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ON QUASI-PARABOLIC PROBLEMS
WITH NORMAL BOUNDARY CONDITIONS

VEIKKO T. PURMONEN

Introduction

In the present paper we study initial-boundary value problems of the form

A@)ot, Dyu=f in R,XxR.,
o u
—a—tT t=0= ()% on R’f,_ .

B;(0/ot, D)ul,, o =g; on Ry XR',

where A(9/0t, D) and B;(/0t, D,) are linear partial differential operators with
constant complex coefficients or, briefly, differential operators in R,XR}. The
problems considered are quasi-parabolic in the sense defined in [2] and their lateral
boundary operator system {B;(9/0t, D)} is normal to the hyperplane x,=0.

In our previous work [2] we gave a necessary and sufficient condition for prob-
lems of quasi-parabolic type to have solutions in a setting of certain anisotropic
Sobolev-type spaces. We also proved a necessary and sufficient condition for the valid-
ity of an a priori estimate between a solution and the data. The aim of this paper is
to show that the general conditions mentioned above will take very concrete forms
in the case under consideration. The special case in which the lateral boundary oper-
ators are of the form B;=B;(D,) was already discussed for illustration in [2]. The
general case is, however, more difficult and requires a different treatment.

We state our main results, Theorem 2.3 on the solvability and Theorem 2.4 on
the a priori estimate, in Section 2 after the preliminary first section; in order to avoid
overlapping in introducing the necessary notions we shall refer to [2]. The proofs of
the main results make essential use of some propositions concerning weighted an-
isotropic Sobolev spaces and of a trace result; which are given in Sections 3 and 4,
respectively. In Section 5 we prove Theorem 2.3, and the proof of Theorem 2.4 is
finally given in Section 6. Note that throughout the paper the symbol C is used to
denote a generic positive constant.

It seems to us that some more or less loose ideas of compatibility appearing in
considerations of initial-boundary value problems can be made precise by the meth-
ods of [2] and this work.
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1. Preliminaries

1.1. We begin with some notation. We set
&, & =x64 ... +x,8,
for x=(x’, x,)=(X15 ...» Xy—1, X, )ER*=R% and &=(¢y, ..., &,)ER". Let
R, = {x = (', x,)€R'|x, = 0},
0O =R, XR".CR,XR",

2 =R, XR'ICcRXR:1,
where
R, =R, . = {t€R/|t = 0}.

For every multi-index o=(oy, ..., &,)EN" we write
Er=¢n..¢ and D*=Dp.Dj

with D=D.=(Dy, ..., D,), Dy=—id/dx, (i=}—1); in addition, set 9,=a/or.
By 7, and y, we denote the trace operators with respect to ¢ and x,, respectively.
1.2. Let my, my, ..., m, be positive integers, p=max {m}, g,=u/m,. and

q=(q15 > qn)-
We shall consider differential operators

A@,, D)= 3  a,0D* (kEN,aEN")

kgy+(x,y=n

B;d,, D) = b.adD? j=1,..., %,
](at ) kqo+<a2,qv)§uj ]kaat J %

and

where @, and by, are complex constants, u;=0 is the order of B;(d,, D), and
%x=m, is a positive integer. We can and shall write them in a self-explanatory manner

also in the form
40, D)= 3 4D,
_mo

Bj(ataD) = . 2" Bjk(D)af;

q=H;
note that we prefer here to write for example 4, (D) instead of A% (D) used in [2].
1.3. Problem (QP). We shall study the initial-boundary value problem
A@;, D)u=f in Q,
y.0%u = ¢y on R, k=0,..,my—1,
B0, Dlu=g; on X, j=1,..,%;
as in [2] we call it Problem (QP).



On quasi-parabolic problems with normal boundary conditions 281

In the realizations of Problem (QP) the data f, ¢,, g;, and the solution u will
lie in certain function spaces of the Sobolev type.

1.4. Basic spaces. The norm of a (complex) normed space X is denoted by
[ +lx. If X, Y, and Z are three normed spaces with XcZ and YCZ algebraically
and topologically, let XnY be equipped with the norm

lullxny = (ullk+1ul D>

Let s=0 and let X be a Hilbert space. Assign the weights g, and g, to differen-
tiation with respect to ¢ and x,, respectively. Then we can introduce in a usual way
the Sobolev-type space H*(Q; X) of X-valued distributions Q-—X, used here for
Q=R or R,, and further the anisotropic spaces H*(Q) with Q=R" or R,
and HO(Q)=H>*(Q), H(Q), and H{)(R) with Q=0 or X. For the definitions
of these spaces we refer to [2] and to the references given there.

The weighted Sobolev space H*(R.;o;X) with the weight function ™%,
0=0, is defined to consist of the distributions u: R, —~X with e “ucH*(R.;X)
and is equipped with the norm

lulmsr, ;0 = le™®ullgsr , s x)-

Finally, define

H®(Q; 0) = H*(Ry; ¢; H'(R})) 0 HO(R,, 5 ¢ H*(RY))
and analogously H®(Z; ¢) as well as the spaces H$(Q; 0) and Hff,g(Q; 0) with
Q=0 or X. See [2].

2. Main results

Suppose that the operators 4(9,, D) and B;(9,, D), j=1, ..., %, are given as in
1.2, and set for brevity

1
0= 5(qo+ qn)

and
R(uj) = {s€R|s > max {u;}+q./2},

R(p, ) = {s€R(u)ls = p},
R, (1, ) = {s€R(u, py)ls % qo/2mod go}.

Without further mention, we assume @=0.
We make the following hypotheses:

Hypothesis 1. Problem (QP) is quasi-parabolic, i.e., the operator system

(A (9> D), (7:35‘);'261, (?n Bj (an D))}‘:l)

is quasi-parabolic in the sense defined in [2].
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Remark. We can and shall assume that the coefficient 0 is equal to one.

Hypothesis 2. The operator system

B,(,,D), ..., B,(0,, D)
is normal to X:
() B;(9;, D) is normal to X of order u;, j=1, ..., %, thatis, q,\u; and the coef-
ficient of D!i'* differs from zero;
(i) w7 for j=k.

2.1. Initial and boundary values. Let s€R(y, p;). Suppose
ucH®(Q; 0) and set

J'= A, D)u,
Or = 7,0%u, k=0,..,my—1,
g = mBj(0;, Du, j=1,..,x
Then, firstly, the initial values
D, =y, 0fu, 0 é kgo < s—qo/2,
satisfy (see [2], Theorem 7.2)
0y Dy = @y, k=0,..,my—1,

my—1 m,—1—vy

1] (1]
(2) ¢mo+r = T'rf_l_ v;; Sr—-v kg(,) Ak(D)(pv+k’ 0= rqgy = s—u—qo/2.

Here the operators S, and 7, are defined by
S_,=0, r=12,..,
Sy =—1Id (Id = identity),

m,—1

0
S, == 3 AD)Smprns =120,

and
T.,=0, r=1,2,...,

my—1

0
T, = y,01— kg; Ak(D)Tr—moHn r=0,1,....

Secondly, the initial values @, and the boundary values g; satisfy the conditions
(LCR) and (GCR):
(LCR) If p;+vgy<s—9d with vEN, then

?tafgj=?n > By (D)D, 1.
kqoguj
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(GCR) If p;j+vqgo=s—06 with vEN, then

oo

[ 112 BaD)®. (', o) —exp (~ ga) 3l ) (070, ¥t 2 <o
0 0=
See [2], § 8.
If we now set

G(9= J] Hs*o-®2(RL)X [[ HE#~9/D(Z; o)
i=1

kqy<s—qy/2
and define

F5(9) = {V = (@ (g);)€G*(0)] V satisfies (LCR) and (GCR)},

then F*(g) is a Hilbert space with respect to the norm whose square is given by

V2sos = | V|25 4 B, (D)® x’, g5/%
Wiko = Wikot, 2 [ [] 2 Ba®@)2u0)e, )

do

—_— exp (_ Qo-s/qn) (8;' gj) (O.s/q,.’ x’)I2dx/ 'E_—

We shall also need the subspace E*(¢) of F*°(¢) which is defined by
E*(0) = Y(H®(Q; 0)

VY = ((’)’taf)kﬂ (')’nBj (9> ‘D))j)‘

with the operator

See 2], § 8.

2.2. We can now state our main results, Theorems 2.3 and 2.4; their proofs will
be given in Sections 5 and 6.

2.3. Theorem. Let sERqo(y, u;), and let ¢=0 be as in Theorem 10.2 of [2].
Then Problem (QP) with the data

fEHE-M(Q; 9),
QEHC Mo~ 0/D (R, k=0,..., my—1,
GEHC 1D (Z0), j=1,...,%,

has a solution uEH(s)(Q; @) if and only if the conditions (LCR) and (GCR) are
satisfied with the @, defined by (1)—(2) in 2.1.
Moreover, there is at most one solution of Problem (QP).

2.4. Theorem. Let s and ¢ be as in Theorem 2.3. Then, with the notation of 2.1
the a priori estimate

Ul pogse) = C(”f“H(s-“’(Q;g)‘{‘”((‘pk)ka (gj)j)”E‘(q))
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or, equivalently (see [2], 12.3),

o1

00 = € (INMs6-migsot S, 1oglitag-syz + P

+ f f[ Z (Bjk(‘D)¢v+k)(x O'S/qo)

u+vq =s—0d ¢

2dx’ ia_)
o

Remark. The reversed estimates are valid, too. Note also that the right sides
of the estimates virtually depend only on f, (¢y), and (g;);-

—exp (—0o¥%) (97 g,) (0*/%,

holds for all u€¢ H®(Q; o).

3. Some basic results on Hff,g-spaces
For the proofs of the main results we shall need the following three propositions.
Their proofs will be only briefly sketched.
3.1. Proposition. Let s=0. Then

HE)(Q; 0) = H'(R,,, +; H)(Z; ) H*(R,,, s HO(Z; 0)
with equivalent norms.
Proof. We have

Lemma. If s=kq, with k€N, then the spaces H(O)(Q) and
HO(RX,., + 7 H((OS)) (2)) N Hs(Rx,., + > H(O)(Z))

are isomorphic.
In fact, by definition

H((Q) = H§(R,, +; H*(RY)) 0 HO(R,, . ; H*(RY)).

Now use the extension operator and the Fourier transformation with respect to ¢
to show, by Fubini’s theorem, that the spaces

H{ (R, ,; H'(RY))
and
H°(R,, .; Hi“(R, ,; H°(R""1)))

are isomorphic. On the other hand, use the extension operator and the Fourier trans-
formation with respect to x, to see that the spaces

HO(Rt, +5 HS(R':L))
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and
H'(R,, .; H'R, ,; H(R"))nH*(R,, .; H'(R, .; H'(R"™Y))

are isomorphic. Then the assertion follows.
The result of this lemma can be extended by interpolation to all s=0. To

complete the proof, apply then the mapping wu+—e™ %u.

3.2. Proposition. Let Q stand for Q or XZ. If $;=5,=0 and s3=(1—0)s;+
Os, with 0<60<1, then

[HEP(Q; 0), HEP (25 ol = HEP (25 @)

with equivalent norms; here [ X, Y1y denotes the interpolation space for the interpolation
couple {X, Y} of two Hilbert spaces X and Y (see [1], Chap. I).

Proof. Since (see [2], Proposition 4.9)
[HEP (@, HEP (D]y = HEP (),
it suffices to apply the isomorphism
HE) (250 ~ HE) (Q):u— e u.

3.3. Proposition. Let Q be as in Proposition 3.2, and let s=0.
Then heH%(Q;Q) if and only if

() heHO (Q; o)
and

) [ [low (—en)@ (@ 9Py F < f s=a2=va, with veN.

Condition (i) is equivalent to the condition

(') heH(Q; 0) and y,0;h=0 for 0=vqy<s—qo/2,
and (ii) to the condition

(i) t~Y2Hhe HO(Q; o).

Furthermore, if s=vq,+qy/2 with vEN, then the square of the norm of he HfS;(Q; 0)
Is equivalent to
”h”?{(S)(Q;Q) + ”t_l/zatvh”?ﬂ‘))(ﬂ;g)'

Proof. In order to prove the first part, it is essentially enough to note that

7 =e®heHE(Q)
if and only if y€HP(Q) and

~ d .
[ 1@, widy = < it s = vaetqy/2,
0

and then to employ the Leibniz formula.
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To verify the equivalence of the norms, observe first that the square of the norm
of hEH((S;(Q; 0) is equivalent to
!Ie‘g’hll?pm cHo T ”e—eth”zf’(m ¥ Oka llt'l’zaf(e‘“h)lliom ; HO)»
where H" stands for H"(R".) or H'(R"™), r=0, 5. Next show that
”t_llze_gtafh”m(m;m) = Clhllawie; o
for k<v, and use the Leibniz formula to obtain

—1/2

2 2 -
“hllﬂggg(n;g) = C(”h”H(s)(Q;Q)_I—”t 0, h”H(o)(Q;g))'

The reversed estimate follows from the inequality

—1/2 4V
2770, hllgoro,q = C”h”Hgg;(Q;g),

proved by induction, for example.

4. A trace result

4.1. Proposition. Let s€R(u;). Suppose Hypothesis 2 is satisfied. Then the
mapping
(72 B;(0r, D));: HE (Q; @) ~ [[ HE 5= 4/P(Z; )
J

is a continuous surjective operator which has a continuous linear right inverse By

Proof. First we have

Lemma. The mapping
OuDi)ja,<s-an2: HS Q5 0) ~ [[ HE /9= 5/(Z: o)
J
is a continuous surjective operator with a continuous linear right inverse (y5)z".

To see this, use a known trace result (see [1], § 4.2), Propositions 3.1 and 3.2,
and the open mapping theorem.

From the previous lemma and from Proposition 6.7.4 of [2] it now follows in the
usual way (cf. [3], Section 7-8) that the assertion is true for any Dirichlet system

Fk(at:D)9 0§kq,,<s—q,,/2,

where the order of F,(9,, D) is kg, and the coefficient of D* differs from zero. Let
Fx' denote the corresponding inverse.

Finally, to prove the general case, it suffices to extend the system {B;(0,, D)}
to a Dirichlet system {F,(d,, D)} and then to consider an appropriate restriction of
the inverse Fg'.
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5. Proof of the solvability (Theorem 2.3)

5.1. We first recall the following general result:

Theorem. ([2], Theorem 11.2.) Let SER, (1, 1j), and let ¢ be as in Theorem
10.2 of [2]. Under Hypothesis 1 Problem (QP) has a solution uc H®(Q; o) if and

only if
((ék)k > (gj)j) €E*(0).

Moreover, there is at most one solution.

Thus we are led to prove the next theorem.

5.2. Theorem. Let s€R(u;). Under Hypothesis 2 we have E*(0)=F*(p).

Proof. Let V=((P), (g;);)€ F*(¢). First define
v=0Dx (@R EHD(Q; 0),
where ({)z" is the continuous linear right inverse of the operator
7= (100ay<s—aor2t HO(Q; @) — [T H M0~ 02 (RY);
see [2], Proposition 4.7. Set now

Ji = vaB;(9,, Dy € HEHi=mID(X5 o)

and
h; = g;i—=f;-
Then
(B, () = PvEES (o),
so that
((O)x, (h),) € F*(0).

Thus we have
Y0 h; =0 if p;+vgy<s—o
and

) ; |
[ [lexp(=ea)@thy) (o, ¥)dx' - <eo if  p;+vgy =56,
1]

Hence Proposition 3.3 implies that
h€HG =9I 0), j=1,...,x
If we set, applying Proposition 4.1,
w= Bﬁl(hj)jEH((g))(QQ ),

B0, D)w="h;, j=1,..,%

then
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and, by Proposition 3.3,
7,06w =0 for 0=kqgy<s—qe2.

Let us now define
u=v+wcH®(Q; 0).

Then
'))tafuz ¢k7 Oé kq0<s_q0/25
and
B0, D)u= fi+h;j=g;, j=1, .., %
that is,

((@x» (gj)j) = YucE*(g).
Thus we have F°(¢)cE®(¢), and consequently E*(0)=F*(0).

6. Proof of the a priori estimate (Theorem 2.4)

6.1. We can make use of the next theorem.
Theorem. ([2], Theorem 12.2) Let sERqo(u, ), and let ¢=0 be asin Theorem
10.2 of [2]. Under Hypothesis 1 the a priori estimate

lul 5 @50y = C>I lmts- 000 (P> (€D es )
holds for all uc H®(Q; 0) if and only if the operator
Y:H®(Q; 0) ~ E*(0)
has a continuous linear right inverse.
Accordingly, it suffices to pfove the following result:
6.2. Theorem. Let s€R(u;). If Hypothesis 2 is satisfied, the operator
Y:H®(Q; 0) ~ E*(0)
has a continuous linear right inverse.
Proof. We employ the proof of Theorem 5.2, and define a mapping
Yr1:E*(e) ~ HO(Q; 0
by setting, for every V=((P). (&;);)€E*(0)s
YRV =u=v+tw= ) (Pt Br' (hy);
= DR (@+ Br*(2;— 72 B; (0, D)) (Pi)y); -

Then W' is a linear right inverse of Y.
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In order to verify the continuity of ¥3', we first write
” 'PEIV”H(s)(Q; 0= ll(?f)El(qjk)kllH<s>(Q; 2) + ”BEI(hj)j”H‘s)(Q; 0
Here we have (see [2], Proposition 4.7)
”(ﬁ);l(dik)k”}{(s)(g;g) = %' | (pk”HS-kqo—qoﬂ(R'j'_)’
and Proposition 4.1 implies that
1B 1) g s = CJZ 1250 s =2 (510
It follows from Proposition 3.3 that
;' ”hj||§,£3)—uj-qn/2)(2;a)
= (3 lg—fllze- SP LA Al
= ML I8l 0 s ) b vits—s (&= o)
= C(21+2y).
Using the definition of the f;, we obtain here
2= (S N8 gm0 gy + 2 1B nt0, a2 )

In the sum X, we have

17729} (g~ ) srorss
= ([ [1 3 (BalD)® ). o) exp (— g0y 0 ) (070, )
) kgy=p; g
- / S, S, v S, N2 ’ d
+ [ [1, 2, Bi(D) P11, 0) —exp (— o) (97 £) (0, x)*dx 7"] :
0 W=H;
Since (D). (f;);)=Pv€E*(g), this gives
2o = C(IV o + 10130 @i) = ClIV 3 -
Thus we have

Y& Vg @i = CIV e

for all VE€E®*(¢), which completes the proof.

Remark. Note that the existence of a continuous linear right inverse can also
be deduced by Theorem 5.2 and the open mapping theorem.
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