (r)llo1 ti* d. Let e >0. By Lemma 2.6 there exists q -2 such that

log v (0,,t'i, I)ct-6=tr, ri-gr.
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Let Ebe the set given by Lemma 2.3.For any given fr>q there exists by 2.3 ri>k
and s€[014,201rJ\,8 such that v(s, 1)<,4(s)(1+e). Then

o_e < rogv(s, 1) 
= __l9qlj91i_.logri : Iogs-log(20r)'

This gives asqt. Similarly we get a= Fr by using (2.4) in place of 2.6.The theorem
is proved.

3. Phragmdn-Lindelöf type theorems

Let (A,C) be a condenser in R', i.e. Ac.R" is open and CcA compact. The
capacity or n-capacity of (A,C) is defined by

cap(A, C) : ilf I lv"Ya*

where u runs through the set of functions in Cf (A) with n1x;= I for x€C.
The following lemma is a two-constant theorem Ul,4.221.Its proof is based on

estimates from [7].

3.1. Lemma. Let f: G*N be a nonconstant K-qr mapping, O=m-M,
and let U:B(z,r) and

(1) lf@)l= M for x€Gnu,
(2) lim sup lf@)l = m for y(OG aU.

Then there are constants ),K(10, 1121, C€10, 1l depending only ott n and K such that
if 0<)"=)"*, then

log l/(x)i = polog m * (L- B) log M

for x€(6\,f-'(0)) aB(2, ),r) where §o€l0,ll,

B s : C (c ap (B (2, r),(R'\c) a B (2, )l)))t r t' -ttl"c 
+ .

If äcR' is closed, x€Ro, and if r>0, we set

cap (E, r, x) : cap (B (x, 2r), E n.B (x, r)),

caP(E, r) : cap (E, r,0).

By a result by Martio and Sarvas (cf. [19, 1.7]) we have for t>2r

cap(nQ1, EoB(r))= [HP] cap(E,r).

In particular, we get a lower bound for the number Bo in 3.1:

(3.2) §o=- C (log2)(cap(.iRn\G,,1r, z))rttt-rt.

Our analogue of the Phragmdn-Lindelöf theorem [16, p. 115] is the following.
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3.3. Theorem. Let f: G*R" be a nonconstant K-qr mapping with

for all l€åG1{*}. If there

cap (R'\G , r)=ö .fo, r='Fo,

lim sup lf@)t = 1
x*!

exist numbers ö >0 and ro=l such that
then either l/(x)l :1 -for x€G or

1i* ;rgJos 
log M('L > c(n, K, ö)r+6 log r

where c(n, K,6) is apositiue constant depending only on the dimension n, the maximal
dilatation K, and the number 6.

Proof. Suppose that l/(xr)l=1 for some -r6€G. Since a nonconstant qr mapp-
ing is open, there is rr>ttrax {ro, lrol} such that M(r1)>lf(xo)1. Let 1:),K€70,121
and C =0 be the numbers in Lemma 3.I and write B :g1log 2) 5rlt'-t) . Fix r =rrf )".

Lemma 3.1 and (3.2) yield

los MQ"r) = filog 1+ (1-B) log M(r) = (l- fr)log M(r)

log M (12 r) = B los t + (t - f) los M Q.r) = (l - fr)' los M (r)
:

log M(),k r) = (1 - B)k log M(r).

Let p:yy1sy{keN: Akr=rr}. Then p>(logr1-log r)llog),-1. In combina-
tion with the estimates above we get

log M (rr) = (1- B1t log M (r)
and further

loglog M(r') - (log(rrlr) ,) log(1-B) ,loglogM(r)---l"c r-- = t log; - ') tou - 
"* 

t
On letting r+o we get the desired bound with c(n,K,ö):(log(1-il)llog).=0.

3.4. Remarks. (1) To illustrate the meaning of the condition cap (R"\G, r) >ä
in the theorem above we indicate a standard way of establishing adequate lower
bounds. lf EcR" is closed and E,cB(r)nE is closed and connected, with
d(E,)>v, it follows from [17, 10.12] (cf. [19, 1.10]) that

cap(E,r) = cap (E,, r) = ,|lrlg{dl.
+- L

where cn>O is a constant depending only on n.

(2) Wallin [20, Theorem 4.4]has constructed a compact set.Ein the unit ball
of zero Hausdorff dimension with cap (E', 1) =0. Applying dilations one can hence

construct a closed set F of zero Hausdorff dimension with cap (F,r)>ö >0
for r>1 (119,2.51).

For an entire qr mapping we get the following result by a similar proof.
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then the lower order )"r>d(n,K,ö) where d(n,K, ä)=0 ls a constant depending

only on n, R, and ö. In particular, if ).r=d(n, K,ö), then

Ti:here

lirn yp m(r) -_ .,ö

lxl:

Wiman 116, p. l2ll has shown that an entire analytic function of order less than
1/2 satisfies limsup"*-rz(r):-. It is notknown to the authors if results likeTheo-
rem 3.5 have been previously proved for analytic functions. Note that, in view of
Remark 3.4 (2), the set E in 3.5 can be rather small.

K. Astala and S. Granlund have obtained related results in forms where
it has a lower bound d which depends also on 7:limsup"*-ä(r), ä(r):
ar"-'(S(r1nG)l@tn-rr'-1) and d,/* when y\0. Here G:R'\E. The results
in [1] and [8] are also in this direction.

Theorem 3.5 implies immediately that År>d(n,K)>Q if f: R"tR" is non-
constant and has an asymptotic value in R'. It is an open question whether the lower
bound tends to - when the number of asymptotic values tends to -.

4. An example

In this final section we shall give an example which shows that Theorem 3.5 is
best possible in the sense described in Example 4.8 below. The example is obtained
with minor modifications from a construction due to Toppila [5] as we shall now
show.

For what follows fix an increasing function ft : 10. -[ r]0. -[ with lim,*- ft (r) : -.
Consider the entire function

-f{r) - fi tr- zlaj)"',
J:1

3.5. Theorem. Let f:
is a closed set such that there

r=r$, And

(3.6)

(4.1)

R'* R" be a nonconstottt K-qr mapping. If Ec. R"
are numbers ä =0 and ro>l with cap (8, r) =ä -fo,

sup l/(r)l { *,
x€E

k-L

Z nti<h(o),
j:1

where ai, mi-O are appropriately chosen sequences. the numbers mibeing integers.
The chnice is made as follows. Let ar:rnr:9=e2. Suppose that k>2 and the
numbers dt, ,.., ak-t,t/tl, ...,rfik-r have been chosen. Choose ao such that

(4.2)
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(4.4)

Conditions (4.3) and (4.4) have been slightly modified from the corresponding
conditions in [15, pp. 5-6] for the proof of the second part of the following lemma.

4.5. Lemma. Let f be defined by the formulae (4.1)-(4.4). Then f enjoys the

following properties:
(1) logM(r): O(h(r)'loeu r) (r *-).

(2) f(r) * O as z ** and z( v 81,, 81,: B(ay, ayf 4).

Proof. The proof of (l) can be done, with obvious changes, in the same manner
as in [5, pp. 6-7l,where the reader can find the details. The proof of (2) is much
shorter and based on ideas from [15]. We shall give here only the proof of (2).

To prove (2), we obtain for z€Bo

and

(4.3) [t* Z,rr,) ak-r < &.\ j:

Now choose an integer wt1, such that

r/*r = (:2,*,;) ros on > yA- 1.

(4-6) loslf(z)l = *Z_r*tlogll- 
zla jl =

,i * tlog (1 * lzl I a ;) + nt 1,to s $ I a) *, å rm, 
(5 a ol $a i)\.

It follows from (4.3) and (4.4) that (cf. [15, p. 6])

mif ai < 
d\.tZ*,)'bg,,, = *

and ar=4gg a;-1. Hence

(4.7) 
,§_,*,ttool@ai)) = 2.

The estimates (4.6) and (4.7) together with log (l+lzlla,)=log(2lzl) yield

(k-L \
toglf (z)l = [ ä m, 

)tog 
(5a ol 2) + m otoe ( I 

q + 2 : rrro (log ( I /a) + s (k)).

Here e(k)*0 as k*- by @.$. The proof is complete.

4.8. Example. Let f: R2*R2 be a nonconstant entire analytic function of
order zero with positive zeros al<az<....,lim a;--, such that if Bk:B(ak, akf4),
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then for some ko= 1 ,

t4.g) for x€ LJ Bk.
k=ko

[/(x)l - |

Choosing h(r):lsg (1+r) in Lemma 4.5 we see that such functions exist. Let
E:N1,=1,,8s. By Remark 3.4 (l) there is r=0 such that cap (E,ao)=t for k=ko.
Bv $.e)

limsrp i,ftx)l = t

for all /€.8. Since F!:0, we see that the condition cap(E,r)>ö>O, for large
y>0, in Theorem 3.5 cannot be replaced by the corresponding condition for a se-

quence of numbers r*./* when n:2. On the other hand, it would be enough to
assume cap(E,s1)>ä>O for a sequence (s1) with, say, sy41<2s1, for all k.
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