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ON THE HARNACK CONSTANT AND THE BOUNDARY
BEHAVIOR OF HARNACK FUNCTIONS

MATTI VUORINEN

1. Introduction

Let G be a domain in R, n=2, G#R", R, ={x€R': x>0} and let u: G~
- R, u{0} be a continuous function. Then u is said to satisfy the Harnack inequality
or to be a Harnack function if there are constants 2€(0, 1) and C,;=1 such that the
inequality
D T, 1) = Ca i, )
holds whenever B"(x, r)CG. Let now F#0 be a compact set in G. It is well-known
that there exists a smallest constant C(F)=C, depending only on n, 4, C;, and
F (cf. [7, p. 16]) such that for all u satisfying (1.1)
(1.2) max u(z) = C(F) mFin u(z).

The number C(F) will be termed the Harnack constant of F. The class of functions
satisfying (1.1) is wide: it includes non-negative harmonic functions as well as non-
negative solutions of some elliptic equations (cf. [7]). In particular, the partial dif-
ferential equations associated with quasiregular mappings belong to this family of
elliptic equations ([9], [15]).

The purpose of the present paper is to study the boundary behavior of Harnack
functions at an individual boundary point. The main tool we will use is a sharp upper
bound of the Harnack constant proved in Section 3. Some related upper bounds in
the case of harmonic functions were proved by K6hn [11] and Beleckaja and Landkof
[3]. The upper bound of C(F) in Section 3 depends on #, 4, C;, and the quasihyper-
bolic diameter of F. Preliminary results about the quasihyperbolic metric are given
in Section 2. The main results are presented in Sections 4 and 6. In Section 4 we as-
sume thata Harnack function of R’, tends to O either through a sequence of points con-
verging to the origin or through a curve terminating at the origin, and wish to prove
that the function has an angular limit 0 at the origin. Several examples are constructed
to show that the results established are the best possible and to illuminate various
phenomena in the boundary behavior of Harnack functions. In Section 5 we study
functions satisfying the following uniform Harnack inequality: (1.1) holds for each
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2€(0,1) with C,~1 as 2—0. These functions will be characterized by means of
uniform continuity with respect to the quasihyperbolic metric. The results of Section
4 do not hold if the sequential or asymptotic limits considered equal «>0 instead
of being 0, not even for functions satisfying the uniform Harnack inequality. Moti-
vated by this observation we shall discuss the notion of an approximate limit in
Section 6 and prove that a function satisfying the uniform Harnack inequality and
having an approximate limit «=0 has an angular limit o.

Some results in this paper, including Theorems 4.5 and 6.13, although analogous
with known boundary properties of some other classes of functions (cf. [4], [13], [17]),
are perhaps new even for harmonic functions in the plane. A Harnack function need
not satisfy a maximum principle, i.e., it need not be monotone in the sense of Lebes-
gue. In [19] some results related to this paper were proved in the case of mo-
notone ACL" functions with a finite Dirichlet integral.

2. Preliminary results

2.1. For x€R", n=2, and r=0 let B"(x,r)={z€R": |z—x|<r}, $" '(x,r)=
dB"(x, 7). B"(r)=B"(0,r), S" *(r)=0B"(r), B"=B(l), and " '=0B". The stand-
ard coordinate unit vectors are e, ...,e,. If ACR", let A, ={x=(x, ..., x,)€A:
x,>0}. The hyperbolic metric ¢ in R’ is defined by the element of length do = |dx|/x,.
If xéR". and M=0, we write D(x, M)={z€R",: ¢(z, x)<M}. A basic fact is
that the hyperbolic balls are euclidean ones, and for instance

2.2) D(te,, M) = B"((¢ cosh M)e,, t sinh M)

for t+=0. Let x,y€R".. As in the case n=2 [2, Theorem 6.3.1 (ii)], we have the
formula

; g x—yP
2.3) cosh o(x, y) =1+ Ty,

The geodesic curve joining a€ R’ to b€ R’ lies on an circular arc through a and b,
perpendicular to dR", . Making use of this fact one calculates for «€ (0, 7/2)

z
5

2.5. Quasihyperbolic metric. Let GCR", G=R", be a domain and q, b<G.
The quasihyperbolic distance between a and b is defined by

2.4) o(e,, (cos )e, +(sin v)e,) = —log tan

ke (. b) = inf f dist (x, 0G)~1ds.
7

where the infimum is taken over all rectifiable curves yCG with a€y, b€y
(Gehring—Palka [6, p. 173], Gold’$midt—Suvorov [8, p. 61]). Set kg(4)=
sup {kg(x,»): x,v€A} for ACG and d(z)=dist (z,dG) for z€G. In [6,2.1]
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it was proved that

d(y)
log—m s
Ix—y|
d(x) )’

for x, y€G. Here equality holds if G=R" and x=e,, y=te,, =1, and hence the
bounds are sharp. For x€G and y€B"(x,d(x)) we have [18, 2.11]

kG(x7 J/‘) =

(2.6)

ke ) = log (14

2.7) kg (x, ) = log [HTXI)X__I—%I:W)-

2.8. Remarks. (1) If G=R"., the quasihyperbolic metric is the same as the
ordinary hyperbolic metric g. If G=B", then ¢/2=kg.=g, where g is the ordinary
hyperbolic metric of B", do=2|dx|/(1—]|x]?).

(2) If y is a curve in G, then kg(y)=s(y)/d(y, 0G), where s(y) is the euclidean
length of y.

(3) If FcG 1is compact and connected, kg (F) has an upper bound in terms of
d(F)/d(F, 0G) and the dimension n (cf. [18, 2.18], [16, 6.9]).

2.9. (a, b, 1)-admissible families. Let GCR", G#R", be a domain and let
a, beG, 2€(0, 1). A family {B"(x;, r,): i=1, ..., p} of ballsin G is said to be (a, b, 7.)-
admissible [18, 2.13] if the following conditions are satisfied:
@ a€B"(x,, iry), bEB"(x,, Ar,),
(i1) B"(x;, Ar)OB (X; 415 Arigy) # 0 for i=1,..,p—1.

The next lemma gives estimates for the number of balls in an (a, b, A)-admissible
family, and it is a modification of the chaining lemma in [18, 2.14].

2.10. Lemma. Let a,beG and 7€(0,1).

(1) Every (a, b, /)-admissible family contains at least k¢(a, b)/(2log (1/(1—7/)))
balls.

(2) There exists an (a, b, 2)-admissible family with at most 1+kg(a, b)/c, c=
log ((1+32)/(1+2)), balls.
Proof. Part (1) was proved in [18, 2.14]. To prove (2), lety be a rectifiable geo-

desic curve of the quasihyperbolic metric with a, b€y [5, Lemma 1]. Let u€(0, 1).

Set x;=a and let X,, ..., X,, x,,,=Db be points on y such that

Xj=xjerl = pd(xp), j=1,..p=1 [x,—x, 41| = ud(x),

and such that x;.;, 1=j=p—1, is the last point in 9B"(x;, ud(x;))ny when we
traverse from a to b along y. Define z;=(x;+x;,1)/2, r;=|x;—x;.1//2, D=
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B'(z,,d(z;)).j=1, ..., p. We want to find a condition on grunder which {D;: j=1, ..., p},
is (a, b, A)-admissible. A sufficient condition is
B'(z;, 2d (z))NB" (211, Ad(z;41) # 0,
which is satisfied, provided that
2d(z) = r; = pd(x))[2.
On the other hand, d(z;)=d(x;)(1—p/2). Thus a sufficient condition is A(1—p/2)=
=p/2. We choose u=22/(1+1). By (2.6) we get

_ |xj—xj+1I] B ( ud(xj)) B 1432
kG(x,-,xj+1):log[1+—m— = log|1+ acx) = log 57

We now obtain the estimate

B ds p-1 1+34
kg(a, by = yfm = j;; kg(xj, X;11) z(p——l)logm.

The desired upper bound for p follows from this estimate.

2.11. Remark. If a, b6G=R", then the estimates in Lemma 2.10 can be
improved as we will now show. By virtue of (2.2) we have for x=(xy, ..., x,)€R",

147
[

(2.12) o(B"(x, Jx,)) = log

By the proof of [18, 2.14 (1)] it is clear that the lower bound 2.10 (1) can be replaced
by o(a, b)/log ((1+/1)/(1—).)). Denote by J[u, v] the geodesic segment of the
hyperbolic metric of R". joining u€R’, to véR’ . For the upper bound choose
X1=a, X3, ..., X,, X,31=b on J[a, b] such that

. 1+
o(xp, x) = (j=Dlogg—-, j=2....p.

147

1—7°

Q(xpa xp+1) = log
Let z;€J[x;, x;.4], =1, ..., p, be such that

.1 1+
06 2) = (j- 5 loe s

/.

Then {B"(y;,y;): j=1,...,p} is (a, b, })-admissible. Here y;, is the n-th coordi-
nate of y; and y; is such that

B"(y;y Ayn) = D(Z» i]ogi)

J2 g ) 1—7

(cf. (2.2)).



On the Harnack constant and the boundary behavior of Harnack functions 263

It follows that

(2.13) p = 1+o(a, b)/log

"

147
1—-1°

which is better than the bound given by 2.10 (2).

3. An upper bound for the Harnack constant

In this section we shall apply Lemma 2.10 to produce an upper bound of the
Harnack constant. We also give several examples of Harnack functions, and, in
particular, introduce a Harnack function uy associated with a relatively closed set
FcG. With the aid of the functions uy we show that the upper bound of the Harnack
constant is sharp for G=R".. We first give some examples of Harnack functions.

3.1. Examples. (1) A continuous function u: G—~ R, with O<m=u(x)=M < =
for all x€G satisfies (1.1) with C,=M/m.

(2) Let u: G=R, be defined by u(x)=Ad(x,dG)*, A=0, a=0. Because
(1—-2d(»)=dx)=(1+2)d(y) for x€B'(y, 2d(»)), u satisfies (1.1) with C,=
((1+2/A=1)".

(3) Let ECG be closed. Then v: G—~R,, v(x)=d(x)/(d(x)+d(x, E)) satis-
fies (1.1) with C,=(1+21)/(1-1).

(4) Non-negative harmonic functions satisfy (1.1) with a constant C, such that
C,—~1 as -0 (cf. [7, p. 28, 2.6)).

3.2. Lemma. Let u: G-R, and v: G—~R, be continuous functions. If u
satisfies (1.1), then also (1) au®+p (x, f=0, p€R) and (2) u/(u+1) satisfy it. (3) If
O=<u(x)<1 for x€G and u satisfies (1.1), then also —log u does. (4) If there exists
t€(0, 1) such that t=u(x)/v(x)=1/t for x€G and u satisfies (1.1), then also v
satisfies it. If both u and v satisfy (1.1), then (5) uv, (6) max (u, v), min (u, v), (7) u+v
satisfy it.

The proof is a simple verification left to the reader.

3.3. Lemma. Suppose that u: G—~R {0} satisfies (1.1) and FCG is com-

pact. Then
max u(z) = C(F) mFin u(z); C(F) = C},

where t=kg(F)/log (1+34)/(142)). In particular, u=0 if u(x,)=0 for some
X€G. If G=R', one may choose t=g(F)[log (1+2)/(1—2%)).

Proof. Let a and b be the points in F where u attains its greatest and least value
in F, respectively. By 2.10 and (2.13) there exists an (a, b, )-admissible family
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{BJ: j=1, ...,p}, Whel'e BJ=B"(xJ, rJ) and p§1+t. FIX xJEB"(xJ, /?J'J)ﬂB"(xJ+1,
Arji1). By (1.1) we get

u(a)én}gx u(z)=C, r%iln u(z)=C,u(x)=C, max u(z)=Cj n}lzizn u(2),
where E;=B"(x;, Ar;). This yields the desired bound.
3.4. Corollary. Let u: G—~R, {0} satisfy (1.1). Then
Cit™u(y) = u(x) = Ci*'u(y)

Jor all x,ycG where t=kg(x, y)flog (1+34)/(1+24)). For G=R", t=g(x,»)/
log ((1+2)/(1—2)).

3.5. Remark. An estimate related to 3.4 was obtained by Beleckaja and Land-
kof [3] in the case of harmonic functions. The upper bound in [3] is given in terms of
the numbers

B(x, y) = inf {s()/d(y, 0G)},
B(F) = sup {B(x, y); x, y€F},

where the infimum is taken over all rectifiable curves ycG. Let now G=R",
Fi,={e,, te,}, 1€(0,1). The upper bound log C(F,)=np(F,)=n(1—1)/t is obtain-
able from [3] while Lemma 3.3 yields log C(F,)=d(4,C;)(log(1/t)+1) (cf. (2.6)).
For n=2 there are sharp results due to K6hn [11] in the case of harmonic functions.

We shall now introduce a convenient way of constructing Harnack functions
with the aid of the quasihyperbolic metric. The first application of this construction
will produce a lower bound of the Harnack constant associated with the class of func-
tions satisfying (1.1) for fixed A€(0, 1) and C,=1.

3.6. The function up. Let FCG be a closed set, F=0. For x€G and t€R set
(3.7 U (x) = exp (—tkg (F, X)), up(x) = u}(x).
Clearly up(x)=1 for x€F. If FCG is compact, then uz(x)—~0 as x—9G.

3.8. Lemma. The function u}y: G—~R. satisfies (1.1) with C,=(1—7)"2",
If G=R", we can choose C,=((1+2)/(1—2))".

Proof. Fix 1€(0,1). Let x€G and r=0 be such that B"(x,r)cG. Write
m=inf {kg(z, F): |z—x|<r} and M=sup {ke(z, F): |z—x|<r}. Clearly
M = m+kg(B"(x, Ar)) = m+kg(B"(x, 2d (x))) = m+210gTi—),

where in the last step we have applied (2.7). The proof is now an easy verification.
For the case G=R", use (2.12) in place of (2.7).

3.9. Example. Let 1€(0,1) and C;=1 be given and let U={u: G-R_:u
satisfies (1.1) with the given numbers}. Fix x,€G. Then ufOGU by 3.8 when A=
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(log C,)/(21og (1/(1—12))) (A=(log C/log (1+A)/(1—72)) for G=RY)." For yeG
we have

(3.10) ug, (xo)/uf,(v) = exp {dkg(xo, ¥)}-

Corollary 3.4 yields the following upper bound for all veU
1434

(3.11) vlx)/v(y) = 35 1= kg (xo, M)log 1=,

(t=0(x0, Y)/log (1+4)/(1—2%)) for G=R"). In conclusion, from (3.10) we get
a lower bound of the Harnack constant associated with the set F={x,,y} and
with the class of functions U while (3.11) yields the corresponding upper bound. Note
that for G=R", both these numbers are of the same order of magnitude when x,
is kept fixed and y varies.

3.12. Remarks. It is well-known that if F is connected, then C (F) has an upper
bound in terms of n, C;, A, and the ratio d(F)/d(F, 0G) (cf. [10, p. 263]). This fact
also follows from Lemma 3.3 and Remark 2.8 (3). Let us now show that the situa-
tion is different for non-connected F. For this purpose consider #: R\ X .. —(0, 2 ),
u(z)=arg z, where X is the non-negative real axis. Then u satisfies (1.1) with C,=
((1+2)/(1=2)). For ¢@€(0,7/2) let F,={x,, Xsz_p}, Where x,=(cos ¢, sin ¢).
We have a lower bound for C(F,)

C(F,) = ”S‘g;;)“’) = 2’:0 ¢ = % for €(0, 1/2).

On the other hand, d(F,)/d(F,, d(R*\X.))=2 for € (0, 1/2). In view of the above
lower bound we see that it is not possible to estimate C(F,) from above in terms of
d(F)/d(F,, d(R*™\X.)). Let us finally introduce the following condition under
which such an estimate is possible. There exists a constant D=1 such that any two
points x, y€G can be joined by a curve ycG with the properties (i) s(y)=D|x—y]|
and (i) d(y, 0G)=D~*min {d(x), d(y)}. All convex domains satisfy this condition
with D=1. An important class of domains satisfying the condition is the class of
uniform domains (cf. [5]).

4. On angular limits of Harnack functions

In the remaining part of the paper we will study the boundary behavior of
Harnack functions and of other related classes of functions. We shall illuminate the
results by constructing several examples of the possible behavior of the functions at
boundary with the aid of the functions uy introduced in Section 3. We usually con-
fine our attention to the case of functions defined in R’,, although sometimes the
results have a counterpart in the case of more general domains.
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Several results in the present section have their counterparts for other classes of
functions (cf. [1], [17]—[19]). The first result follows from 3.4.

4.1. Corollary. Let u: R.—~R, be a Harnack function, bcR"., b,~0,
u(b,)—~0, and M=0. Then u(x)~0 as x—0 and x€ uD(b,, M).

4.2. Example. As the function u: R%—~R., u(z)=arg z€(0, n), shows, the
condition u(b,)—~0 in 4.1 cannot be replaced by u(b,)—f, f=0.

For ¢€(0,n/2) let C(p)={z€R%: (zle,)>|z| cos ¢}, where (x|y)="_,x;»:.
A function u: R’, —~R is said to have an angular limit « at 0 if for each ¢€(0, 7/2)
u(x)—>a as x—-0, x€C(¢). The function u is said to have an asymptotic value o
at 0 if there exists a curve y: [0, 1)>R". such that y(1)~0 and u(y(t))—>a as
t—~1. Aset ECR" with O¢E is said to be non-tangential at 0 if EcC(¢p) for some
@€(0, m/2). Otherwise E is said to be tangential at 0.

4.3. Theorem. Let u: R, —~R, be a Harnack function, ¢€(0,n/2), and
(b)=C(@) a sequence such that by—0, u(by)—>0 when k—oo. If |by4|€(0, |by])
and there exists a number 2.€(0, 1) such that |b,.4|=/b| for all k, then u has an
angular limit O at the origin.

Proof. Fix y€(p,n/2). For =0 let A(1)=C¥))n(B"(1)\B"(At)). For
X, y€A(t) we have the estimate

=y _ (t(1—=2)+2¢sin )2
2x,ly, 2(Atcosi)?

and hence by (2.3) ¢(4(¢)) has an upper bound M independent of ¢. Then
CW)nB"(|b1])cuD(b,, M), and the proof follows from Corollary 4.1.

We give examples of Harnack functions having an angular limit 0 but no limit
at the origin.

4.4. Examples. (1) Define u: R% —~R, in the polar coordinates (r, ¢) by
u(r, @)=r/sin @, @€(0, n), r=0. After some calculation we see that u satisfies (1.1)
with C,=((1+4)/(1—2))2. Clearly u has an angular limit O at the origin, but no
limit at O, because u(1/k, 1/k?)—<o, k—oo. A corresponding bounded function
(cf. 32 (2)) is u/@u+1).

(2) Let h: (0, =)~(0, =) be an increasing continuous function with h(t)/t—0
as 10, and let F;={(1,¢'h(t)): 1€ (0, =)}, j=0,1.2, ..., F=7Fy;, E=

i=o F2j+1- The function wug: R%.—~R, has the following properties (cf. (3.6)):
(1) up(x)~>0 as x>0 and x€E and wug(te;)~0 as 10, (i) up|F=1. To verify
(i) we calculate as in the proof of Theorem 4.5 (2) below. It follows from (i) and
4.3 that uy has an angular limit 0 at the origin.

A Harnack function having an asymptotic value «>0 need not have an angular
limit « by Example 4.2, while the situation changes by Theorem 4.3 if =0 and the
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curve corresponding to the asymptotic value is non-tangential. In the next theorem
we will show that a positive result holds in the case a=0 even for tangential curves,
under the additional assumption that the function tends fast enough towards 0 along
the curve. Such an additional assumption is necessary as we see by Example 4.4 (2)
or by considering arg z on a tangential curve in R% (e.g. {(1,1%): 0<1r=<1}.

4.5. Theorem. Let u: R",—~R, {0} satisfy (1.1), let h: (0,1)>R, be a
continuous increasing function with lim,.oh(t)/t=0, let M(t)=u(te;+h(t)e,) and
assume M(t)—~0. (1) If lim M (t)h(t)"* =0, where x=(log C;)/log ((1+4)/(1 —2)s
then u is identically equal to zero. It is not sufficient to require that lim sup M (7)-
h(t) *<eo. (2) If lim M(¢)(t/h(t))* =0, then u has an angular limit O at the origin.
It is not sufficient to require that lim sup M(¢)(1/h(1))* <o

Proof. (1) Suppose that u(x,)=0 for some x,€R’. Then u(e,)>0 by Corol-
lary 3.4. By (2.3) we get
2+ (1—h(0))?

cosh ¢(e,, te,+h(r)e,) = 1+ 10

and hence o(e,, fe;+h(t)e,)=log (3/h(t)) for sufficiently small 7. By virtue of Corol-
lary 3.4 we get the estimate

M) = u(e,)C; 14O = Au(e,)h (1),

where x=(log C,)flog (1+4)/(1—1)), d=1/log (1+2)/(1—2)), and A=C;' "%
Letting ¢—0 yields a contradiction. The function wu(x)=x,(#0) satisfies (1.1)
with the constant C, (cf. Example 3.1 (2) and M (¢)h(t)~*=1, t€(0,1). Hence
lim sup M (t)h(t)" "< is not sufficient.

(2) For t=0 write p(t)=(22+h(t)?)"2. Then by (2.4)
(i (D)e,, tey+h()e,) = —log tan % = log (3/tan o),

where tan @ =h(t)/t, and the inequality holds for ¢€(0, n/3). From this upper
bound we get by Corollary 3.4 for small ¢

u(u()e) = M(D)CLH1% @O d = 1jlog 77

By Theorem 4.3, u has an angular limit 0 at the origin if limu(u(t)e,)=0, ie., if
lim M (H)(t/h (1))* = 0,

which is fulfilled by the assumption. The function up(x)=exp(—xo(F,x)), F=
{te,: 1=0}, x=(logC)/log ((142)/(1—2)), satisfies (1.1) with the constant C,
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by Lemma 3.8. Calculating as above we see that M(¢)=ug(te;+h(t)e,)~0 and

M(t)éexp[ Vloghét)] [h(z)]

t

and hence lim sup M (1)(t/h(t))*=1 but up fails to have an angular limit at the origin.

Suppose that u: R’ —R is a continuous function having an angular limit « at 0.
It follows from the definition of an angular limit that there exist numbers r;>r,>...
limr,=0 such that if

4.6) E= U[ [2k_li1)nB"(rk)]

then u(x)—o as x—~0, x€E. Clearly E is tangential. It should be observed that the
shape of E or the order of contact between dR”. and E can be quite arbitrary otherwise.
This fact follows from Example 4.4 (2) when a=0, and similar examples with x>0
can be easily constructed.

Theorem 4.5 was proved under the assumption that the function in question has
an asymptotic value. It is easy to construct examples of Harnack functions having no
asymptotic values whatsoever.

4.7. Example. Let 0=KC@R’, be a compact set nowhere dense. There
existst a Harnack function having no limit at the points of X and having limit 0 at
OR’,\K. The function up: R, ~R,, F=KX(0, 1]CR’, has the asserted properties.

4.8. Example. There exists a bounded Harnack function of R% having no
angular limit but having asymptotic value O at every point in 9R® and having no
other asymptotic values.

Let A7={x€R: j27"=x=(j+1)277}, p€N, j=0,1, ..., p and construct F,=
F? as follows for p=2. Set

)ao
\/J—--—eo

FP=APX {2777, j=0,1,..,p

p+1
2p

Fh=Fr+ ae;, if m=ap+j, 0=j=p, mcZ
The set F, has the following properties.

(1) F,cRX[27P77, 27|, F >0R. as p--ce.

@) o(Fy> Fyya)>==.

(3) The projection of F, on R equals R.

(4) The euclidean length of each component of F, is 277.

() inf o(FY, F})—~ > as p—~ce.

Let F=J,_,F,. The function up:R% —~ R, has no angular limit by (3), but
has an asymptotic value 0 at every point of dR’,, by (4), (5), and (2), and finally
has no other asymptotic values by (2) and (1).
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We shall next study isolated singularities of Harnack functions. Let us first
consider some examples.

4.9. Examples. (1) There exists a Harnack function u: R™\ {0}~ R, having
no asymptotic values at the origin. Write F'={J]_, S"~1(277). The desired function is

u(x) = exp (—k(F, x)),

where k=kpgm (o) is the quasihyperbolic metric of R™\ {0}.
(2) The function wu: RN{0}—~R,, u(r,p)=1+sin?¢ satisfies (1.1) with
C;=1+22Y1—/2 and has infinitely many distinct asymptotic values at 0.

4.10. Lemma. Let u: R"™\\{0}~R . be a Harnack function having an asymp-
totic value o at 0. If a=0, then there exists a number A=0 such that a/A=u(x)=uAd
when x is sufficiently small. If «=0, then u has limit 0 at 0.

Proof. It follows from 2.8 (2) that kgw (y(¥, »)=n when [x|=|y[=0. Hence
we get by Corollary 3.4

u(C™T = u(x) = u(y)Ci*™'7; T = logliz
144

for 'x|=|y|=0. The proof follows when we choose y to be on the curve correspond-

ing to the asymptotic value and let |y|-O0.

4.11. Remark. The boundary behavior of monotone ACL" functions with a
finite Dirichlet integral is different from the behavior of Harnack functions (cf. [19]).
For instance the functions in 4.2 and 4.9 (2) have infinite Dirichlet integrals, a fact,
which follows from the results of [19] or can verified by direct calculation.

5. Uniform continuity and uniform Harnack inequality

In this section we will discuss a uniform Harnack inequality and characterize the
functions satisfying the uniform Harnack inequality by means of uniform continuity.

5.1. The hyperbolic metric o in R, . In R, we define the hyperbolic metric ¢
by the element of length do=dx/x. Then o(x, y)=|log (x/y)| for x,y€R,. The
symbol ¢ is reserved for the hyperbolic metric in R, n=2.

5.2. Uniform Harnack inequality. A continuous function u: G—~R,U {0} is
said to satisfy a uniform Harnack inequality if it satisfies the Harnack inequality
(1.1) for all 2€(0,1) and if C;,—~1 when A-0.

5.3. Examples. (1) The functions listed in 3.1 (2)—(4) and the function wug
in Lemma 3.8 satisfy 5.2. Also the extremals of some variational integrals satisfy 5.2

(D.
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(2) Define u: R2—~R, by u(x,y)=1 for 0<y=|x|*3, u(0,y)=2 for y=0
and define u elsewhere in such a way that it is continuous in R% and uR’ =[1, 2].
Then u is a Harnack function by 3.1 (1) but fails to satisfy 5.2. Note that
lim,Lou(r, )=0 for @€ (0, n)\{n/2},=1 for ¢=mn/2. It follows from the require-
ment C,—1 in 5.2 that this kind of discontinuity cannot occur if 5.2 is satisfied.

5.4. Theorem. The following conditions are equivalent.
(1) u: G=>R, satisfies 5.2.

(2) u: (G, kg)~ (R, 0) is uniformly continuous.

(3) logu: (G, kg)~(R,||) is uniformly continuous.

Proof. We prove first that (1) implies (2). Fix x€G. Let y€B"(x, d(x)). Then
5.2 yields

(5.5) (), () = [log -5 | = 10g Cramyy e
From (2.6) we get
(5.6) x—yl/d(x) = exp {ke(x, »)}—1.

Because C;—~1 as A—0 the uniform continuity follows from (5.5) and (5.6).
We now prove that (2) implies (1). Fix 2€(0,1). Let xéG and B"(x,r)CG.
For z, y€B"(x, ir) we have by (2.7)

5.7 kg(z, y) = kg(B"(x, 4r)) = 2log [1 +%;] = 2log

1—-2-
By the uniform continuity there exists a number D,, D,—~0, .—0, such that

u(z) | _
logm‘ = Dz

whenever kg(z, y)=2log (1/(1—4)), z, y€G. In particular, we get by (5.7)

o(u(2), u(y)) =

_ .
B, 40 = (0 g, ()

as desired.

It remains to be shown that (2) and (3) are equivalent. But this equivalence fol-
lows from the definition of ¢. Note that || in (3) is the absolute value. The proof is
complete.

We next give an example of a uniformly continuous function u:(R%, ¢)—~
(R4, |])- Such functions will be studied in Section 6.

5.8. Example. Construction of a uniformly continuous function u: (R%, ¢)—~
(R,,]]), which fails to satisfy the Harnack inequality (1.1).

Let O=[—1, 1]X[0,2]cR% . Divide Q into 4 equal squares by joining the mid-
points of the opposite sides. Repeat the division in those resulting squares which
have one side on the x-axis. By continuing this process we get a decomposition of Q
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into squares of constant hyperbolic size. Let Q’}, j=1,...,2""" be the squares with
side length 27% k=01, ....

Let H={(x,y,z)€R?: z=y/10} and p: R3®—R3? be the projection p(x,y, z)=
(x,7,0). We identify R*={(x,, 0)€R?}. Let A'J‘ch be such that pA'j:Q’} ,
let a'} be the midpoint of A'J‘- , and let 0y stand for the boundary in the topology of H.
Set

Pt = we%iA’; [w, ak+e] and S= (kUJ Pﬁ)u(H\kL’)j A%).

Define u: R:—~R, by u(x,y)=z if and only if (x,y,z)€S. We see that
u: (R%, 0)~(R,||) is a uniformly continuous function. We show that u: (R%, ¢)—
(R, 0) fails to be uniformly continuous. To this end let L={(x,3x): xéR,}
and let ¢y, ¢y, ...€L be the successive points where u|L attains a relative maximum
with |c;|=|c; 4], ¢;~0, and let dy, ds, ...€ L be the points where u|L attains a rela-
tive minimum, |d;|>|c;|=>|d;;,|. By construction there exists M =0 such that
o(¢j> d;), 0(cj, djp)=M for all j. Then u(c;)—1, u(d;)-0 and hence

a(u(cy), u(d)) = [log (u(cp/u(d))| <=

Thus u: (R%, 9)~(R.,0) is not uniformly continuous, and u is not a Harnack
function, as desired. This example also shows that the hypothesis ““u is a Harnack
function” in 4.1 and 4.3 cannot be replaced by the hypothesis “u: (R, 9)—~(R, | |)
is uniformly continuous”.

5.9. Remark. Let u: G—~R be continuously differentiable in G. (1) If
sup {[Vu(MId(»)} = M <,
yeG
then u: (G, kg)—~(R, ||) is uniformly continuous.

) If uG<(0, =) and

[Vu(y)|
5213{ u(y) d(y)} -

then u satisfies the uniform Harnack inequality.

Proof. (1) Let x,y€G with kg(x, y)<log(3/2). Then yeB"(x,d(x)/2) by
(2.6). By (2.6) we gef for some &€[x, y]

)

fu(x)—u()| = [Vu(lx—y| = 2|Vu()] ) x—

=2M P;sz);l = 2M (exp (kg (x, ) — 1),

from which the assertion follows.
(2) The condition (1) for v=Ilog u assumes the above form. The proof follows
from 5.4 and (1).
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6. Approximate limits and angular limits

The implication’ asymptotic value implies angular limit’ failsto hold for functions
satisfying the uniform Harnack inequality (cf. 4.2) while it holds for many other classes
of functions. Therefore it is perhaps justified to consider some other properties of a
function than the property of having an asymptotic value which do imply angular
limit. To that end we shall consider the notion of an essential value and of an approxi-
mate limit in this section.

For the results in this section it is important that the functions are uniformly
continuous with respect to the hyperbolic metric. Uniformly continuous functions
have been extensively studied in complex analysis. An analytic function f: (B2, ¢)—
(R2,|)) is uniformly continuous if and only if it is a Bloch function [14, p. 268].
A meromorphic function f: (B2, ¢)~(R% ¢q), where ¢ is the spherical metric, is
uniformly continuous if and only if it is a normal function [12].

6.1. Approximate limits. Let GCR" be a domain, G=R", and let f: G-X
be a measurable function, where (X, d) is a metric space. The function f is said to
have an approximate limit o at x,€ G\ {e} if

6.2) 1131 m((G\E)NB"(xo, ))r™" =0

for every £=0, where E,={x€G: d(f(x),a)=<e}.

6.3. Measure densities. Let ECR" be a measurable set and x¢R". The upper
measure density of E at x is defined to be

0" (E, x) = lim sup m (EnB"(x, )(Q,m)1,

where Q,=m(B") and the lower measure density 67(E, x) is the corresponding
lim inf. If 6™ (E, x)=07(E, x), this common value is the measure density 6"(E, x)
of E at x.

The next lemma is a standard result from measure theory. It was presented
without proof in [16]. A proof will be supplied here, because the result will be applied
in what follows and the author has not been able to find an adequate reference to the
literature.

6.4. Lemma. A measurable function f: G—~X has an approximate limit o at
x€G\{e°} if and only if there exists a measurable set ECG such that
0"(G\E, xo)=0 and f(x) approaches o. as x approaches x, through E.

Proof. The sufficiency part is obvious. To prove the necessity assume that f has
an approximate limit o at x, and set Ekz{xEG: d(f(x), 0)<1/k}, k=1,2, ....
Then there exists #.€(0, 1) such that

m((G\E)NB"(xy, 1)) < 2_1k "
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for r€(0,r] and riyy<rif(2k), k=1,2, ... Let
Eif = (B"(xo, rd\B" (Xo, Tt 2)) N Ey

and E=UE}. Then E is measurable and f(x)—>o as x—xy, XxEE. For r€(r, 1, 1]

we have B B
m((G\E)NB"(xy, 1)) = m((GN\EHNB" (x,, 1))

- — 1 1 1
= m((GN\E)NB"(x,, 1))+ m(B"(xg, ry+2) < SE !t ap e ="

It follows from these estimates that 0"(G\ E, x,)=0.

6.5. Notation. If ACR", x€R", and r=0, then we will employ the abbrevia-
tion A(x,r)=B"(x, r)nA, which will be used in cases giving rise to no ambiguities.

6.6. Essential values. Let f: G—Y be a locally integrable function, where
Y=R" or=R, and let xo¢ G\ {e} and acY. Then f is said to have an essential
value o at x, if

lim =" f [f(x)—oldm =0
G(xy, 1)

(cf. 6.5.).

6.7. Remarks. (1) It follows from (6.2) that a function having an essential
value has an approximate limit as well.

(2) Let E={(x, y)cR%: y<x2} and f(x)=(1/|x|)yg(x), where x is the char-
acteristic function of E. Then f is non-bounded, has an approximate limit 0 at 0 by
Lemma 6.4 and fails to have an essential value 0 at 0.

(3) Suppose that f: G—~R" is locally integrable, that |f(x)|=M << for x€G
and that fhas an approximate limit o at xo€ G\ {=}. We show that fhas an essential
value « at x, as well. In fact, let E be the set in Lemma 6.4. We obtain

I = . [ 1f@)—aldm = y f ); f(x)— o] dm+ Mm((G\E) (xo,1))-
X0 1) Xgo T
By Lemma 6.4 a(r)—~0 as r—0, where a(r)=sup {|f(x)—a|: x€E(x,,r)}. Hence
we get
=L = r"m(E(xy, 1)) a(r)+ Mr~"m((G\E)(x,, 1)).

Letting r—~0 yields the desired conclusion, since 60"(G\E, x,)=0.

It follows from (4.6) that if a continuous function of R’ has an angular limit «
at 0, then it has an approximate limit « at 0 as well.

6.8. Remark. Applying 6.4 one can easily construct continuous bounded func-
tions having an approximate limit but no asymptotic value, and hence no angular
limit, at a given boundary point.
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We shall show that for functions uniformly continuous with respect to ¢, an
approximate limit implies an angular limit. For this purpose the following geometrical
lemma is needed.

6.9. Lemma. Let ECR’, be a measurable set such that 0"(R\.\E,0)=0 and
let L be a line through the origin. Then there exists a sequence (@)€L, such that
a0, |a|>|a1|=0 and |a,—ay,,|/la|—0, and a sequence (b;)CE such that
b;~0 and |a;—aj<|a;—a;_4|, o(a;,b)~0, o(b;,b;11)—0.

Proof. Let ¢€(0,7n/2) be the angle between L,=LnNR’ and the x,-axis.
When x€L, and «€(0,1] we have

m(A) _[ ®Cos @ )"' B n[ x| cosq))
(6.10) m(B) ~ \24+acos¢p)’ A4 =B"|x.a 2 ’
B=B”(fx|+oz—l-£|£20—59—].

For every k=1,2, ... there exists r,€(0, 1) such that |x|=r, and x€L, imply

(6.11) B (x, M]nE =0
2k
since otherwise there exists by (6.10) an integer k, such that
n*( pn D = ﬂ_)n
0" (R"\E, 0) = [2k0+cos ” =0,

which is impossible. We may assume that r,,,€(0, ) and lim r,=0. The sequences
(@) and (b;) will be constructed as follows. Let @€Ln "'(r) and select
b€ EnB"(ay, |a;|(cos 9)/2) (cf. (6.11)). Suppose that ay, ...,a;€L, and by, ..., b;€E
have been chosen and that r,,,<|a;|=r,. Let @;,,€L, be such that

. cosg )\ _ . f;_cose
'“f+1|(1+ 2(k+1)]"“1'(1 2% ]

If Idj_,.]_!érk.{_l, set aj+1=&j+1 and Choose

" |a; 1] cos @
b;+1€B [aj+1,—i]1€—+T NE

(cf. (6.11)). Otherwise |@;.4|>r, 1. Let T=(cos ¢)/(2k) and

1-T
Ajq1 = ajr, bj+1€Bn(aj+17 T[aj+1|)nE.

In view of (2.3) it is a matter of easy verification to show that the desired conditions
are satisfied.

The following result can be proved in the same way.
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6.12. Corollary. Let ECR’. be a measurable set with 0"(R\E, 0)=0, let
@€(0, 7/2) and let (a,)cC(p) be a sequence such that a,—~0. Then there exists
a non-tangential sequence (b))CE with b,—~0, such that o(by,b,11)~0 and
0(a, u{b;})—~>0. Hence lim .o zccip) @(x; E)=0, for ¢€(0,n/2).

6.13. Theorem. Let u: R, ~R be a continuous function, ECR". with
0"(RU\E, 0)=0, and suppose that u(x) tends to o as x approaches O through the set E.
Then u has an angular limit o at O if one of the following conditions is satisfied.

(1) u: R —~R., satisfies the uniform Harnack inequality.
2) u: (R, 9)—~(R, || is uniformly continuous.

Proof. Fix ¢€(0,7/2) and (a)cC(p) with a,—~0. It suffices to show that
u(a,)~o. The proof of (2) follows from 6.12 and the definition of uniform continuity.
For (1) apply 5.4 and part (2).

6.14. Remarks. (1) Condition (1) cannot be replaced by the requirement that
u satisfies (1.1) as Example 5.3 (2) shows. See, however, 6.16.

(2) The condition 6"(R,\E,0)=0 cannot be replaced by 0} (R, \E, 0)=0.
To this end consider a sequence (%), #.1€(0, ;) with lim#,,,/t,=0 and set F,=
S"Y(#), F=UF,, observing that o(F;, Fy,;)—~< by (2.3). It follows (cf. 3.6)
that  up(x)>0, x-0, X€EUE,, E={x€R%: (itps1)"?=|x|=(fit, )"?} and
0% (R, \VE;, 0)=0. Clearly u, has no asymptotic value, and hence no angular limit
at 0.

(3) It is not difficult to show that a bounded function u: R".—R satisfying the
uniform Harnack inequality 5.2 is uniformly continuous as a mapping u: (R"., ¢)—
(R, ||). For unbounded functions satisfying 5.2 such a conclusion does not hold as
the example u(x)=exp ¢(e,,x), xER", shows. See also 5.8.

It follows from Lemma 6.4 and Remark 6.7 that if u satisfies (1) or (2) in 6.13
and has an essential value or approximate limit « at 0, then  has an angular limit as
well. Results of this type are known for many different classes of functions; see for
instance Diederich [4] and Mikljukov [13].

As pointed out above, Theorem 6.13 does not hold for Harnack functions in the
stated generality. We shall prove a positive result in the special case a=0. To this
end, the following lemma is needed.

6.15. Lemma. Let ECR be a measurable set such that 0 (E,0)=35=0.
Then there exists a non-tangential sequence (b)CE such that b,—~0 and
lim sup o (b, by 1) <oo.

Proof. Fix ¢€(0,n/2) such that m(B'\C(¢))=Q,5/4 and 1€(0,1) such
that A"=d/4. Let r,€(0, 1) be such that m(EnB"(r))/(2,r")=35/4 for re(0,r,].
For each r€(0,ro] there exists b,c En(R(r, Ar)nC(¢)), where R(r, ir)=B"(r)\
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B"(Jr), because otherwise for some ré€(0, r,]

(@, 'm(EnB"(r)) = (2,7 m((B" (N\C(9))U B, (21))
= (@, Y(Q,0r"/4+Q, (Ar)")2) = 6/4+2"2 < §/2,

which is impossible. The sequence (b;) is constructed as follows. Set b;=b, , b; 1=
b|,,j[. As in the proof of Theorem 4.3 we see that there exists a number M (5, n)
such that o(b;, b;+1))=M(6,n) for all j=1,2, ...

6.16. Corollary. Let u: R'.—~R, be a Harnack function having a limit 0 at
the origin through a set ECR". with 0}(E,0)=0. Then u has an angular limit O at
the origin.

Proof. The proof follows from 4.3 and 6.15.

Corollary 6.16 fails to hold for uniformly continuous functions as the following
example shows.

6.17. Example. There exists a uniformly continuous u: (R%, 0)~(R,|]|)
having a limit O through a set EC R with 0%(E, 0)>0 but no angular limit. Define
u(0, y)=y/10+1, u(x, y)=y/10 for y€(9, 2|x|). Elsewhere u is defined in such a way
that u: (R%, ¢)~(R,||) is uniformly continuous (cf. 5.9 (1)). Then u(x) approaches
0 through E={(x,y): 0<y<2|x|}, 02 (E, 0)>0, but u has no angular limit.
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