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F-HARMONIC MEASURE IN SPACE

S. GRANLUND, P. LINDQVIST and O. MARTIO

1. Introduction

The use of the harmonic measure is well established in the theory of harmonic
and analytic functions. In this paper we present a similar concept which is based on
a non-linear Euler equation of the variational integral

[ F(x, Vuydm

where F(x, h)~|h|". The form of F is essential for our applications in conformal
geometry. The purpose of the paper is to show that this concept, called the F-har-
monic measure, is useful even in the non-linear case in space although it has several
drawbacks, e.g. it does not define a measure.

The paper is a continuation of [GLM] by the same authors and the same nota-
tion and terminology will be used. After constructing the F- harmonic measure in
Chapter 2 we show that several classical results of the harmonic measure have anal-
ogous statements for the F-harmonic measure. Among these are Carleman’s and
Phragmén—Lindel6f’s principles. Sets of F-harmonic measure zero are considered
in Chapter 4 and a simple sufficient metric condition for this is introduced. The con-
nection of F-harmonic measures and quasiregular mappings is studied in the last
chapter. We prove the invariance of F-harmonic measures under quasiconformal
mappings. Note that in this respect the usual harmonic measure is not an invariant,
see e.g. [BA], [HP], or even a quasi-invariant. We also present the principle of the
F-harmonic measure for quasiregular mappings. These principles include the classical
invariance properties of the harmonic measure under conformal and analytic func-
tions, respectively.

2. Definitions for F-harmonic measure

2.1. Let G be a domain in the n-dimensional Euclidean space R", n=2. Except
in § 3.9, G is assumed to be bounded. We only consider domains which are regular in
the following topological sense.

2.2. Definition. The domain GCR" is called regular, if no component of
its boundary 0G reduces to a single point.
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2.3. Remark. The topological regularity condition on dG is used to assure the
solvability of Dirichlet’s problem in the class {v€C(G)nW(G): v|dG =0|0G},
@ a given function in the same class. For more general conditions see [M] and [Maz],
cf. also [GLM, 3.25 (a)].

2.4. Variational integral Ir. In the variational integral

(2.5 Iy = Iy, D) = [ F(x, Vu(x))dm(x), DcG,
D

the kernel F: GXR"—-R is assumed to satisfy the following conditions:

(a) Given any ¢>0, there is a compact set K,CG such that m(K,)>m(G)—e
and the restriction F|K,XR" is continuous.

(b) For a.e. x€G the mapping h—F(x, h) is strictly convex.

(c) There are constants O<oa=f<o such that for a.e. x£G

(2.6) alh|" = F(x, h) = A"

when heR".
(d) For a.e. x€G the function h—F(x, h) is differentiable.
(e) For ae. x€G

2.7) F(x, 2h) = [A]"F(x, h)
when A€R" and —oco<l<co.

2.8. Remarks. For a thorough analysis of our assumptions, we refer the reader
to [GLM]. In (a) a natural condition of measurability is expressed. The strict con-
vexity (b), i.e. the validity of the inequality

F(x, 2hy+(1—2A) hy) < AF(x, hy)+(1—2) F(x, hs),

0<4i=<1, hy#h,, is needed to establish the uniqueness of extremals with given bound-
ary values. This uniqueness property is essential for the comparison principle
{GLM, 4.18]. The use of (2.7) is exhibited in the fact that Au is an extremal, whenever
u is an extremal.

2.9. Remark. If (2.6) and (2.7) are valid with the exponent 1 replaced by any
exponent p in the range (1, =), most of our theory still holds. For 1<p<n the proofs
in the regularity theory become more involved.

2.10. Boundary sequences and generating sequences. The construction of the
F-harmonic measure, F satisfying (a), (b), and (c), proceeds via certain auxiliary
sequences.

Let CcoG be any closed set. We say that the sequence (¢;) of functions in
C(G)nW(G) is a(C, G)-boundary sequence, if

1°) Iz, =¢,=...=0,
2°) ¢;IC=1, i=1,2,3, ..., and



F-harmonic measure in space 235

3°) to each compact set KC G with KnC =0 there corresponds an index, say
g, such that ¢]K=0, when i=>ig.

Obviously, there exist (C, G)-boundary sequences in great profusion.
Corresponding to each (C, G)-boundary function ¢; there is a unique F-extremal
1,C(G)NnWi(G) with boundary values u;|0G =¢,;|0G. For this existence result we
refer to [GLM; 3.24]. We call the sequence () (C, G)-generating or, more precisely,
(C, G; F)-generating.
By the comparison principle [GLM, 4.18] the monotonicity expressed in 1°)
is reflected on the sequence (u;), i.e.

2.11) lzuyy,=u,=...=0.
Thus the limit
2.12) 1= ulx) =limu(x) =0

exists for every fixed x€G. Actually, the convergence (2.12) is uniform on compact
subsets of G. This follows from Harnack’s principle [GLM, 4.22]. The same principle
also proves the following theorem.

2.13. Theorem. The limit function u of the (C, G; F)-generating sequence (u;)
is a free F-extremal, i.e., if D is any open set with compact closure in G, then

Iz(u, D) = Ix(v, D)

for all v€C(D)nWi(D) with boundary values v|0D=u|dD.
Next we show that u is well defined.

2.14. Theorem. The limit function u is independent of the particular choice of
the (C, G)-boundary sequence (¢;), i.e. all (C, G; F)-generating sequences have the same
limit function.

Proof. Let (¢;) and (;) be (C, G)-boundary sequences. Suppose that the corre-
sponding (C, G; F)-generating sequences (¢;) and (v;) converge to u and v, respectively.
Take &¢=0. To every index / there corresponds an index j; such that

¢i+e =y, in G.
Then also
u+e=v;, inG

be the comparison principle (obviously, u;+¢ is the unique F-extremal with boundary
values ¢;+¢). Hence u+¢e=v in G. Since ¢>0 was arbitrary, ¥=v in G. By sym-
metry v=u. This proves the desired uniqueness u=v.

2.15. Definitions for F-harmonic measure. 1f CcoG is any closed set and if F
satisfies (a), (b), and (c), then the previous construction defines the unique free
F-extremal u€C(G)NnWX(G) via (C, G; F)-generating sequences.
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2.16. Definition. The limit function u of the (C, G; F)-generating sequences
is called the F-harmonic measure of C with respect to G. This is denoted by

u=w(C G; F).

2.17. Remark. It is easily seen that the F-harmonic measure w(C,G; F)
formally can be defined via the generating process without any regularity assumptions
at all on 0G. Then the boundary values of the (C, G; F')-generating functions must be
considered in the ¥,-sense. We could also allow C to be a more general set. However,
such generalizations are not essential in this paper.

In certain applications an equivalent definition for w(C, G; F) seems to be natu-
ral. To this end, fix a closed set CcdG and consider the class F(C, G) of all
F-extremals v€C(G)nWp(G) such that v=0 and »|C=1. In particular, this class
contains all (C, G; F)-generating sequences.

The following theorem can be regarded as a definition for the F-harmonic meas-
ures.

2.18. Theorem. Let u=w(C,G; F). Then

u(x) = inf fo(x): v€Z(C, G)}
Jor each x€G.

Proof. Obviously, u(x)=inf,v(x) for every x€G.
Fix x€G. There are functions v,6%#(C,G) such that

lim v,(x) = inf {v(x): vEF(C, G)}.

Let (¢;) be a (C, G)-boundary sequence. Then also min {@,, v,}, min {@,, v4, v,},
min {@g, v1, Ug, ¥3}, ... i8S @ (C, G)-boundary sequence. The (C, G; F)-generating
functions u; corresponding to this latter sequence certainly satisfy the inequality
w;=v; in G, since 4;]0G=v,|0G. Thus u(x)=limu;(x)=lim»;(x), whence u(x)=
inf, v(x). This concludes our proof, since x€G was arbitrary.

2.19. Remark. We can allow the class #(C, G) to contain all super-F-ex-
tremals, cf. [GLM, Chapter 4], v€C(G)nW.(G) such that +=0 and v|C=1.

2.20. Remark. For each y€dG\C, lim;. . u;(»)=0 and since u; decreases
to the F-harmonic measure u of C,
limu(x) =0

x>y

for y€0G\C. In 4.3 we present quantitative estimates for this.
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3. Classical principles

Some classical principles are extended to the F-harmonic measure. Most of these
extensions are straightforward but some of them, e.g. Phragmén—Lindelof’s prin-
ciple, have a wide scope of applications, especially if Chapter 4 is used.

3.1. Basic principles. The first theorem is an immediate consequence of Theorem
2.18. We assume that F satisfies (a)—(c), unless otherwise stated, in a bounded regular
domain G.

3.2. Theorem. Let C,cC, be closed sets in 0G. Then w(C,,G;F)=
o(C,y, G; F).

3.3. Theorem. Suppose that the sets
CioCD..., C=nC;

1

are closed in 0G. Then
o(C;, G; F) -w(C,G; F)

uniformly on compact subsets of G.

Proof. Write u;=w(C;,G; F), i=1,2, ..., and u=w(C, G; F). By Theorem
3.2

Uy = Uy =...= U

Fix a compact set KcG. Given ¢=>0 choose a (C, G)-boundary function ¢ such
that

sup |u(x)—u,(x)| < ¢/2.

x€eK

Here u, is the F-extremal with boundary values ¢.
There is an integer #, such that the F-extremal u,, =@ +¢/2, is in F(C NG
and thus, by Theorem 2.18,
U, = uy = u,+¢/2.
Hence for i=i,
U = ) = up+ef2 < ut-ef24¢/2

in K and since u#;=u in K, we have proved the uniform convergence on compact
subsets of G.

The classical principle of Carleman holds for F-harmonic measures.

3.4. Theorem. Suppose that G, and G, are regular domains. If C C0G,NOG,
is closed and G,CG,, then

o(C, Gy F) =ow(C, G, F)
in Gy.

Proof. If veZ(C,G,), then v|G,€Z(C, G,). Hence Theorem 2.18 yields the
desired result.
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3.5. Comparison principles. An upper semi-continuous function v: G—~Ru{— =}
is called a sub-F-extremal if for all domains Dc CG and all F-extremals hcC (D)
the condition h=v in @D implies h=v in D. The local comparison principle [GLM,
4.18] has a trivial improvement. If v is a sub-F-extremal in a bounded but not neces-
sarily regular domain G, w an F-extremal or more generally, a super-F-extremal, see
[GLM, Chapter 5], in G and eiter v or w is bounded with

lim w(x) = Iim v(x)

as x in G approaches any point in dG, then w=v in G. If this principle is applied to a
(C, G)-generating sequence, the following corollary is obtained.

3.6. Corollary. Let C be a closed set on the boundary of a bounded regular do-
main G. Suppose that v is a sub-F-extremal in G such that

= =0 for ycoG\C,
x1£ry1‘v(x) =1 for ycC.
Then v=w(C,G; F) in G.

If a little more is assumed on F, Corollary 3.6 can be improved.

3.7. Theorem. Suppose that F satisfies the assumptions (a)—(c) and (e) of
Chapter 2 in G and that CC0G is closed. Let v be a sub-F-extremal in G such that

_ =M for yeC,
llg}v(x) =m for yeOG\C,
where M=m. Then
(3.8) v=M-mw(C.G; F)+m
in G.

Proof. We may assume M=m. Then w=(v—m)/(M—m) is a sub-F-extremal.
By Corollary 3.6, w=w(C,G; F) in G, i.e. (3.8) holds.

Because of the strict convexity assumption (b) each F-extremal is also a sub-
F-extremal, cf. [GLM, 4.19]. Hence Theorem 3.7 holds for F-extremals as well.

3.9. Phragmén—Lindeldf’s principle. Suppose that GCR" is an unbounded
domain with non-empty boundary and regular in the sense of Definition 2.2. Let
w(x; r) denote the value of w(GnS""'(r), GNB"(r); F) taken at the point x€G,
x|=r. Note that the open set GnB"(r) is not necessarily connected, but this plays
no role in the definition of @ (x; r). The open set GNB"(r) is always regular.

With an obvious modification of (a) for an unbounded domain we assume that
F satisfies (a)—(c) and (¢) in G. Phragmén—Lindelof’s principle now takes the fol-
lowing form.
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3.10. Theorem. Suppose that u is a sub-F-extremal in G with Iim,_ ,u(x)=0
for all y€oG. Then, either u=0 in G or

M@F)= sup u(x)

|x|=r,x€G

grows so fast that
(3.11) lim [M()w(x; r)] =0

for every x€@.

Proof. Suppose that u(x))=0 at some point x,CG.
Since
M(r)=sup u(x),

|x|=r,x€G
Theorem 3.7 yields for r=|x,|

u(xy) = M(r)w(x,, r).

Thus (3.11) follows for x=x,.
If x, y€G, then for all sufficiently large radii » Harnack’s inequality gives a
constant C independent of » such that

ox,r)=Co(y,r).

Hence (3.11) is valid at every point x€G, if it holds for some point y€G. This
completes the proof.

3.12. Remark. (a) Simple examples show that (3.11) is best possible.
(b) V. Mikljukov [Mik] has also studied theorems of Phragmén—Lindelsf type for
regular subsolutions of elliptic equations.

4. Sets of F-harmonic measure zero

4.1. Definitions. If GCR" is a regular domain and C<dG a closed set,
then w(C, G; F;) may be zero for a kernel F, satisfying (a)—(e), but w(C, G; F,)=0
for another kernel F; satisfying the same assumptions, see Remark 5.4 (b). Hence the
following definitions will turn useful.

4.2. Definition. Let G be a regular domain and CCdG a closed set. We say
that the F-harmonic measure of C with respect to G is zero if w(C, G; F)(x)=0
for all x€G. The set C is said to be of total F-harmonic measure zero if the F-har-
monic measure of C with respect to G is zero for all kernels F in G satisfying (a)—(c)
and (e). Note that in the last definition we do not restrict the range of the values
O<oa=pf<co.

The purpose of this chapter is to study sets of total F-harmonic measure zero.
We assume that G is a regular domain in R" and that F satisfies (a)—(c) and (¢) in G.
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4.3. Boundary estimate. In the sequel we need an estimate for an F-extremal near
the boundary of G. Similar, and even stronger, estimates have been derived in many
papers, see e.g. [Maz, Theorem, p. 51]. However, our proof is elementary.

4.4. Lemma. Suppose that ucC(G) is a non-negative F-extremal in G, xo€0G,
and u(x)=0 for x€0GNB"(x,y, R). If S"N(x,, 1) meets G for all t€(0, R), then

_R —hn
sup u=csupu (log —) .
B(xy,H)NG G f

The constant ¢ depends only on n and .

Proof. Let 0<t<R. Set r=JtR. We may assume x,=0. For s=0 write
D(s5)=B"(xq,5)nG and D=D(R). Let ¢€Cy (B"(R)) such that 0=¢=1 and
o(x)=1 for x€B"(r). Set v=u—¢"u. Then v€C(D) and v=wu inoD. Now

Vo=(1—¢")\Vu—ne" 'uVo=>1—0¢"\Vu+o¢" (—i quo), whenever ¢(x)=0 and
the F-extremality of u gives together with (b) aglid (c)

Iz(u, D) = Ix(v, D) = f(l —@")F(x, Vu)dm + pn" f u" \Vo|"dm.
Now ¢|B"(r)=1, hence ° ’

Is(u, D(r)) = pn" (Sl(l;p u)" Df[V(p\"dm.

Letting ¢ vary over all admissible functions for the condenser (B"(R), B"(r)), see
[GLM, 2.3], we get

4.5) Ir(u, D(r)) = ﬂn"(s%p Uy W, [ln g) )

This estimate is similar to the standard estimate, see [GLM, 4.2].
For each s€[t,#] choose a spherical cap C(x,, ¢,) on S" '(5)nG centered at
a point x, where

u(x)

u(XS) = xESm;ll(sx)ﬂG

and C(x,, ¢,) meets dG. This is possible by the assumption. Now # is monotone,
hence u(x,)=u(xy) for s=s’. Thus [GLM, 2.7] yields

-1 r n
(sup u)" = u(x)" = (Iog %) f ) ds

D(r) N

—1 o\ —1 1-n
=4, [log %] f Vuldm = A, [—g] n" (s%p Uy @, -1 (log '7) (logg)
D)

where (4.5) and (c) have also been used. This gives the result since r=VRt.
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4.6. Remark. The argument used in [GLM, 4.7] yields a Holder-estimate

@.7 sup u=csuput

Br(x,,HN G G
where e=¢(n, f/x). However, we need not the strong version (4.7). Note also that
the proof of Lemma 4.4 implies that

u€W(G B (xo, 1)) for t€(0, R).
Lemma 4.4. and the definition of a (C, G; F)-generating sequence give

4.7. Corollary. Suppose that a point x,€0G satisfies 8" (xy, )NOG#0
for all t€ (0, R). Let C be a closed set in 0G with B"(x,, R\InC =0 and let u be the
F-harmonic measure of C. Then there is x=x(n, B/a)=0 such that u(x)<1/2 for
X€B"(xy, xR)NG.

4.8. Sets of F-harmonic measure zero. We begin with a simple result where the
condition (e) plays an essential role.

4.9. Theorem. A closed set CC0G is of F-harmonic measure zero if and only if
(4.10) I o(C, GF)(x) < 1.

Proof. The condition (4.10) is clearly necessary. To prove that it is also suf-
ficient set u=w(C, G; F). Write .=supgu. By (4.10), 2<1 since u is monotone.
Now F satisfies (¢), hence if =0, u// is an F-extremal and by Lemma 3.6, u/i=u
in G. This shows that u=0. The theorem follows.

To the other direction it is easy to give a simple sufficient condition.

4.10. Theorem. Suppose that a closed set C in 0G has a non-empty interior
with respect to 0G. Then the F-harmonic measure of C is not zero.

Proof. Consider the (C, G)-generating sequence u;. By (e), v;=1—u; is an
F-extremal in G. Let x,€intyg C. Then there is R=0 such that the assumptions of
Lemma 4.4 are satisfied for »;. Consequently,

v;(x) =1/2

for all x€B'(x,, t)nG for some t€(0, R). Thus u;=1/2 in the same set. This
shows that the F-harmonic measure » of C is not zero.

The next theorem states that the F-harmonic measure is a metric outer measure
on the zero level.

4.11. Theorem. Suppose that C, and C, are closed sets of F-harmonic measure
zero in 0G. If CinCy=0, then C,UC, is of F-harmonic measure zero.

Proof. Let ube the F-harmonic measure of C;uC,. By Theorem 4.10, C;uC,5
0G. For O<t<1 consider the set 4,={x€G: u(x)=t}. Since u is monotone and
C; and C, are disjoint, Remark 2.20 gives a component 4 of A4, for some ¢ such that
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either AcGuUC; or AcGuUC,. Assume, for example, that AcGuUC;. Set
o (x)=u(x)—t for x€A4 and @(x)=0 for x¢G\ A. The function ¢ is a regular
sub-F-extremal, cf. [GLM, 5.4], and not identically zero. On the other hand

— =0, yedG\ G,
ll_l};go(x) =1, yeC.
By the comparison principle, Corollary 3.6, ¢=u; where u; is the F-harmonic meas-
ure of C;. Thus ¢=0 and u=t. By Theorem 4.9 the F-harmonic measure of C;UC,
is zero.

4.12. Sets of total F-harmonic measure zero. We give two sufficient conditions
for a closed set CCdG to have a total F-harmonic measure zero. In general, it
seems difficult to exhibit simple necessary and sufficient conditions for this.

4.13. Theorem. Suppose that CCdG is of zero n-capacity. Then the total
F-harmonic measure of C is zero.

4.14. Remark. We recall that a compact set CcR" is of zero n-capacity if
cap, (D, C)=0, see [GLM, 2.3], for all open sets D>C.

Proof. Since C is of zero n-capacity, there exists a (C, G)-boundary sequence ;
such that Ve@,—~0 in L"(G). The corresponding (C, G)-generating sequence u;
has by the extremality and (c) the property

2 /'!Vuii”dm = I(u;, G) = In(p;, G) = B /]V(pif”dm.
G G

Hence Vu;—0 in L"(G) and the F-harmonic measure v of C is a constant function.
Since G is regular, C is a proper subset of dG and thus by Remark 2.20, u=0. The
theorem follows.

The condition of Theorem 4.13 is far from necessary. In order to establish a
relatively simple geometric condition we consider two concepts: J-thin sets and
boundary uniform domains.

4.15. Definition. Given two sets CCB in R" and 0<d<1 we say that C is
O-thin in B if there is r,=>0 such that for all y€B and each r€ (0, ry) there exists
a point z€BNB"(y,r) with B"(z, or)nC=0.

4.16. Remark. If B is a smooth k-dimensional submanifold of R" and Cchk
is J-thin in B, then the Hausdorfl-dimension dimy of C satisfies

dimy C = C(k,0) < k,
see e.g. [S, Theorem 3.2].

4.17. Definition. A domain G in R" is called (x, M )-uniform, x=>1, O<M~<
oo, at a boundary point y€oG if there exists a neighbourhood U of y such that for
all xeUnG and all z€dGnB"(x, xR), R=dist (x, 0G), there is a rectifiable path
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(arc length as parameter) y: [0, d]-Gu{z} with (i) y(0)=z, y(d)=x (ii) d=MR,
and (iii) dist (y(¢), 6G)=1/M for 1€[0,d]. A domain G is called boundary uniform
if there are % and M such that G is (x, M)-uniform at each boundary point.

4.18. Remark. The concept of a uniform domain was introduced in [MS].
For equivalent definitions of uniformity see [M] and [GO]. It is not difficult to see
that a uniform domain in the sense of [MS] is boundary uniform. The converse is
not true. For example, the plane domain B™\ {(x1, X): x;=0, x,=0} is boundary
uniform but not uniform in the sense of [MS].

Note also a connection between uniform domains in the sense of [MS] and
o-thin sets. A closed set CCS"™ is é-thin in $"7" if and only if R"\C is a uni-
form domain. A relatively easy proof is left to the reader.

4.19. Theorem. Suppose that G is a bounded boundary uniform domain whose
complement is connected. [f CC0G is a closed 5-thin set in OG, then the total F-har-
monic measure of C is zero.

Proof. Note first that G is a regular domain. Fix a kernel F in G. Let yeC.
By Theorem 4.9 and Remark 2.20 it suffices to show (4.20) Tim,.,u(x)=1-—¢
where u is the F-harmonic measure of C and #'>0 is independent of .

Since G is (%, M )-uniform at y, there is a neighbourhood U of y as in Definition
4.17. Let xeUNG and set R=dist (x,0G). Choose »p,€dG with |y,—x|=R.
Since C is é-thin in JG, we may assume that xR<r, where r, is given by 4.15. This
implies that there is a point z€dGNB"(y,, xR) with B"(z, 3xR)nC=0. Now G
is (¢, M )-uniform at the boundary point y, hence there is a rectifiable path y: [0, d]—
Gu{z} with (i) y(0)=z, y(d)=x, (i) d=MR, and (i) dist (y(z), 0G)=t/M.

Since R"\ G is connected, Corollary 4.7 yields

@.21) u(w) = 12

for weGNB"(z, cr), r=0xR, c=c(n, B/x)€(0, 1). Next we choose numbers 1,, foy ...
and radii r;, ry, ... inductively as follows:

ty = sup {t€[0, d]: y(D€B"(z, cr)},
r=1/2M and
1; = sup {t€[t;_1, d}: y(DEB"(y(t;-1), Fie1))s

ri=14;2M, i=2,3, .... Let k be the first integer 7 such that #,=d. If i<k, then
L=t =4 ,0+12M) = = ,(1+12M) "t = cr(1+1/2M) 1.

i =

Thus
_log (MRfcr) 5 log (M/cdx) Lo

— A &

“.22) k= log(1+1/2M) "~ log(1+1/2M) =~

On the other hand B"(y(1), 2r,)cG, i=1,2, ...,k and we apply Harnack’s
inequality, see [GLM, 4.15], to the F-extremal 1 —u in the ball B"(y(1,), r;). Since
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7t )EB"(y(t), 1), this gives
1 —”('V(tiﬂ)) = e"‘(l—u(y(li)))
for i=1,...,k—1. Here A=0 depends only on n and f/x. By iteration

1—u(x) = 1—u(y(t) = e D(1—uly()).
Now (4.21) yields together with (4.22)

W(x) = 1y e D = 17

where ¢ =t"(n, pla, 8, M, x)=0. This proves (4.20) and the theorem follows.
Since B" is a boundary uniform domain and its complement is connected, Theo-
rem 4.19 has the following corollary.

4.23. Corollary. Suppose that C=S""" is a closed S-thin set in S". Then

the total F-harmonic measure of C is zero in B

4.24 Remarks. (a) By Remark 4.16, dimy C<n—1. It is not difficult to con-
struct -thin sets C in S"~' whose Hausdorff-dimension is arbitrary near n—1.

(b) By Remark 4.18, Corollary 4.23 has an alternative formulation: If Cc< N
is a closed set such that R™\\C is a uniform domain in the sense of [MS], then the
total F-harmonic measure of C is zero.

() Let C={x€8": x,=0}. Then it is easy to see that C is (1/2)-thin in §"~".
Consequently its total F-harmonic measure is zero in B” and also, by Theorem 4.19,
in the domain

G =B\{x€B": x; =X, =...= X,_; = 0} = B\ (;

if n=:3. Observe that the set C, is not of F-harmonic measure zero in G by Theorem
4.10. This kind of situation cannot happen in R>.

(d) Theorem 4.19 does not imply Theorem 4.13 even in B". since there are count-
able closed sets C in S"* which are not é-thin in S"™* for any 4=0.

5. F-harmonic measure and quasiregular mappings

In this chapter we extend the classical principle of harmonic measure to quasi-
conformal and quasiregular mappings. We apply this principle to the growth of a
quasiregular mapping.

Suppose that f: GG’ is a quasiregular mapping, G and G’ domains in R",
see [GLM, 6.1]. I a kernel F satisfies (2)—(e) in G’ then f* F is defined in G by

(F(f0, J0x, /) /()7 h), i T(x, f) # 0,
l!hi", if J(x,/)=0 or f'(x) does not exist.

The kernel £ I satisfies the same assumptions as F, see [GLM, 6.4].

SEE(x, h) =
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We first consider the quasiregular case.

5.1. Theorem. Suppose that G and G’ are regular bounded domains, F satisfies
(@)—(d) in G' and f: G—~G’ is a quasiregular mapping. If C, resp C’, is closed in 0G,
resp. in 0G’, and C’ contains the cluster set C(f,C) of f at C, then

(5.2) o(C, G'; F)f(x) = w(C, G; f*F)(x) for all x€G.

Proof. Let v; be a (C’, G'; F)-generating sequence. Then u;=v;of is an f*F-
extremal in G and wu; satisfies
5.3) chl»my u(x)=1, yeC

m ui(x) = O’ J/E(?G\C,
x>y
hence u;=w(C, G; f¥F) by Theorem 2.18. This yields the desired inequality (5.2).
In the quasiconformal case the inequality can be interpreted as follows.

5.4. Theorem. Let G, G’ and F be as in Theorem 5.1. Suppose that f: G—~G’
is a quasiconformal mapping. If C is a closed set in 0G, then

(5.5 o(C(f,C), G’; F)(f(x) = o(C, G; fFF)(x)

Jor all xcG where C(f, C) is the cluster set of fat C. If the cluster set of f~1at C(f, C)
is C, then (5.5) holds as equality.

Proof. Since f is a homeomorphism, C(f,C) is a closed set in dG’ and (5.5)
follows from (5.2). Suppose that the cluster set of =1 at C(f, C) is C. Consider a
(C, G; f*F)-generating sequence u; and let v;=u;of~1. Then (5.3) holds for v;
and the inequality in (5.5) follows as in the proof of Theorem 5.1. This completes the
proof.

5.6. Remarks. (a) Theorems 5.1 and 5.4 give the classical principles of har-
monic measure [N, pp. 37—38], if f is chosen conformal or analytic, respectively.

(b) Using quasiconformal mappings it is now easy to give an example of a set
Cc0B? such that the F-harmonic measure of C is positive for F(x, h)=|h[?> but the
F;-harmonic measure of C is zero. To construct such a set choose a closed set C —9B?
of linear measure zero and a quasiconformal mapping f: R?-R? such that fB2=B®
and f maps C onto a set of positive linear measure, see [BA]. Now o (fC, B?; F)=0
but for F,=f""¥F and for all ycB2

o(fC, B*; F)(») = o(C, B3, f*F)(f71(») = o(C, B%; F)(f~1(3) =0

since the ordinary harmonic measure of C is zero. It is an open problem if this situa-
tion is typical only in the plane.

5.7. Growth of a quasiregular mapping. The Phragmén—Lindelof principle,
Theorem 3.9, can be used to estimate a quasiregular mapping. However, here we
give a simple estimate in a ball B" based directly on Theorem 3.7.
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5.8. Theorem. Suppose that f: B"—~R" is a quasiregular mapping and C CoB"
is a closed set. Suppose that there are O<m=M—<o such that

I |/ () = M

and -
x_)lg}rsxnl\c f(x)] = m,
then

[fGl = m(M[m)*®
Jor all x€B". Here u=w(C,B"; f*F) and F(x, h)=|h".

Proof. The function v=logr is an F-extremal in R™\ {0} and a sub-F-ex-
tremal in R". By [GLM, 7.10] the function w=v of is a sub-f* F-extremal in B". Now

Imw(x)=logM for ycC,
x>y
xﬁgl_y wx)=logm for yedG\ C.

Hence by Theorem 3.7
w = (log M —log m)u+log m.

This gives the required estimate.

5.9. Remarks. (a) If the set C in Theorem 5.8 is of F-harmonic measure zero,
then Theorem 5.5 yields | f(x)|=m for all x€B". In view of Theorems 4.13 and 4.19
this is a considerable extension of [MR, Corollary 3.9].

(b) Theorem 5.8 also gives the two constant theorem of quasiregular mappings,
since the result can be written in the form

(5.10) log |f(x)| = (1—u(x)) log m+u(x) log M.

The formula (5.10) has been applied by S. Rickman [R] in a special case to study
Lindelsf’s theorem for quasiregular mappings in RS.
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