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ON THE HARNACK CONSTANT AND THE BOUNDARY
BEHAVIOR OF HARNACK FUNCTIONS

MATTI VUORINEN

L. Introduction

Let G be a domain in R', n>2,G*Rn, R+:{x€Rl: r=0} and 7et u: G*
*R+u {0} be a continuous function. Then rz is said to satisfy the Harnack inequality
or to be a Harnack functionif there are constants ,1((0, 1) and C1=1 such that the
inequality
(1.1)

holds wheneyer B" (r, r)cG. Let now
that there exists a smallest constant
F (cf. 17, p. 161) such that for all u
(1.2) max ulz)

max u(z\ < C, min u(z\
6,r(x, )"r) \ / '" ptt7x,Ar) \ '/

I'*fr be a compact set in G. It is well-known
C(f) *C t depending only on n, Ä, C r., and
satisfying (1.1)

The number C(f) will be termed the Harnack constant of F. The class of functions
satisfying (1.1) is wide: it includes non-negative harmonic functions as well as non-
negative solutions of some elliptic equations (cf. t7l). In particular, the partial dif-
ferential equations associated with quasiregular mappings belong to this family of
elliptic equations ([9], [15]).

The purpose ofthe present paper is to studythe boundary behavior ofHarnack
functions at an individual boundary point. The main toolwe will use is a sharp upper
bound of the Harnack constant proved in Section 3. Some related upperbounds in
the case of harmonic functions were proved by Köhn [11] and Beleckaja and Landkof
[3]. The upper bound of C(F) in Section 3 depends on n, )", C 7, and the quasihyper-
bolic diameter of F. Preliminary results about the quasihyperbolic metric are given
in Section 2.The main results are presented in Sections 4 and 6. In Section 4 we as-

sume thata Harnackfunction of Ai tends to 0 either through a sequence of points con-
verging to the origin or through a curve terminating at the origin, and wish to prove
that the function has an angular limit 0 at the origin. Several examples are constructed
to show that the results established are the best possible and to illuminate various
phenomena in the boundary behavior of Harnack functions. In Section 5 we study
functions satisfying the following unifurm Harnack inequality: (1.1) holds for each
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,.€(0, l) with C^*l as ,i*0. These functions will be characterizedby means of
uniform continuity with respect to the quasihyperbolic metric. The results of Section

4 do not hold if the sequential or asymptotic limits considered equal a>0 instead

of being 0, not even for functions satisfying the uniform Harnack inequality. Moti-
vated by this observation we shall discuss the notion of an approximate limit in
Section 6 and prove that a function satisfying the uniform Harnack inequality and

havin-e an approximate limit a>0 has an angular limit or.

Some results in this paper, including Theorems 4.5 and 6.13, although analogous

withknown boundaryproperties of some otherclasses of functions(cf. [4], [13], [17]),
are perhaps new even for harmonic functions in the plane. A Harnack function need

not satisfy a maximum principle, i.e., it need not be monotone in the sense of Lebes-

gue. In [19] some results related to this paper were proved in the case of mo-

notone ACL' functions with a finite Dirichlet integral.

2. Preliminary results

2.1. For x€R", n>-2, and r>0 let B"(x, r):{z(R': lz-xl'=r}, ,Sn-1(x, r):
08"(x,r), B"(r):8"(O,r), S"-L1r1:63'(r), B"=B(1), and So-t:08". The stand-

ard coordinate unit vectors &ta €11 ...,en.Tf AcRo, let Aa-{x:(xr, ...,x,,)€A:
,r,=0).ThehyperbolicmetricqinRlisdefinedbytheelementoflength dp:ldxllx,.
If x€R! and M=0, we write D(x,M):{z€R"*: g(z,x)-tr'[]. A basic fact is
that the hyperbolic balls are euclidean ones, and for instance

(2.2) D(te,,, l{) : B"((f cosh M)€n, t sinh fuI)

for t >0. Let x, !€ Ri .

formula

(2.3)

The geodesic curve joining aqR'* to åe R| lies on an circular arc through a and b,

perpendicular to åR!. Making use of this fact one calculates for «€ (0,112)

As in the case n-2 12, Theorem 6,3.1 (ii)1, we have the

coshq(x,-7): ,*W.

(2.4) g{n,, (cos u) et* (sin il.) e*) log tan }

2.5. Quasihyperbolic metric. Let GcR", G*R", be a domain and a,b(G.
The quasihyperbolic distance between a and b is defined by

ku@, b) : inf ./aist (x, }G)'t cls,

where the infimum is taken over all rectifiable curves ycc with a€y, b€y
(Gehring-Palka 16, p. 1737, Gold'§midt-Suvorov [8, p. 61]). Set kc(A):
sup {ft6(x, y): x,y€A} for AcG and d(z):fl$1(2,0G) for z€G. ln 16,2.11
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it was proved that
l 

''ao)lko(x, y) = lr., rt(x) l,
(2.6)

r _ Ix_yl)k"(x,l) = logtl , d(x) ),
for x, y(G. Here equality holds if G:R"+ and x:en, y:t€n, t>1, and hence the
bounds are sharp. For x€G and yCB"(x,d(*)) we have [18, 2.11]

(2.7) ko(x,y)=,"r(r*7ffi7)
2.8. Remarks. (1) If G:Ri, the quasihyperbolic metric is the same as the

ordinaryhyperbolicmetric q.lf G:8", then pl2<k3,5q, where g is the ordinary
hyperbolic metric of 8", dS:2ldxll!-lrl').

(2) lt y is a curve in G, then ke(D=s(y)ld(y,0G), where,r(7) is the euclidean
length of y.

(3) If f'cc is compact and connected, k6(F) has an upper bound in terms of
d(F)ld(F,äG) and the dimension n (cf. [18, 2.18], [16, 6.9]).

2.9. (a,b, )")-admissible families. Let GcR', G*R", be a domain and let
a,bQG,2((0, 1).Afamily {8"(*r,ri): i:1,...,p} ofballsinGissaidtobe(a,b,i)-
admissible [18, 2.13] if the following conditions are satisfied:

(i) a€B"(xr., )'rr), beBn(xo, ),rn),

(ii) P(xi,1r;)nB"(xr*r, )"r;*1) = 0 for i : !, ..., p-1.

The next lemma gives estimates for the number of balls in an (a, å, ,t)-admissible
family, and it is a modification of the chaining lemma in ll8, 2.141.

2.10. Lemma. Let a,b€G and ).€(0,1).

(l) Euery (a, b, ))-admissible family contains at least k6@, b)lQ log (t/(t -;.)))
balls.

(2) There exists an (a,b,l)-admissible family with at most l*k6(a,b)fc,c:
log ((1 +31)lG+D), batts.

Proof. Part (1) was proved in [18, 2.141. To prove (2), let y be a rectifiable -eeo-
desic curve of the quasihyperbolic metric with a,b(y15, Lemma ll. Let p€(0, 1).

Set xr:q, and let xz,,..,xo,xrat:b be points on y such that

lx;-x;+rl : pd(x), i :1,..., p-1, lxr-xr*rl = pd(x),

and such that" xrnr, l=-j=p- 1, is the last point in 08"(x,,pd(x))ny when we
traverse from a to b along y. Define zi:(xi*xi yt)12, ri:lxi-x1a11,f2, Dy
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B'(zr,d(z)),-i:l,...,p.Wewanttofindaconditiononpunderwhich{Dr:j:1,...,P},

is (a,b,,t)-admissible. A sufficient condition is

B'(2,, )"d(z))nB"(21+t, )"d(2,*r)) * 0,

which is satisfied, provided that

)'d(z) =- 'i : Pd(x)12'

Ontheotherhand, d(zt)=d(x)(l-plz). Thusasufficientconditionis )"(l-pl2)>-
- pl2. We choose p:2A10+,1.). By (2.6) we get

ke(xi,x;+r) zt"*(r*!.#d) : ,o, (t.+8) : t*#.
We now obtain the estimate

ko@' b) : 
{ h = 

'i ko(xi,x;+r) - (P- 1) 

^r#'
The desired upper bound for p follows from this estimate.

2.11. Remark. If a,b€G:R"*, then the estimates in Lemma 2.10 can be

improved as we will now show. Byvirtue of (2.2) we have for x:(xr,..',x,)€R!

(2.12) Q(B'(x, ).x,)): bg++.

By the proof of lI8, 2.14 (1)l it is clear that the lower bound 2.10 (1) can be replaced

by p(a,b)llog ((1+,,,y(1-,1)). Denote by Jlu, ul the geodesic segment of the

hyperbolicmetricof A! joining u(R"* to u(R\.For the upper bound choose

xl:a, xz, ..., xo, xplr:b on Jla, å] such that

s(x,. x;) : U-t) loc t+. i :2. ..., p,

q(x* xo*t) = rce*4.
L -,/-

Let zfllxi,xi.rl,.i:1,...,P, be such that

p(x1, z1):(,-I)^r#.
Then {B'(yi,!i): i:1,...,p} is (a,b,,t)-admissible' Here.}r;, is the n-th coordi-

nate of !; and /; is such that 
(

Bn (), i, ).y in) : rlr,, il"c -i+)
(cf. (2.2)).
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It follows that

(2.t3)
1t-2p= 1+a@,b)llog h,

which is better than the bound given by 2.10 (2).

3. An upper bound for the Harnack constant

In this section we shall apply Lemma 2.L0 to produce an upper bound of the
Harnack constant. We also give several examples of Harnack functions, and, in
particular, introduce a Harnack function zp associated with a relatively closed set
Fc G. With the aid of the functions ur we show that the upper bound of the Harnack
constant is sharp for G:Ri. we first give some examples of Harnack functions.

3. l. E xa mpl e s. (1) A continuous function u : G * R + with 0 < m= u (x) < M < *
for all x€G satisfies (1.1) with C^:tr41ry.

(2) Let u: G*R+ be defined
(l - ),)d(y)=d(x)=(1 +Dd(y) for
(tr a 2)l(r-t))r"r.

(3) Let Ec.G be closed. Then
fies (1.1) with C t:(1 + ))l(t - )").

by u(x) - Ad(x, 0G)", A=0, c*0. Because
x€8" (y, )'d(y)), u satisfies (1. 1) with C t:

u : (j ---R*, u(x) -d(x)l (d(*) *d(x,E')) satis-

(4) Non-negative harmonic functions satisfy (1.1) with a constant Cr. such that
Ct*l as ,1*0 (cf. [7, p.28,2.6]).

3.2. Lemma. Let u: G*R+ and u: G*R+ be continuous functions. If u
satisfies (1.1), then also (l) uup*§ (q, fr=O, pe R) and (2) ul(u+t) satisfy it. (3) If
0<zr(x)<1 for x(G and u satisfies (l.l), then also -logu does. (4) If there exists
r€(0, 1) such that t<u(x)lu(x)=lh for x€G and u satisfies (l.l), then also u
satisfiesit. If bothu andu satisfy (l.l), then(5)uu, (6)max (u,u), min(u,u), (7) ulu
sati,\f); it.

The proof is

3.3. Lemma.
pact. Then

'where t:ke(F)llog (t+:zy1t+,t;). In particular, u:o if u(x):O for some
xo€G. If G:Rn+, one may choose t:q(F)llog((l+1)le-)")).

Proof. Let a and å be the points in F where u attains its greatest and least value
in F, respectively. By 2.10 and (2.13) there exists an (a, b, l)-admissible family

a simple verification left to the reader.

Suppose that u: Q -*R* u {0} satisfies (1.1) ancl F cG is com-

*F, u(z) = C(F) $n u(z); C(F,) = CI*',



264 Marrr VuonrNrN

{Bt: i:1,...,p}, where Br:8"(xi,ri) and p--1*1. Fix xi€B(xi,),r;)nF,(xia*
lri+). By (1.1) we get

u(a)=maxu(z)=C7$nu(z)<Cxu(xr)=CTmaxu(z)=Ciryiyu(21,

where E;:E(xi,,1r). This yields the desired bound.

3.4. Corollary. Let u: G*R+v{O} satisfy (1.1). Then

C t'-' u(y) = u(x) = C!+t u(y)

for all x,y(G where t:ke@,flllog «1+3,,,y(1 +),)). For G:Ro+, t:Q(x,y)l
rog ((1+))lQ-),)).

3.5. Remark. An estimate related to 3.4 was obtained by Beleckaja and Land-
kof [3] in the case of harmonic functions. The upper bound in [3] is given in terms of
the numbers

, fi(x,.v) : inf {s(y)ld(y,0G)},

fr(F): sup {B(x, y); x, yQ.F},

where the infimum is taken over all rectifiable curves ycG. Let now G:Rl ,

Fr:{eo,ten}, t((0,1). The upper bound logC(f,)=nB(Fr):n(l-t)lt is obtain-
able from [3] while Lemma 3.3 yields logC(F)=flQ.,C)(log(Ut)+l) (cf. (2.6)).
For n:2 there are sharp results due to Köhn [11] in the case of harmonic functions.

We shall now introduce a convenient way of constructing Harnack functions
with the aid of the quasihyperbolic metric. The first application of this construction
will produce a lower bound of the Harnack constant associated with the class of func-
tions satisfying (1.1) for fixed .t€(0, 1) and C^>1.

3.6. The function up. Let FcG be a closed set, F+0. For x€G and t€R set

uh@) exp (-tko@, x)), LtF(x) - uh@).(3.7)

Clearly up(x):l for x€F. lf FcG is compact, then ap(x)*0 as x*åG.

3.8. Lemma. The function u!p: G*R+ satisfies (l.l) with C7:(1-1)-2V1.
If G:R"a, we can choose C7:(e+l)10-l))1,1.

Proof. Fix ,1((0, 1). Let x(G and r>0 be such that Bn(x,r)cG. Write
m:inf {k6@, F): lz-xl=r) and M:sup {ke@, F): lz-xl=r}. Clearly

M = m*ke(a'6,1,r1) = m+kG(B*(x, ),d(x))) = *+zbefi,
where in the last step we have applied (2.7).The proof is now an easy verffication.
For the case G:Rl use (2.12) in place of (2.7).

3.9. Example. Let .l€(0, 1) and Cr>l be given and let ry:{u: G*R+iLt
satisfies (1.1) with the given numbers). Fix xr€G. Then ufo<U by 3.8 when l:
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(togC )lQtoe (t(t -,1))) (l:(togC)lrog«l +,ty(l-,1)) for c:ni).] For y(G
we have

(3.10) u*o@Jlu*,(y) -
Corollary 3.4 yields the following upper

(3.11) u(xllu(y) = CL*'; t

exp {Ak*(xo, y)}.

bound for all, u(.U

- kc(xo, »fior#,

(t:Q(*o,y)/log ((1 +1)lQ-,1.;) for C:Ri). In conclusion, from (3.10) we get

a lower bound of the Harnack constant associated with the set F:{xo,y} and

with the class of functions U while (3.1 1) yields the corresponding upper bound. Note
that for G:R"+ both these numbers are of the same order of magnitude when xo

is kept fixed and y varies.

3. 12. Rema rk s. It is well-known that if F is connected, then C(F) has an upper
bound in terms of n,C7, )", and the ratio d(F)ld(F, åG) (cf. [10, p. 263]). This fact

also follows from Lemma 3.3 and Remark 2.8 (3). Let us nowshow that the situa-

tion is different for non-connected P. For this purpose consider z: R\Xa *(0, 2 z),
u(z):v1g z, where X* is the non-negative real axis. Then u satisfies (1.1) with C^:
«1+,ty(l-,t)). For E((0, rl2) let F*:lx*, xzo-r), where xr:(cos E, sin E).
We have a lower bound for C(Fr)

c(Fr) =-u(x:" -:) : 2n-E 
= I for E€e,rl2).- u(xr) E -E

On the other hand, d(Fa)ld(FE, A(R'z\X+)) :2 for E(Q,ll2). In view of the above

lower bound we see that it is not possible to estimate C (Fr) from above in terms of
d(F)ld(Fe,A(R'z\X+)). Let us finally introduce the following condition under

which such an estimate is possible. There exists a constant D > 1 such that any two
points x, y€G can be joined by a curve 7cG with the properties (i) s(7)=Dlx-yl
and (ii) d(y,0G)=D-1min {d(x), d(y)}. All convex domains satisfy this condition
with D:1. An important class of domains satisfying the condition is the class of
uniform rlomains (cf. [5]).

4. On angular limits of Harnack functions

In the remaining part of the paper we will study the boundary behavior of
Harnack functions and of other related classes of functions. We shall illuminate the

results by constructing several examples of the possible behavior of the functions at

boundary with the aid of the functions ap introduced in Section 3. We usually con-

fine our attention to the case of functions defined in Ri, although sometimes the
results have a counterpart in the case of more general domains.
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Several results in the present section have their counterparts for other classes of
functions (cf. [], t17]-t191). The first result follows from 3.4.

4.1. Corollaty. Let u; R\*p* be a Harnack function,bl,€R"*, bo*g,
u(be)*O, and M>0. Then u(x)*O qs x*O and xCvD(bo,M).

4.2. Example. As the function u: R\*R*, u(z):sygz€(O,n), shows, the
condition u(b)*g in 4.1 cannot be replaced by u(bo)*fi, B=0.

For E€(0, nl2) let C(E):{z€R"*: (zle,)=lzlcos 9}, where (xly):Zi={i!i.
A function u: R"** p is said to have an angular limit a at 0 if for each A((0, rl2)
u(x)*q as x*0, xeC«p). The function a is said to have an asymptotic value a
at 0 if there exists a curve y: [0, l)*Ri such that 7(r)*0 and u(y(t))+d as
t*1. A set EcR| with 0€,E is said to be non-tangential at 0 if EcC(@ for some
rp€(0,n12). Otherwise E is said to be tangential at 0.

4.3. Theorem. Let u: R\*p* be a Harnack function, a€(0,n12), and
(b)cc(@ a sequence such that b1"*0, u(bp)-O when k**. IJ' lbk+al<Q,lbkl)
and there exists a number ,t€(0, 1) such that lbo*;l=Älbol for all k, then u has an
angular limit 0 at the origin.

Proof. Fix rlt€(E,nl2). For t>0 let A(t):91{/1^(B'(t)\E'(,1/)). For
x, y€A(t) we have the estimate

lx- !l' = Q0- i)+2t sin {t)z
2*nlyn 2(),t cos /)2

and hence by (2.3) a(A(t)) has an upper bound M independent of r. Then
C(!)nB"(lbrl)cvD(b1,,M), and the proof follows from Corollary 4.1.

We give examples of Harnack functions having an angular limit 0 but no limit
at the origin.

4.4. Examples. (1) Define u: R2**p* in the polar coordinates (r,9) by
u(r, E):ylsin q, E€(0, n), r>Q. After some calculation we see that u satisfies (l.l)
with C^:«1+,ty(l -1))'. Clearly uhas an angular limit 0 at the origin, but no
limit at 0, because u(llk, llkz)-*, k**. A corresponding bounded function
(cf. 3.2 (2)) is ul@-tt).

(2) Let lr: (0, -)*10, -) be an increasing continuous function witt. h1t11t-O
as t*0, and let Fi:{(t, t'h(t)): l€ (0, -)}, j:0,1,2, ..., F:117=oFri, E:
UToFri*r.Thefunction upt R2**ft* has the following propertiei (cf. (3.6)):
(i) up(x)tg as x*0 and x(E and ur(ter)*0 as l*0, (ii) urlF:|. To verify
(i) we calculate as in the proof of rheorem 4.5 (2) below. It follows from (i) and
4.3 that up has an angular limit 0 at the origin.

A Harnack function having an asymptotic value ry>0 need not have an angular
limit oc by Example 4.2, while the situation changes by Theorem 4.3 if a:0 and the
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curve corresponding to the asymptotic value is non-tangential. In the next theorem

we will show that a positive result holds in the case o(:0 even for tangential curves,

under the additional assumption that the function tends fast enough towards 0 along

the curve. Such an additional assumption is necessary as we see by Example 4.4 Q)
or by considering argz on a tangential curve in R?r (..g.{(t,tz):0<l<1}.

4.5. Theorem. Let rz: R!*7q*qr{0} satisfy (l.l), let h: (0, l)*fta be a
continuous increasing function with limr-sh(t)lt:0, let M(t):u(tet+h(t)e,) and

assume M(t)*O. (l) If lim M (t)h(t)-* :O, rr"r", :(log C l)llog(t +,ty1t -,t;1,
thenuis identically equal to zero. It is not sfficient to require that limsupM(t)'
h(t)-* -.-. (2) If lim M(t)(tlh(t)):0, then u has an angular limit 0 at the origin.

It is not sufficient to require that limstry M(t)(tlh(r))"=-'

Proof. (l) Suppose that u(x)>O for some xo(Ri. Then u(e,)=0 by Corol-
lary 3.4. By (2.3) we get

cosh q(e,, ter+h(t)e,\: t*!1ffi
and hence p(e,, te1*h(t)e,)=log (lln(t)) for sufficiently small /. By virtue of Corol-
lary 3.4 we get the estimate

M (t) = u (e )C ;t - dLs @th(t)) : Au (e,)h (t)"

where z : (l og C ) fiog(l +,,'y(1 - 1)), d :l/log ((1 + l) I O-,1) ), and A :C 
^'- 

o'o"'.

Letting /*0 yields a contradiction. The function u(x):vi1fg) satisfies (1.1)

with the constant Cx (cf. Example 3.1(2) and M(t)h(t)-*:1, l€(0, 1). Hence

limsup M(t)h(t)-*-.- is not sufficient.

(2) For l>0 write p(t):(t'+h1t1'1'r'. Then by Q.a)

e(p|)e,, ter+h(t)e,) : -logtanl =iriig(3ltanE),

where tan E:h(t)lt, and the inequality holds for E((0,n13). From this upper

bound we get by Corollary 3.4 for small /

u(p(t)e,) = M(t)cl+dtoc @tth(t))' d : lllog#

By Theorem 4.3,uhas an angular limit 0 at the origin if limz(lr(r)e,):0, i.e., if

tim M(t)(tlh(l)" : 0,

which is fulfilled by the assumption. The function up(x):exp(-xO(F,x)), F:
{ten: t=O\, x:(loeCt)llog((1 +))lO-)")), satisfies (1.1) with the constant C1
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by Lemma 3.8. Calculating as above we see that M(t):yr(1"r*h(t)e,)*g un6

M (t) =.*p (-, tog #) : (+)'
and hence lim sup M(r) (tlh(t1)'= 1 but zo fails to have an angular limit at the origin.

Suppose that u: Ri*R is a continuous function having an angular limit « at 0.

It follows from the definition of an angular limit that there exist numbers r1>t2> .. .

limro:g such that if

(4.6) ^E:rj k(h)"*{d),
then u(x)*fl as x*0, xCE. Clearly E is tangential. It should be observed that the
shape of-E or the order of contact between åR! and E can be quite arbitrary otherwise.
This fact follows from Exampb a.4 Q) when s:0, and similar examples with a-0
can be easily constructed.

Theorem 4.5 was proved under the assumption that the function in question has
an asymptotic value. It is easy to construct examples of Harnack functions havin-u no
asymptotic values whatsoever.

4.7. Example. Let g#Kc|R"+ be a compact set nowhere dense. There
existst a Harnack function having no limit at the points of K and having limit 0 at
AR!\I(. The function upi Rn** ft*, F:J(X(0, llcR| has the asserted properties.

4.8. Example. There exists a bounded Harnack function of R2* havin_s no
angular limit but having asymptotic value 0 at every point in åR2* and having no
other asymptotic values.

Let A!:{x€R: j2-e=x<1i+D2-e},p€N,7:0, 1,...,p and construct Fo:
U;-- 4 ut follows for p>2. Set

FI : A'j X {2- ei - es},

F{n: Ff +$ or, if Ht -

The set Fp has the following properties.
(1) FocRX12-o'-", 2-o'1, Fn*0R\

j-0, 1,...,P

ap+j, 0= j=p, t'n€.z.

aS P* *.
Q) e(F, Fr*r)*-'
(3) The projection of d on R equals R.
( ) The euclidean length of each component of F, is 2-p.
(5) jgf a@!, Fil- @ as p+ 6.

Let F:l);=rFr. The function uu:Rz**Ä+ has no angular limit by (3), but
has an asymptotic value 0 at every point of åR|, by (4), (5), and (2), and finally
has no other asymptotic values bV Q) and (1).
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We shall next study isolated singularities of
consider some examples.

4.9. Examples. (1) There exists a Harnack
no asymptotic values at the origin. Write F - U;,

u(x) -- exp (-k(F,

Harnack functions. Let us first

function u: R,,\{0}*R* having
St'-' (Z-'). The desired function is

x)),

where k:kn"1161 is the quasihyperbolic metric of R\{0}.
(2) The function u: R\{0}*R*, u(r,rp):l+sin'E satisfies (1.1) with

C,.:|+LL]y'T-F and has infinitely many distinct asymptotic values at 0.

4.10. Lemma. Let a: R'\{0}*R* be aHarnack function hauing an asymp-
totic ualue a at O. If a>0, then there exists a number A>-0 such that af A=u(*)=oA
then x is sfficiently small. If a:0, then u has limit O at 0.

Proof. It follows from 2.8 (2)that k3"...101(x,7)<z when lrl:lyl>0. Hence
we get by Corollary 3.4

u(y)C^''lttr = u(x) = u(y)CL*ntr ) T _ log #
for i,rl : lyl>0. The proof follows when we choose y to be on the curve correspond-
ing to the asymptotic value and let lll*0.

4.11. Remark. The boundary behavior of monotone ACL' functions with a
finite Dirichlet integral is different from the behavior of Harnack functions (cf. [9]).
For instance the functions in 4.2 and 4.9 (2) have inflnite Dirichlet integrals, a fact,
which follows from the results of [19] or can verified by direct calculation.

5. Uniform continuity and uniform Harnack inequality

In this section we will discuss a uniform Harnack inequality and characterize the
functions satisfying the uniform Harnack inequality by means of uniform continuity.

5.1. The hyperbolic metric o in R*. In R* we define the hyperbolic metric o
by the element of length do:dxlx. Then o(x,r;:lloS @lfll for x,/€R+. The
symbol g is reserved for the hyperbolic metric in R\,n>2.

5.2. Uniform Harnack inequality. A continuous function u: G*R+U{0} is
said to satisfy a uniform Harnack inequality if it satisfies the Harnack inequality
(1.1) for all ).( (0, l) and if Ct*l when 2r0.

5.3. Examples. (1) The functions listed in 3.1 (2)-(4) and the function zp
in Lemma 3.8 satisfy 5.2. Also the extremals of some variational inte-qraIs satisfy 5.2
(el).
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(2) Define u: Ra**p* by u(x,"y):l for O-y=lxl2tB, u(O,y):2 for y=0
and define a elsewhere in such a way that it is continuous in R'za and uR2*-:U,27.
Then u is a Harnack function by 3.1 (1) but fails to satisfy 5.2. Note that
lim,-su(r,9):0 for 9€(0, z)\{zul2},:l for E:n12. It follows from the require-
ment C^*l in 5.2 that this kind of discontinuity cannot occur if 5.2 is satisfied.

5.4. Theorem. The.following conditions are equiualent.

(l) u: G*R* satisfies 5.2.
(2) u: (G, ft6)*(R* , o) is uniformly continuous.

(3) log u: (G,ks)*(R,ll) is uniformly continuous.

Proof. We prove first that (l) implies (2). Fix x€G. Let yeB"(x, d(x)). Then
5.2 yields

(s.s)

From (2.6) we -qet
(5.6)

o(u(r), u(y)): 
l,o* ffif = rns ct*-yttd(x).

fx- ylld(x) = exp {k"(x, y)}- 1.

Because Ct"-l as l.*0 the uniform continuity follows from (5.5) and (5.6).
We now prove that (2) implies (1). Fix ,t€(0, 1). Let x(G and B'(x,r)c.G.

For z,y€B(x,),r) we have by (2.7)

(s.7) ko@, y) = ko(B'(x, ir)) = zrcs(r.*) : zbg+T.

Bv the uniform continuity there exists a number D7, D2.*0, l.*0, such that

' 'u\')'l = »'o(u(z), ,(y)) : 
Ito- ,rr,t ..

whenever ko@,y)=2log (1/(1-1)), ,,!€G. In particular, we get by (5.7)

,Wi,tu(w) = exp (D1) ,eiX,.,"(*)
as desired.

It remains to be shown that Q) and (3) are equivalent. But this equivalence fol-
lows from the definition of o. Note that | | in (3) is the absolute value. The proof is

complete.

We next give an example of a uniformly continuous function u:(R?*,q)*
(R*, I l). Such functions will be studied in Section 6.

5.8. Example. Construction of a uniformly continuous function u: (R2*, q1-
(R*, ll), which fails to satisfy the Harnack inequality (1.1).

Let Q:l- 1, llX[0, 2fcR2*. Divide Qinto 4 equal squares by joining the mid-
points of the opposite sides. Repeat the division in those resulting squares which
have one side on the x-axis. By continuing this process we get a decomposition of Q
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into squares of constant hyperbolic size. Let Q!, j:1, ...,20*' be the squares with
side length 2-k, k:0,1, ....

Let H:{(x, y, z)€Rs: z:yllO\ and p: R3*RB be the projection p(x, y, z):
(x,y,O).We identify R':{(x,7,0)€R3}. Let AjcH be such that pAj:/j,
let fibe the midpoint of A!, and let ås stand for the boundary in the topolo gy of H.
Set

PI: U [r, aj+er] and S : (U Pflu(H\U,{i).
w€bruA\ k,j k,i

Define ui Rz**p* by u(x,!):z if and only if (x,y,z)(,S. We see that
u: (Rza,q)*(R, I l) is a uniformly continuous function. We show that u:(R'*, q)*
(Ä+,o) fails to be uniformly continuous. To this end let L:{(x,3x): x€.R,,}
and let cy c2, ...€L be the successive points where ull attains a relative maximum
with lcrl=lc;+rl, cj*O, andlet dr,dr,...11 bethepoints whereulLattains arela-
tive minimum, ld)>lcrl=ldi*rl. By construction there exists M>0 such that
q(ci,d), q(ci,dia1)=M for all T'. Then u(ci)*l, u(d)*O and hence

o (u(c ), u(d )) : ltog (u(c ) I u(dr)l * -.
Thus u: (R2*, g)*(R+,o) is not uniformly continuous, and z is not a Harnack
function, as desired. This example also shows that the hypothesis "u is a Harnack
function" in 4.1 and 4.3 cannot be replaced by the hypothesis "u: (R\, g)*(R, I l)
is uniformly continuous".

5.9. Remark. Let u: G*R be continuously dffirentiable in G. (l) If
sup {lv "(y)l 

d (y)} - tuf { *,
v€G

is uniformly continuoLts.

and

;tB{Wdy)}-"'
then u satisfies the uniform Harnack inequality.

Proof. (1) Let x,y€G with kc(x,y)-.log(312). Then y€B'(x,d(x)12) by
(2.6). By (2.6) we gef for some (([x, y]

lu (x) - u(y)l = lY u (Ollx - yl = 2lv u (01 ffi O -,
= 2M + < 2M (exp(kr(x, y))- r),d(x) \

from which the assertion follows.
(2) The condition (1) for a:log rr assumes the above form. The proof follows

from 5.4 and (1).

then u: (G, ko)*(R, I l)

(2) IJ' uG c"(0, ..)

271
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6. Approximate limits and angular limits

The implication'asymptotic value implies angular limit'failstohold forfunctions
satisfying the uniform Harnack inequality (cf.4.2) while it holds for many otherclasses
of functions. Therefore it is perhaps justified to consider some other properties of a
function than the property of having an asymptotic value which do imply angular
limit. To that end we shall consider the notion of an essential value and of an approxi-
mate limit in this section.

For the results in this section it is important that the functions are uniformly
continuous with respect to the hyperbolic metric. Uniformly continuous functions
have been extensively studied in complex analysis. An analytic function f: (82, p)-
(R', Il) is uniformly continuous if and only if it is a Bloch function [14, p.268].
A meromorphic function f:(B', g)*(R', q), where q is the spherical metric, is
uniformly continuous if and only if it is a normal function [12].

6.1. Approximate limits. Let GcR' be a domain, G*R", and let f: G*X
be a measurable function, where (X, d) is a metric space. The function / is said to
have an approximate limit or at x'€G\{-} if

(6.2) lg ru((G\ E,)nB"(xo, r)) r-n - 0

for every e =0, where B":{xQG: d(f(*),a)=e}.

6.3. Measure densities.Let EcN be a measurable set and x(Ro. The upper
measure density of E at x is defined to be

on*(E, x) : ligsoup m(EnB1x, r))(a,r\-r,

where On:m(B') and the lower measure density ?I(E,x) is the corresponding
liminf. lf 0n*(E,x):0i(E,x), this common value is the measure density 0"(E,x)
ofEatx.

The next lemma is a standard result from measure theory. It was presented
without proof in [16]. A proof will be supplied here, because the result will be applied
in what follows and the author has not been able to find an adequate reference to the
literature.

6.4. Lemma. A measurable function f: G-X has an approximate limit a at
xoeG\{-} if and only if there exists a measurable set EcG such that
0'(G\8, xo):0 and f(x) approaches a as x approaches xo through E.

Proof. The sufficiency part is obvious. To prove the necessity assume that/has
an approximate limit a at xs and set E1,:{x€G: d(f(*),u)-llkl, k:1,2,....
Then there exists 4€(0, 1) such that

1
,.11

2k',,?((G\E)nB"(*0, ,)) =
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for r((0,rel and ria-rilQk), k:1,2,...' Let

n; : (B'1xo, rp)\B'(xo, ro*))nEo

and E:vEt Then-Eismeasurableand f(x)*a äs x+xsr xCE. For r((r1,a,rol
we have

m((c1r;nB' (xo, .)) =,2 ((c\al)n3-'(xo, r))

= m((c1a) nBo(xo, r))+m(B"(xo, rr*J) = ****ri*, = | r'.

It follows from these estimates that 0'(G\.8, xo):0.

6.5. Notation. If AcR", x€N, and r>0, then we will employ the abbrevia-

tion A(x, r):B(x, r)nA, which will be used in cases giving rise to no ambiguities.

6.6. Essential ualues. Let f: G*Y be a locally integrable function, where

Y:R" or:R, andlet xo€G\{-} and a€Y. Then / is saidto havean essential

value a at xo if
linl r-' f lf@)-qam : or+u c(*I, r)

(cf. 6.s.).

6.7. Remarks. (1) It follows from (6.2) that a function having an essential

value has an approximate limit as well.
(2) Let E:{(x,y)€R'+: y<xzlt and f(x):(lllxl)XB@), where ;s is the char-

acteristic function of .E. Then / is non-bounded, has an approximate limit 0 at 0 by
Lemma 6.4 and fails to have an essential value 0 at 0.

(3) Suppose that f: G*Ro is locally integrable, that l/(x)l--M<* for x€G
andthatfhas an approximate limit a at xo€G\{-}. We show that/has an essential

value or at xo as well. In fact, let .E be the set in Lemma 6.4. We obtain

r, : I lf@)-ia* = I l"f(*)-o4*+Mm((c\E)(xo,r).
c(r;,r) E({,'l

By Lemma 6.4 a(r)*Q as r*0, where a(r):sup {l/(x)-al: x(E(xo, r)}. Hence

we get
r-"1, = r-"m(E(xo, r))a(r)+ Mr-'rn((G\E)(ro, ,)).

Letting r*0 yields the desired conclusion, since 0'(G\8, xo):O.

It follows from (4.6) that if a continuous function of Ri has an angular limit a
at 0, then it has an approximate limit a at 0 as well.

6.8. Remark. Applying6.4one can easily construct continuous bounded func-
tions having an approximate limit but no asymptotic value, and hence no angular
limit, at a given boundary point.



274 Marrr VuonrNBN

We shall show that for functions uniformly continuous with respect to g, an

approximate fimit implies an angular limit. For this purpose the following geometrical

lemma is needed.

6.9. Lemma. Let Ec.Rny be a measurable set such that 0"(Rn*\E,0):0 and

let L be a line through the origin. Then there exists a sequence (a1)QL1 such that
a**0, la*l>lao*rl>0 and la1,-asrlllaol*0, and a sequence (b)cE such that

bi*O and. lat-arl<lat-ai-rl, q(a;,b)*0, q(bi,biar)-0.

Proof. Let E€(0, nl2) be the angle between L+:LnR\ and the x,-axis.
When x€Z* and a€(0, 1l we have

(6.10)

For every k:1,2,... there exists 4€(0, 1) such that lxl=-vo and x(Z* imply

(6.11) ,"(.,nnE *o

since otherwise there exists by (6.10) an integer /ro such that

o,*(J?i\E, o1 = ( , "* e-l'= o,

which is impossible. We may assume that 4,.1€(0, rp) and lim ro:Q. The sequences

(a) and (å) will be constructed as follows. Let ar€LnS\-t(rr) and select

|5EnB"(a1,lall(cos @lZ) (cf. (6.11)). Suppose that ar,...,ai(La and b1,...,bi€E
have been chosen and that ro*r<larl=ro. Let dial€L* be such that

;a,.,1(r+ffi) :kt(r-*J
lf ldi*rl=ronr, set dj+r:dj+t and choose

bi+reBn(o,*,,Y#fY)",

(cf. (6.11)). Otherwise ldi*rl-ro*r. Let 1:(cos dlQk) and

a1 +r : o, #, b i ag.Bn (a i +1, Tla i al)aE.

In view of (2.3) it is a matter of easy verification to show that the desired conditions
are satisfied.

The following result can be proved in the same way.
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6.12. Corollary. Let EcRo* be a measurable set with 0'(Ri\8, 0):0, let
O€(0,r12) and let (ao)cC(E) be a sequence such that ao*O. Then there exists
a non-tangential sequmce (b)cE with b*,*0, such that Q(bo,bu*r)-Q and
p(ao, w{br})*O. Hence lim1y1-o,x€c( q, e(x, ä):0, for EQ.(O, nl2).

6.13. Theorem. Let u: R"**p be a continuous function, EcR"* ,tvith

O'(Ri\E, 0):0, and suppose that u(x) tends to a as x approaches o through the set E.
Then u has an angular limit u, at 0 if one of the following conditions is satisfied.

(1) u: R"**R* satisfies the uniform Harnack inequality.

(2) u: (R\, q)*(R,ll) is uniformly continuous.

Proof. Fix E€(0, nl2) and (a)c.C(@ with a**9. It suffices to show that
u(ao)*q. The proof of (2) follows from6.12 and the definition of uniform continuity.
For (l) apply 5.4 and pafi (2).

6.14. Remarks. (l) Condition (1) cannot be replaced by the requirement that
u satisfies (1.1) as Example 5.3 Q) shows. See, however,6.16.

(2) The condition 0'(Ri\8,0):0 cannot be replaced by 0[(Ri\ä,0):0.
To this end consider a sequence (lk), ,k+1€(0, ro) with limto*rfto:0 and set F,,:
ST'(r*), F:eF*, observing that q(Fo,Fo*r)*- bV Q.3).It follows (cf. 3.6)
that up(x)*o, x*0, x(vEy, Eo:{x(R"a: ltot'o*r1ttz=lxl=(tf,to*r)Llz} and
0[(A!\uä*, 0):0. Clearly uphas no asymptotic value, and hence no angular limit
at 0.

(3) It is not difficult to show that a bounded function u: Rn** p satisfying the
uniform Harnack inequality 5.2 is uniformly continuous as a mapping u: (R"a, q)*
(R, ll). For unbounded functions satisfying 5.2 such a conclusion does not hold as
the example u(x):sapQ(en,x), x€R!, shows. See also 5.8.

It follows from Lemma 6.4 and Remark 6.7 that if z satisfies (l) or (2) in 6.13
and has an essential value or approximate limit a at 0, then z has an angular limit as

well. Results of this type are known for many different classes of functions; see for
instance Diederich [4] and Mikljukov [13].

As pointed out above, Theorem 6.13 does not hold for Harnack functions in thE
stated generality. We shall prove a positive result in the special case d:0. To this
end, the following lemma is needed.

6.15. Lemma. Let EcR"* be a measurable set such that Oi(f,O;=5=9.
Then there exists a non-tangential sequence (b1)cE such that b**0 and
lim sup q(bp, bp*r)-*.

Proof. Fix E€(0,n12) such that m(Bi\C(@)=A"ö14 and ,16(0, 1) such
that )."=ö14. Let re€(0, 1) be such that m(nnB"g1)l(O"f1=3514 for r((0, rol.
For each r€(0,rol there exists b,<Ea(R(r,),r)nC(@), where R(r,,1r):B'1.1y
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B^(),r), because otherwise for some r€(0, ro]

(Q * r") -, m (n n B (r)) = (Q, r") -' * ((B\ (r)\ C (q)) v B\ (^r))

= 
(a"f)-l(o,ör"f 4+Q,(Är)"12) = ö14+)"'12 =. öf2,

which is impossible. The sequence (å;) is constructed as follows. Set b1:b,o,bi+r:
b1a-1 . As in the proof of Theorem 4.3 we see that there exists a number M(ö,n)
such that p(br,b,*r)=M(ö,n) for all i:1,2, ....

6.16. Corollary. Let u: R"**p* be a Harnackfunction hauing a limit O at
the origin through a set EcR"* with 0i(E,0)>0. Then u has an angular limit 0 at
the origin.

Proof. The proof follows from 4.3 and 6.15.

Corollary 6.16 fails to hold for uniformly continuous functions as the following
example shows.

6.17. E.xample. There exists a uniformly continuous u: (R'a, S)-(R,ll)
having a limit 0 through a set EcR'z* with 02*1n,0)>0 but no angular limit. Define
u(0, y) : y I l0 I l, u(x, y) : y I L0 for y€ (C, 2 lxl). Elsewh ere u is defined in such a way
that u: (R|, q)*(R, I l) is uniformly continuous (cf. 5.9 (l)). Then rz(x) approaches

0 through d:{(x,y): O<y-.)lxl}, 02*(E,0)>0, but a has no angular limit.
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