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ITHARMONIC MEASURE IN SPACE

S. GRANLUND, P. LINDQVIST and O. MARTIO

1. Introduction

The use of the harmonic measure is well established in the theory of harmonic

and analytic functions. In this paper we present a similar concept which is based on

a non-linear Euler equation of the variational integral

I r@,Yu)dm

where F(x,h)xlhl'. The form of F is essential for our applications in conformal

geometry. The purpose of the paper is to show that this concept, called the F'hat'

monic measure, is useful even in the non-linear case in space although it has several

drawbacks, e.g. it does not define a measure.

The paper is a continuation of [GLM] by the same authors and the same nota-

tion andlerminology will be used. After constructing the F-harmonic measure in

Chapter 2 we show that several classical results of the harmonic measure have anal-

ogor, ,trt.-ents for the F-harmonic measure. Among these are Carleman's and

plragm6n-Lindelöf's principles. Sets of F-harmonic measure zeto ate considered

in Chapter 4 and a simple sufficient metric condition for this is introduced. The con-

nection of F-harmonic measures and quasiregular mappings is studied in the last

chapter. We prove the invariance of F-harmonic measures under quasiconformal

mappings. Note that in this respect the usual harmonic measure is not an invariant,

see e.g. [BA], [HP], or even a quasi-invariant. We also present the principle of the

F-harmonic measure for quasiregular mappings. These principles include the classical

invariance properties of the harmonic measure under conformal and analytic func-

tions, respectively.

2. Definitions for F-harmonic measure

2.1. Let G be a domain in the n-dimensional Euclidean space R" n>2. Except.

in § 3.9, G is assumed to be bounded. We only consider domains which are regular in

the following topological sense.

2.2. Definition. The domain GcRn is called regular, if no component of

its boundary äG reduces to a single point.
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2.3. Remark. The topological regularity condition on 0G is used to assure the
solvability of Dirichlet's problem in the class {aqC(G)^Wl(G):ulDG:El0G},
cp a given function in the same class. For more general conditions see [M] and [Maz],
cf. also [cLM, 3.25 (a)].

2.4. Variational integral Ip. Tn the variational integral

fp:Ir(u,D): Yu(x))dm(x), DCG,(2.5) ! '(*'
the kernel F: GXR"*R is assumed to satisfy the following conditions:
(a) Given år1, e >0, there is a compact set K"cG such that m(K")>m(G)-e

and the restriction FIK"XR" is continuous.
(b) For a.e. x(G the mapping h*F(x,h) is strictly convex.
(c) There are constants Q<q=P<.* such that for a.e. x€G

(2.6)

when h€.R".

(d) For a.e. x€G the
(e) For a.e. x€G

{2.7)

function h,-- F (x, l) is differentiable.

F (x, fD - fi1" F (x, h)

when å€.R' and -*<.)<.-.
2.8. Re ma rks. For a thorough analysis of our assumptions, we refer the reader

to [GLM]. In (a) a natural condition of measurability is expressed. The strict con-
vexity (b), i.e. the validity of the inequality

F (x, )'h, + (l - )') h ) = ). F (x, h !) + (l - ),) F (x, h r),

0-<i<1, hr*hr, is needed to establish the uniqueness of extremals with given bound-
ary values. This uniqueness property is essential for the comparison principle

[GLM, 4.18]. The use of (2.7) is exhibited in the factthat ),uis an extremal, whenever
u is an extremal.

2.9. Remark. lf (2.6) and Q.7) are valid with the exponent r replaced by any
exponentp in the range (1, -), most of our theory still holds. For l--p=n tlte proofs
in the regularity theory become more involved.

2.10. Boundary sequences and generating sequences. The construction of the
F-harmonic measure, F satisfying (a), (b), and (c), proceeds via certain auxiliary
sequences.

Let CcilG be any closed set.We say that the sequence (E,) of functions in
C(G)^W:(G) is a (C,G)-boundary sequence, if

l") 1=Er=tq2=... 
=0,

2o) E;lC:1, i:1,2,3,..., and
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3o) to each compact set KcG with (nC:0 there corresponds an index, say

16, such that ErlK:0, when /=r".
Obviously, there exist (C, G)-boundary sequences in great profusion.

Corresponding to each (C, G)-boundary function Erthere is a unique F-extremal
ugC(G)oWl(C) wittr boundary values ul\G:E1l\G. For this existence result we
refer to [GLM ; 3.24]. We call the sequence (u,) (C, G)-generating or, more precisely,
(C, G; F)-generating.

By the comparison principle [GLM, 4.18] the monotonicity expressed in 10)

is reflected on the sequence (ur), i.e.

(2.11) t=u,= uz>...>Q.
Thus the limit

{2.12) t >- u(x): lim ai(x) = 0

exists for every fixed x(G. Actually, the convergence Q.l2) is uniform on compact
subsets of G. This follows from Harnack's principle [GLM, 4.22l.The same principle
also proves the following theorem.

2.13. Theorem. The limit functionu of the (C,G; F)-generating sequence (u;)

is a free F-extremal, i.e., if D is any open set with compact closure in G, then

Ir(u, D) < IpQ;, D)

for all uEc(D1awl(D) with boundary aalues ul\D:ul\D.
Next we show that z is well defined.

2.14. Theorem. The limit function u is independent of the particular choice of
the (C, G)-boundary sequence (E), i.e. all (C, G; F)-generating sequences haae the same

limit function.

Proof. Let (E) and (f) be (C, G)-boundary sequences. Suppose that the corre-
spondin-q (C, G; F)-generating sequences (ut) and (u,) converge to u andu, respectively.

Take e>0. To every index i there corresponds an index.fi such that

Ei*t=tj, in G.

Then also
ui*e>-ur. in G

be the comparison principle (obviously , ui* I is the unique F-extremal with boundary
values g*e). Hence u*e>-u in G. Since e>0 was arbitrary, u>u in G. By sym-
metry a=u. This proves the desired uniqueness u:a.

2.15. Definitions for F-harmonic measure. If Cc\G is any closed set and if F
satisfies (a), (b), and (c), then the previous construction defines the unique free
F-extremal u€C(G)aWj1C; via (C, G;F)-generating sequences.
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2.16. Definition. The limit function u of the (C,G; F)-generating sequences

is called the F-harmonic measure of C with respect to G.This is denoted by

u : a(C, G; F).

2.17. Remark. It is easily seen that the ,F'-harmonic measure o(C,G; F)
formally can be defined via the generating process without any regularity assumptions
at all on åG. Then the boundary values of the (C, G; F)-generating functions must be
considered in the |Iz]-sense. We could also allow C to be a more general set. However,
such generalizations are not essential in this paper.

In certain applications an equivalent definition for a(C, G; F) seems to be natu-
ral. To this end, fix a closed set CcAG and consider the class F(C,G) of all
F-extremals u€C(G)aW|(G) such that u>0 and alC>l.In particular, this class

contains all (C, G; F)-generating sequences.

The following theorem can be regarded as a definition for the F-harmonic meas-

ures.

2.18. Theorem. Let u:a(C,G; F). Then

_fw each x€G.

Proof. Obviously,
Fix x€G. There

u (x) - inf {, (r) : ue ,q (C, C)}

u(x) = inf, u (x) for every x€G .

are functions u#,?(C, G) such that

,ry3 
ui@)- inf {u(x): u(g(c, G)}.

Let (E) be a (C,G)-boundary sequence. Then also min{91,u1}, min {rpr,"-1,r2\,
min {Er, u1,:a2,uE},... is a (C, G)-boundary sequence. The (C,G; F)-generating
ftrnctions ui corresponding to this latter sequence certainly satisfy the inequality
ui<ui in G, since u;l\G=url\G. Thus u(x):linlur(x)=limar(x), whence u(x)=
inf,a(x). This concludes our proof, since x€G was arbitrary.

2.19. Remark. We can allow the class g(C,G) to contain all super-F-ex-
tremals, cf. [GLM, Chapter 4], o-€C(G)aW'"(G) such that z >0 and ulC>|.

2.20. Remark. For each y€åG\C, limr*- ui(y):O and since z; decreases

to the F-harmonic measure u of C,
limot(x):0

for y6B@\9. In 4.3 we present quantitative estimates for this.
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3. Classical principles

Some classical principles are extended to the F-harmonic measure. Most of these

extensions are straightforward but some of them, e.g. Phragmdn-Lindelöf's prin-
ciple, have a wide scope of applications, especially if Chapter 4 is used.

3.7. Basic principles. The firsttheorem is an immediate consequence of Theorem
2.18. We assume that Fsatisfies (a)-(c), unless otherwise stated, in a bounded regular
domain G.

3.2. Theorem. Let CrcC, be closed sets in 0G. Then t»(C1,G;F)<
a(Cr,G; F).

3.3. Theorem. Suppose that the sets

Cr)Cr)..., C : oCi,
are closed in 0G. Then

a(Ci, G; F) * ot(C, G; F)

uniformly on compqct subsets of G.

Proof. Write ur:a(Ct,G; F), i:1,2,..., and u:a(C,G; F). By Theorem
3.2

ut>_ ua>_,..> Lt.

Fix a compact set KcG. Given e>0 choose a (C,G)-boundary function E such
that

sup la(x) - u*lx)l -: el2.

Here u* is the F-extremal with boundary values E.
There is an integer lo such that the F-extremal u,y,0:e*e12, is in g(C4,G)

and thus, by Theorem 2.18,
U;oE Uq,: uElel2.

Hence for i>io
Lti= ilio< u**ef2 <. u*el2*el2

in K and since ur>-u in K, we have proved the uniform conver-qence on compact
subsets of G.

The classical principle of Carleman holds for F-harmonic measures.

3.4. Theorem. Suppose that GL and G, are regular domains. If Cc\Gra\G,
is closed and GrcGr, then

co(C, Gr; F) = tt(C, Gz: F)
in G1.

Proof. If u(F(C, Gr), then ulGr(?(c, Gr). Hence Theorem 2.18 yields the
desired result.
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3.5. Comparison principles. An upper semi-continuous function u: G *Ru {- -}
is called a sub-F-extremal if for all domains DccG and all F-extremals h€C(D)
the condition h>u in åD implies h>u in D. The local comparison principle [GLM,
4.18] has a trivial improvement. If a is a sub-F-extremal in a bounded but not neces-

sarily regular domain G, w an F-extremal or more generally, a super-F-extremal, see

[GLM, Chapter 5], in G and eiter t) or w is bounded with

limw(x) = Iimo(x)

as x in G approaches any point in åG, then w>u in G. If this principle is applied to a
(C, G)-generating sequence, the following corollary is obtained.

3.6. Coroll ary. Let C be a closed set on the boundary of abounded regular do-
main G. Suppose that u is a sub-F-extremal in G such that

Ifin u (x)
x *)'

IIm u(x)
x-+y

-for y€AG\c,

/or y( C.

<0

=1"

Then u=co(C.G;F) in G.

If a little more is assumed on F, Corollary 3.6 can be improved.

3.7. Theorem. Suppose that F satisfies the assumptions (a)-(c) and (e) of
Chapter 2 in G and that C c)G is closed. Let u be a sub-F-extremal in G such that

=M
= ttt

-fo, )'€ c,

-fo, l'€åG\c,
vvhere M>m. Then

(3.9)

in G.

Proo.f. We may assume M>-m. Then u':(z'-nt)l(M-nt) is a sub-F-extremal.

By Corollary 3.6, w=a(C,G; F) in G, i.e. (3.8) holds.

Because of the strict convexity assumption (b) each F-extremal is also a sub-

F-extremal, cf. [GLM, 4.19]. Hence Theorem 3.7 holds for F-extremals as well.

3.9. Phragmön-Lindelöf's principle. Suppose that GcR" is an unbounded
domain with non-empty boundary and reguiar in the sense of Definition 2.2. Let
a(x;r) denote the value of ro(Gn^§'-'7r1,GoB"(r); F) taken at the point x€G,

lxl =r. Note that the open set Gn.B'(r) is not necessarily connected, but this plays

no role in the definition of co(x;r). The open set GaB"(r) is always regular.
With an obvious modification of (a) for an unbounded domain we assume that

f' satisfies (a)-(c) and (e) in G. Phragmdn-Lindelöf's principle now takes the fol-
Iowing form.
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3.10. Theorem. Suppose that u is a sub-F-extremal in G w,ith ffi,*_ru($<A
for all yeAG. Then, either u<O in G or

groh,s so fast that
(3.11)

-fo, euery x€G.

Proof. Suppose that
Since

Theorem 3.T yields for

Thus (3.1 t) follows for
If x, y€G, then for

constant C independent

M(r) - r,r:lg nuu(*)

$ lM(r)at(x; r)l > o

u(x)>O at some point xs€G.

M(r) - r,r:19 ,o'(x)'
r= lxrl

u(x) = l,[ (r)o(xo, ,).

x:xo.
all suflfrciently large radri r Harnack's inequality gives &

of r such that

a(x, r) 3 C a(y, r).

Hence (3.11) is valid at every point xQG, if it holds for some point y€G. This
completes the proof.

3.12. Remark. (a) Simple examples show that (3.11) is best possible.
(b) v. Miktjukov [Mik] has also studied theorems of Phragmdn-Lindelöf type for
regular subsolutions of elliptic equations.

4. Sets of Fharmonic measure zero

4.1. Definitions. If Gc.R' is a regular domain and Cc\G a closed set,
then ct(C, G; Ft) may be zero fot a kernel F1 satisfying (a)-(e), but co (C, G; Fr) *0
for another kernel F, satisfying the same assumptions, see Remark 5.4 (b). Hence the
following definitions will turn useful.

4-2. Definition. Let G be a regular domain and Cc\G a closed set. We say
that the F-harmonic measure of Cwith respect to G is zero if a(C,G; F)(x):g
for all x(G. The set C is said to be of total F-harmonic measure zero if the F-har-
monic measure of C with respect to G is zero for all kernels F in G satisfying (a)-(c)
and (e). Note that in the last definition we do not restrict the ran-ue of the values
Qaot<B<6.

The purpose of this chapter is to study sets of total F-harmonic measure zero.
We assume that G is a regular domain in ,R' and that F satisfies (a)-(c) and (e) in G"
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4.3. Boundary estimate.In the sequel we need an estimate for an F-extremal near

the boundary of G. Similar, and even stronger, estimates have been derived in many
papers, see e.g. [Maz, Theorern, P. 51]. However, our proof is elementary.

4.4. Lemma. Suppose that uqC(G) is a non-negatiue F-extremal in G, xo(\G,
and u(x):O for x(\GaBo(*,, R). If S'-'(ro, t) meets 3G for atl t€(0, R), then

sup Lt <
Bn(x o,t)n G

The constant c depends only on n and Blu.
Proof. Let 0</<R. 3s1 ,:l[m. We may assume ro:0. For s=0 write

D(.s):$n1*o,s)nG and D:D(R). Let E?C;(B"(R)) such that 0=E=1 and

E@):1 for x€U"(r). SeI" o:u-E"u. Then t{(D1 and t:u in|D. Now

Vz;:(l -En)Yu-nEn-7uYE :Q - E\Yu+E' ( -L uY,pl, whenever E(x)>0 and( q ')'
the F-extremality of ar gives together with (b) and (c)

Ip(u, D) 1 lp(u, O1 = [ {t - E') F(x,Yu)dm a §"" { lul" lYEl' dm.

Now EIB'(r):|, hence

Iu(r,»(r)) s frn" (s1n ,)'

all admissible functions for the corldenser (tr" (R) , Bn (, )), see

,,tpu(ros+)-'

.f tvvl" dm.

u)"rn-, (,n+)'-'

t*) 
ru'(s%p ,)n,,,-,[,o* +) 

'[,o*+)'-"

Letting E vary over

IGLM, 2.37, we get

(4.5)

This estimate is similar to the standard estimate, see [GLM, 4.2].

For each s(lt,r) choose a spherical cap C(x",g") on ,S"-'(s;nG centered at
a point x" where

u(x^\: max u(x\
x€§"-r(s)nC

and e (x", g") meets åG. This is possible by the assumption. Now n is monotone,
hence rz(x")=u(x",) for s=s'. Thus [GLM,2.7l yields

Io(r,P(r)) '< §n"(rp

5An { io uln ctn 1 An
D(r)

('", +)-'

where (4.5) and (c) have also been used. This gives the result si11ss v:{fr.
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4.6. Remark. The argument used in [GLM, 4.7] yields a Hölder-estimate

(4.7) ,*jltno u = c' strp u',t"

where e:e(n, §la). However, we need not the strong version (4.7). Note also that
the proof of Lemma 4.4 implies that

u(W)(GoBo(xo,t)) for l((0, Ä).

Lemma 4.4. and the definition of a (C,G; F)-generating sequence give

4.7. Corollary. Suppose that a point xo€ilG satisfies §n-t(ro, t)a0G*0
for all l€ (0, R). Let C be a closed set in 0G with B"(xo, R)nC:O and let u be the

F-harrnonic tneasure of C. Then there is t<,:x(n,Bla)>O such that u(x)--ll2 for
xQB'(xs, xR)aG.

4.8. Sets of F-harmonic measure zero.We begin with a sirnple result where the
condition (e) plays an essential role.

4.9. Theore m. A closed set C cAG is of F-harmonic measure zero if and only if
(4.10) .!g,o*1C, G;F)(x) = 1.

Proof. The condition (4.10) is clearly necessary. To prove that it is also suf-

ficient set u:a(C,G; F). Write ,t:supe u. By (4.10), /"<1 since a is monotone.
Now F satisfies (e), hence if )"=0, ul)" is an F-extremal and by Lemma 3.6, uf )"<u
in G. This shows that u:0. The theorem follows.

To the other direction it is easy to give a simple suffi.cient condition.

4.10. Theorem. Suppose that a closed set C in 0G has d. non-empty interior
with respect to 0G. Then the F-harmonic nTeasure of C is not zero,

Proof. Consider the (C, G)-generating sequence ui. By (e), u,:1-ui is an

F-extremal in G. Let x6€intp6 C. Then there is R=0 such that the assumptions of
Lemma 4.4 are satisfied for u;. Consequently,

u{x) = 112

for all x(B'(xo,l)nG for some l((0, R). Thus zr,>1i2 in the same set. This
shows that the F-harmonic measure u of C is not zero.

The next theorem states that the F-harrnonic measure is a metric outer measure

on the zero level.

4.11. Theorem. Suppose that CrandCrare closed sets of F-ltarmonic measure

zero in 0G. If CpCr:A, then CrvC, is of F-harmonic measure zero.

Proof. Letube the F-harmonic measure of CrvCr. By Theorem 4.10, CrvCr#
åG. For O<t<l consider the set A,:{xeG: u(x)>t}. Since z is monotone and
C1 and C, are disjoint, Remark 2.20 gives a component A of A, for some I such that
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either ÄcGvC1 or ÄcGvCr. Assume, for example, that ÄcGvCr. Set

E@):u(x)-t for x€A and E(x):0 for x€G-.t,\ 4. The function g is a regular
sub-F-extremal, cf. [GLM, 5.4], and not identically zero. On the other hand

r*-Er*l I l' r€äÖ'q'
*-y,"E.l , yeCt.

By the comparison principle, Corollary 3.6, E=u1 where zt is the .FLharmonic meas-

ure of C1. Thus 9=6 and u=t. By Theorem 4.9the F-harmonicmeasure of CrvC2
is zero.

4.12. Sets of total F-harmonic measure zero.We give two sufficient conditions
for a closed set Cc\G to have a total F-harmonic measure zero. In general, it
seems difficult to exhibit simple necessary and sufficient conditions for this.

4.13. Theorem. Suppose that Cc)G is of zero n-capacitl'. Then the total
F-harmonic measure of C is zero.

4.14. Remark. We recall that a compact set CcRn is of zero n-capacity if
cap,(D,C):O, see [GLM, 2.3], for all open sets D:C.

Proof. Since C is of zero n-capacity, there exists a (C, G)-boundary sequence g,
such that YEi*O in L"(G). The corresponding (C, G)-generating seque{Ee ui
has by the extremality and (c) the property

5Ie(u,,G) = Ir(8,,G)= § f tVrt,\"clm.

Hence Yur-g in L"(G) and the F-harmonic measure u of C is a constant function.
Since G is regular, C is a proper subset of 3G and thus by Remark 2.20, u=0.The
theorem follows.

The condition of Theorem 4.13 is far from necessary. In order to establish a
relatively simple geometric condition we consider two concepts: ä-thin sets and
boundary uniform domains.

4.15. Definition. Giventwosets CcB in.R"and 0<ö<1 wesaythatCis
ö-thinin.B if there is ro>0 such that for all l'(B and each r€(0,r0) there exists

a point zQBoB"(y,r) with Bn(2,ör)oC:0.

4.16. Remark. If .B is a smooth k-dimensional submanifold of Å' and Ccb
is d-thin in B, then the Hausdorff-dimension dim, of C satisfies

dimsC=C(k,ö)-k,
see e.g. [S, Theorem 3.2].

4.17. Definition. A domain G in.R'is called (x,M)-uniform, %>1,0-M<
*, at a boundary poifi y(AG if there exists a neighbourhood U of y such that for
all x(UaG and al z€AGnB"(x,xR), R:dist (x,3G), there is a rectifiablepath

" ! lY u,l" d,n
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(arc length as parameter) y: [0, dl*Gv{z} with (i) y(0):2, y(d)-x (1i) el<MR,
and (iii) dist (f (r), }G)>tlltt for l([0, r/]. A domain G is calledboundarl,uniform
if there are x and M such that G is (x, M)-uniform at each boundary point.

4.18. Remark. The concept of a uniform domain was introduced in [MS].
For equivalent definitions of uniformity see [M] and [Go]. It is not difficult to see
that a uniform domain in the sense of [MS] is boundary uniform. The converse is
not true. For example, the plane domain B\(rr, xr): ,q>0, xa:0) is boundary
uniform but not uniform in the sense of [MS].

Note also a connection between uniform domains in the sense of [Nfs] and
ä-thin sets. A closed set Cc,S'-l is ä-thin in ,S'-1if and only if Åo\C is a uni-
form domain. A relatively easy proof is left to the reader.

4.19. Theorem. Suppose that G is a bouncled boundary unifortn domain those
complement is connected. If cc\G is q closed ö+hin set in 0G, then the total F-har-
monic measure of C is zero.

Proof. Note first that G is a regular domain. Fix a kernel F in G. Let y€C.
By Theorem 4.9 and Remark 2.20 it suffices to show (4.20) M**ru(x)=l-s,
where u is the F-harmonic measure of C and l'>0 is independent of y.

since G is (x, M)-uniform at y, there is a neighbourhood u of y as in Definition
4.17. Let x€unG and set .R:dist(x,}G). choose yf\G with lyr-xl:R.
Since c is ä-thin in 0G, we may assume that xR<ro where ro is given by 4.15. This
implies that there is a point z€\GaB"(yr, z.R) with Bn(2,öxR)nC:fi. Now G
is (tt, M)-uniform at the boundary point y, hence there is a rectifiable path y: lo, dl*
Gv{z} with (i) "t(0):2, .t(d):x, (ii) d<MR, and (iii) dist (7(r), 0c)=7110.

Since lR\G is connected, Corollary 4.7 yields

(4.21) u(tv) = 112

for ry€GnBn(2, cr), r:öxR, c:c(n, §la)€(0, 1). Nextwechoosenumbers tL) tz) ...
and radii 11, rz,, .". inductively as follows:

tr : sup {t([0, d): yQ)q8,,(2, cr)],
rr:trl2tr4 and,

ri : sup {t(.lti_r, d): y(t)EU,,(y(ti_t), ,,_r)},

ri:tJ2M, i:2,3,.... Let kbethe first integer i such that to:f,. If i=7s, 11"n

Thus

t4.22) k =
los (MRlcr) lcrg (fr{ I cöx) rål

tr/l

| 

- 

vlos (1 + 1lzM) los (1 + 1lZM)

On the other hand B"(y(tr),2rr)cG, i:1,2, ...,k and. we apply Harnack's
inequality, see [GLN{,4.15], to the F-extremal l-u in the ball B"(1ft), r,). since
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y(t*r)(B(t(t,), ri), this gives

1 - u(y (t,* r)) = e - 
^ 
(l - u (Y (t )))

for z':1, ...,k-I . Here ,[>0 depends only on n and frla.By iteration

l-u(x) : t-u(y(t*)) >- e-^$-r)(l- u (?(l'))).

Now (4.21) yields together with (4.22)

1

u(x) = I -| e-^<*-1) - 1 - t'

where t':t'(n,§la,ö,M,x)>-Q. This proves (4.20) and the theorem follows.

Since Bn is a boundary uniform domain and its complement is connected, Theo-

rem 4.19 has the following corollary.

4.23. Corollary. Suppose that CcS'-1 is a t'losed ö'thin set in So-1. Then

the total F-harmonic measure of C is zero itt 8".

4.24 Remarks. (a) By Remark 4.16, dimuC'=n- 1. It is not difficult to con-

Struct ä-thin sets C in ,S'-1 whose Hausdorff-dimension is arbitrary near n-1.
(b) By R.emark 4.18, Corollary 4.23 has an alternative formulatiou: If Cc,So-l

is a closed set such that Ä'\C is a uniform domain in the sense of [l\4S], then the

total ,F'-harmonic measure of C is zero.

(c) Let 6l: {r€^S"-1: x,:0}. Then it is easy to see that C is (1i2)-thin in 'S"-1"
Consequently its total F-harmonic measure is zero in B" and also, by Theorem 4.19,

in the domain
G: B'\{x(Bo: xr- xz:...: xr-r - 0}: B"\C,

if n>.3. Observe that the set C, is not of F-harmonic itlersurc' zero iu G by Theorem

4.10. This kind of situation cannot happen in .R2.

(d) Theorem 4.19 does not impty Theorem 4.13 even in 8". since there are count-

able closed sets C in,S'-1 which are not ä-thin in S"-'for an1' D=0.

5. Fharmonic measure end quasiregular mappiElg§

In this chapter we extend the classical principle of harmonic rueasure to quasi-

conformal and quasiregular mappings. We apply this principle to the growth of a
quasiregular mapping.

Suppose that f: G-,G' is a quasiregular mappin-e, G and G' domains in Ro,

see [GLM, 6. l]. If a kernel F satisfies (a)-(e) in G', then f+ F is defined in G by

fo F(x, D : {ii,r{:.r;:r:,rl,r,;:,r:? ::,,rå 
,il.lli 

l;,,,.
The kernel /+F satisfies thc same assumptions as F. see [GLM, 6.4].
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We first consider the quasiregular case.

5.1. Theorem. Suppose that G and G' are regular bounded domoins, F satisfies
(a)-(d) in G' and f: G*G' is a quasiregular mapping. If C, resp C', is closed in 0G,
resp. in 0G', and C' contains the cluster set C(f,C) of f at C, then

(s.2) c»(C',G'; D(f@))=-a(C,G; f+F)(x) for alt x(G.

Proof. Letuibe a (C',G'; F)-generating sequence. Then u,:urof is an f+F-
extremal in G and a; satisfies

(s.3) !*u,(*): t, y€C

liro a,(x) = 0, y€åG\C,

hence ui>a(C, G; fo n by Theorem 2.18. This yields the desired inequality (5.2).
In the quasiconformal case the inequality can be interpreted as follows.

5.4. Theorem. Let G,G' and F be as in Theorem 5.1. Suppose that f: G*G'
is a quasiconformal mapping. If C is a closed set in 0G, then

(5.5) *(c (f, c), G' ; F)(f (*)) > a)(c, c; f+ rXr)

for all x€G where C (f, C) is the cluster set of f at C . If the cluster set of f-t at C (f, C)
is C, then (5.5) holds as equality.

Proof. Since/is a homeomorphism, C(.f,C) is a closed set in åG'and (5.5)
follows from (5.2). Suppose that the cluster set of/-l atC(f,C) is C. Consider a
(C,G; f+F)-generating sequence u, andlet ur:y.o/-t. Then (5.3) holds for ui
and the inequality in (5.5) follows as in the proof of Theorem 5.1. This completes the
proof.

5.6. Remarks. (a) Theorems 5.1 and 5.4 give the classical principles of har-
monic measure [N, pp. 37-381, if / is chosen conformal or analytic, respectively.

(b) Using quasiconformal mappings it is now easy to give an example of a set
Cc.ilBz such that the F-harmonic measure of C is positive for F(x, h):lhlz but the
F.-harmonic measure of C is zero. To construct such a set choose a closed set C c0B2
of linear measure zero and a quasiconformal mapping f: Rz*Rz such that fBz:Bz
and/maps C onto a set of positive linear measure, see [BA]. Now ar(./C', 82; F)>Q
but for Fr-J-l+ F and for all y(Bz

a(.fc, B'; F)(y): @(C, B'; f+Fr)(f-'(y)) : a(C, 82; F)(/-1(/» : 0

since the ordinary harmonic measure of C is zero.lt is an open problem if this situa-
tion is typical only in the plane.

5.7. Growth of a quasiregular mapping. The Phragmdn-Lindelöf principle,
Theorem 3.9, can be used to estimate a quasiregular mapping. However, here we
give a simple estimate in a ball B'based directly on Theorem 3.7.
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5.8. Theorem. Supposethat f: Bn*Rn isaquasiregularmapping and Cc\B"
is a closed set. Suppose that there are O<m<llf<.* such that

Wlf,)l = lr
and 

,*F,p"." lf(x)l = m,

thm
lf@)l=_ m(Mf m)"t*t

lor all x€Bo. Here u:a(C,B"; f+F) and F(x,h):lhl".

Proof. The function a:logr is an F-extremal in n\{0} and a sub-F-ex-

tremal in ,Ro. By [GLM, 7.10] the function r' :a of is a suby'+ F-extremal in B'. Now

Iim-w(x) <logM for y€C,
x+y

Hr(r) =logm for /€AG\C'

Hence by Theorem 3.7
w = 

(log M-logm)u*logm.

This gives the required estimate.

5.9. Remarks. (a) If the set C in Theorem 5.8 is of F-harmonic measure zero,

then Theorem 5.5 yields lf(x)l=m for all xQ.B". In view of Theorems 4.13 and 4.19

this is a considerable extension of [MR, Corollary 3.9].

(b) Theorem 5.8 also gives the tsvo constant theorem of quasiregular mappings,

since the result can be written in the form

(s.10) log l/(x)l = (l-z(x)) togm*u(x)tog M.

The formula (5.10) has been applied by S. Rickman [R] in a special case to study

Lindelöf's theorem for quasiregular mappings in R3.
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