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REGULAR n-GOl{S AND FUCI{SIA|{ GROUPS

MARJATTA NÄÄTÄNTN

1. Introduction

In [2] A. F. Beardon found the greatest lower bound for the radius of a hyperbolic
disc inscribed in a hyperbolic triangle of a given area. Here we find the corresponding
upper bound for a convex n-gon P, n >3. we also consider the greatest lower bound
for the radius ofa closed disc containing a convex n-gon p ofa given area. Both are
attained when P is regular, i.e., the sides are ofequal length and the angles are equal.

we apply the results for Fuchsian groups of signature (2,0), and calculate in
Theorem 5.1 the minimal trace in the group with the regular octagon with diametrally
opposite pairings of sides as a fundamental domain.

The formulas for hyperbolic geometry used in this paper can be found in Chap-
ter 6 of [l]. The hyperbolic metric is denoted by g, the hyperbolic area of an r?-gon
P by lPl.

If G is a Fuchsian group of signature (2,0), then G has only hyperbolic elements,
and we denote by D(z) its Dirichlet region with center z.For E€G, we denote the
trace by t(g), the transformation length by Tn, and the axis of g by as.

The author is grateful to Dr. A. F. Beardon and Professor Troels Jorgensen for
heplful discussions.

2. Octagonal Dirichlet regions

Let D be a convex octagonal Dirichlet region with center 0 for a group G with
signature (2,0). Then G has only hyperbolic elements and the genus is 2; hence
lDl:4n. By Euler's formula all vertices are equivalent and hence they are at equal
distance R from 0. We claim that

coshÅ = (t+[2),

with equality if and only if D is regular. For this we use the following two lemmas.

Lemma 2.1. Let the length c of the hypoterruse of a right-angled tria.ngle T be
giuen. Then the maximal area of T is attained when T is isosceles. Then the sides a, b
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and the angles a, § of f fuffil
cosh a : cosh | : (cosh c)ttz - cota: cot fr

and the maximal area A(c) is

4(c) : f -*-"ot ((cosh c-l)/sinh c)2.

A(c) is strictly increasing andfor cosh c: (t+l/2)', 'we get a:§:nl8 and A(c):
--lA,

Proof. Let the angles of 7be nf2,a,B. By using the formulas tanhc cosB:
tanh a, sinh c sin a:sinh a) eos a.:cosh a sin B we obtain after a simple calculation

cosz (a * f) : (cosh c -l)2 tanbz a (coshz c - cosh2 a)/sinha c.

Differentiating the right-hand side with respect to a we see that, for c fixed,

cos(a*B) attains its maximum if and only if cosha-(coshc)ttz. Since in a right-

angled triangle cosh c:cosh acosh b:cotucot B, this means lhat T is isosceles

and cot a-(cosh c)1/2. Then

cos (a*f) : ((cosh c- l)/sinh c)2,

and we obtain the claimed formula for A(c). Also, as c*0, A(c)*O and a, fi*nf 4;

&s c+@: A(c)*v12 and a,f*O; and A(c) is strictly increasing.

Lemma 2.2. Let D be a conuex octagon w,ith all oertices at equal distance R

from 0. Denote Ro:cosh-1 1t+12)'. Then if R=Ro, lDl'< n, and if R:Ro,

lDl=4n, with equality if and only if D is regular.

Proof. We triangulate D into 16 right-angled triangles with one vertex at 0 and

hypotenuse R. By Lemma2.l, A(Ro):n| , and if R=Ro, eachtrianglehasarea
less than nl4; hence lDl<4n.

For R:Ro each triangle has area at most nf4. Hence lDl=4n, with equality

if and only if each triangle has area nf4, i.e., has angles s.:§:r18. Then the sum

of the angles at 0 is 2n andD is regular with each angle rf 4, the circumscribed circle

has radius.Rs, and the inscribed circle has radius r, cosh r:1 *12.

Hence we have

Theorem 2.1. Let D be a conaex octagoru u'ith lDl:4n and with all uertices

of D at equal distance from 0. Then the smallest disc containing D has radius

cosh-l (l+l/r)', attained when D is regular.

Remark. It follows that no Fuchsian group of signature (2,0) can have a con-

vex octagonal Dirichlet region included in a closed disc with radius

R<cosh-l 1t+if2)', and for R:cosh-l (l+lD)', the only occurring octagon is

the regular one.
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Remark. From Lemma 2.1 we also obtain that if P is an octagon with all
vertices on the circle with center 0, radius cosh-l (t +{2)r, and if P is triangulated
as in Lemma 2.2, then lP I attains its maximum if and only if each triangle attains its
maximum area. This corresponds to the regular case.

3. Smallest disc containing a convex n-gan with prescribed area

The results of Chapter 2 can be done generally:

Lemma 3.1. Let P be a conaex n-gon, n>3, with area A. If P has a circum-
scribed circle C and the center O(?\|P, then the radius R of C attains its minimum
ualue R(A) if and only if P is regular,

(3.1)

(3.3)

Hence R(A) is a strictly increasing function of A and aice cersa.

Proof We do the proof for n:3, since the cases n >3 are treated similarly
with only a larger number of parameters.

We triangulate P into three pairs of right-angled triangles with angles u, at O, 0,
at the vertices of P, and nl2 at the rnidpoints of the sides of P. Then

cosh A - cot o(, cot 0, , i : 1,2, 3

Hence

(3.2) 7T - j ,ot-1 (cosh A tan 0i),

where the angles are subject to the constraints

cosh R(Å)- cot L cot(((, _2)7T- A)l1n).

(n-A)12 < rTf 2, 0i = 0, i - 1,2,3.

.}
i,

Z o,'
j:1

o
i)

Z *,: ft,
i:1

3

Z oi:
i:L

The equation (3.2) determines R uniquely as a function of (01,0r,0r), subject
to (3.3), and the problem is to minimize R over the triangle / in RB with vertices
(a, 0, 0), (0, a, 0), (0,0, a), s:(n- A)12.

We denote o :cosh R and compute the minimum value of o on /. We consider
a horizontal section

0,2: Ct-ZCr 02 =- Q-t, 0t: C*t, -g = t = C
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of /. On this segment o is a function of l, and differentiation of each side of (3.2)

yields

o'(t) tan 0,(L * oz tanz 0,)-' - - 1) + 1)-1 -(sin2 0r(o'- 1) + 1)-1].

Hence o'(t)>-O if 0r>0r, or equivalently, /=0; and o'(t)<O if r=0.
Thus a attains its minimum value on this segment when 0r:Br. Hence we can con-
sider the original problem in the intersection of / with the plane 0r:0r, which means

one parameter less. In the case n:3, o and R are now functions of one variable,
and by a similar differentiation we see that they obtain the minimum value for
01:0r:8r-(n- A)16.

In the case n>-3 we divide P with rays from O into 2n right-angled triangles.

Since in the minimal case P is regular, the angle a at O is nf n and the other angle 0

satisfies the equation
s : ((n-2)n-A)l2n

because of the area condition. The formula coshR:cot acot? gives the result.

Theorem 3.1. Let P be a conuex n-gon of a giten area A. The smallest closed

disc C containing P is obtained when P is regular. The radius Rfulfils (3.1).

Proof. If the center O of C is in P\åP, and if all vertices of P are on äC, the
result follows from Lemma 3.1.

If O ( P\AP, there exists a side s of P such that one of the two half-planes with
s on its boundary contains P but not O. By using the half-plane model with the con-
tinuation of s as a vertical line we see that there exists a disc C' with radius R'< R
such that s is on the vertical diagonal of C'. Let the center of C' be O' and let the

vertices of s be Ar, Az, Q(O', Ar)=Q(O', Ar)- Continue s through Ar, and the adja-

cent side with vertex l, through Ar, u;ntil they hit 0C', say at the points A'r,Ai.
Draw rays from the midpoint of s through the other vertices of P and denote the
pointswheretheyhit0C'by AL, ..., Al,.LetP'bethepolygonwithvertices A!, ,.., A',.
Then lPl<lP'1, all vertices of P' are on DC', O'€P'\AP'. By (3.1),

N, =,R(IP'D = R(IPD.
It also follows:

Lemma 3.2. lf G is q Fuchsian group with signature (2,0), then the only funda-
mental polygon which is a regular n-gon and can be di''^ided into 2n isosceles right-
angled triangles is the regular octagon.

Proof. Since the area is 4n, n:8 gives the only solution for equal angles in
(3.1).

Lemma 3.3. For giuen R>-0 and n(N, n>3, the maximum areafor a conL*ex

n-gon P included in a closed disc with radius R is attained v,hen P is regular.

o [(sin' Ar(o'
o
.-)

z
i:1
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Proof. Let R>0 be given, and let Pbe a convex regular n-gonwithcircum-
scribed circle withradiusR.Then lPl and R areconnectedby(3.1).If P'isaconvex
,?-gon, which is not regular, and lP'l>lP l, then by previous lemmas P'is not inclu-
ded in any closed disc with radius R.

There is a simple application to "covering":

Theorem 3.2. Let G be a Fuchsian group of signature Q.O). The translates under

G of the closed disc B(2, r) couer the hyperbolic plane if and only if r>R(G, z), where

R(G, z):r1ax, p(2, P) and P is a uertex of D(z).

Proof It follows from the definition of R(G, z) thatthe closed disc B(2, R(G, z))
covers D(z).Theimageofthisdiscunder 8€G is the closed discB(s(z), R(G,z)),
which covers D(g(z)).

It remains to be shown that R(G, z) is the smallest radius with the covering prop-
erty. It follows from the definition of D(z) that if P is a vertex of D(z) and 8.(P)
is in the cycle of P, then

q(P, z): Q(P, s-r@)) = q(r,7121)

for all /€GV. Hence the radius of a closed disc with center in the orbit of z has to
be at least R(G,z) in order to cover the vertex with maximal distance from z.

Theorem 3.3. Let G be a Fuchsian group of signature (2,0). The
group which mtnimizes R(G, z) of Theorem 3.2 is a group with D(z) for some z the

regular 18-gon with any of the eight possible identification patterns.

Proof. Theorem 3.1 and the fact that R(4n) of(3.1) is a decreasing function ofr
when 8<n<18, give the result, and for the minimal radius R the formula

There are eight possible

coshÄ-åcot Tt

y3 1g '

identification patterns for D(r) (t3l).

4. Convex n-gons containig a maximal disc

Lemma 4.1. Let P be an octagon, which is afundamental domainfor a Fuchsian
group with signature Q,0). Suppose that P has an inscribed disc C tvith raclius r. Then

coshr=t+{2 and equality corresponds to P being regular.

Proof We first consider the case when C touches each side in its midpoint. Since

the sides of P are congruent in pairs, we can divide P into 16 right-angled triangles,
each congruent with 3 others. Hence we can choose as parameters the angles a;



at the center of C and the remaining angles 0i,i:1,2,3,4. Since lpl: n,

4_
Z 0,: *'i:l z

Also

3,.: n
?-L'' 2'

By trigonometry, cosh r sin a,:s6s 0,. Hence

(4.1) irin-, "o10' :1ia-t cosh r 2

determines r as a function of (0r, 0r,0r,0u) subject to the constraints

4

0i=-0,20,:*.
r:l z

we want to maximize r over this subset of Ra. Let c(10, nl2l and consider a section
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^It0n: Z-c,0s : c -2k, 0z: klt,0t: k- t,2k(10, c), ltl < k.

we denote 6:(coshr)-r. on this segment o is a function of , and differentiation
of each side of (4.1) yields

o, O) ; --:cf0?- : ,, ftin 9r= .,,, - ,, 
o=ti, o=r= 

..,= .' ' iä (f - oz cosz 0 )rtz (l - o' cosz ?z)uz (1 - o, cos2 0 )ra '

Hence o'(t)>O if 0z>% or equivalently, t>0; o'(t)<e if t=9, and o attains
its minimum value on the segment when 0t:02.

Next we assume that

* e. - " 0t:02- (o-ro)t2,0s: k-t,0a: k*t,Vl = t .?", 2,

On this segment, as above, o attains its minimum value when 0s,:0n. Hence we can
assume 0r:02, 0a:0a,, and We can examine o as a function of 0, and 0r:n14,-6r.
A derivation like the one above yields that o attains its minimum value when 0,:
nf8, i:1,2,3,4 and hence P is regular. The formula for r becomes

coshrsinf : "otf
and hence coshr:l*{2.

The assumption of the inscribed disc touching P at the midpoints is irrelevant

- by increasing the number of parameters we can do a similar proof without it.
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Remark. A similar proof shows that in the set of convex n-gons with given area
A, and having an insribed disc, the largest disc is obtained for the regular n-gon. The
radius r of the largest disc fulfils

(4.2)

Hence,
radius

coshr _ cos(((n 
;z)r,-A)l2n) .

sln 1El n

for z fixed, r is strictly increasing as a function of ,4. We denote the maximal
by r:r(A).

Theorem 4.1. Let P be a conaex n-gon with giuen area A. Then if P is regular,
it contains the largest disc, and the radius r fulfils (4.2).

Proof. The result follows from the previous remark if the disc C touches all
sides of P. If all sides of P do not touch C, we can find a convex n-gon, P', P'cP,
lP'l-lPl, with all sides of P' touching C. Then, with the notation in the remark,
if r is the radius of C,r<r(lP'l)<r(lPl).

Remark. It follows that if P is a convex octagon which is a fundamental
domain for a Fuchsian group with signaturc (2,0), and if P contains a disc with radius
r, then
(4.3) coshr =l+{,
with equality when P is regular.

Remark. We can now examine the ratio cosh R/cosh r when P is a convex
n-gon, n>3, of given area A, 0<A<(n-2)n, R and r are, respectively, the radii
of closed discs Cr, Cr,CrcPcCr.

Due to Theorems 3.1 and 4.1 we obtain that

mjn cosh R/cosh r

is attained when P is regular. Then, with the notation used,

cosh R/cosh r : cos af sin 0,

where u:nln, § :((n_2)n_ A)12n.
For A given, we denote ä(n):seshR/coshr. Then ä(n) is strictly decreasing.

Lemma 4.2. Let P be a conuex n-gon, which is a fundamental domain of a
Fuchsian group of signature (2,A). Then with the notation aboue

max mjn cosh ,rR/cosh r - I +/r.
NP

Proof. Since the minimum number of sides for P is eight, and ä(n) is decreasing,
the maximum is attained when P is the regular octagon.

There is an application to "packing":
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Theorem 4.2. Let G be a Fuchsian group with signature (2,0). The translates

under G of the open disc B(2, r) do not oaerlap if and only if r=r(G, z), where r(G, z):
(1 12) min {e (r, s @)ls€ cV}.

Proof. It follows from the definitions of r(G, z) and D(z) that B Q, r(G, z))c
D(z). Hence the images under G of B(z,r(G,z)) are distinct, since

c(B(z, r(G, z))) : B(g(z), r(G, z))cD(g(z)).

Since r(G, z):p(z,g(z))12, where g(z)*z is the point closest to z in the
orbit of z, the images of B(z,r) are not disjoint if y>r(G,z).

Theorem 4.3. Let G be a Fuchsian group with signature (2,0). The group which
maximizes r(G, z) of Theorem 4.2 is a group with D(z) for some z the regular l8-gon
with any of the eight identification patterns.

Proof. Theorem 4.1 and the fact that r of @2) is increasing as a function of n
give the result and for the maximal radius the formula

5. The group of the regular octagon

Theorem 5.1. There exists a group G with signature (2,0) and min {1"(g)llge
cV):2(r +tD).

Proof. We derive generators and relations between them for a group G with
D(0) a regular octagon with diametrically opposite pairin-es. Then åD(0) consists of
arcs oi eight circles of equal size, intersecting at angles rl4.

Let two of the circles have centers on the real axis and let ft pair the corres-
ponding sides s,s' of åD(0). Then fi(ft):lR and hence we can assume

n, L.

-fr(z): ffi a2-c2:7, a,c(R.

Then the triangle with vertices 0, an edpoint of ,r and Rns has angles nl8, nf8,
nl2 and the distance from 0 to Rns is 7"1,12.

By (a.3)

(5.1) r(f,): ZcosnlTr,:2(t+{D = 4.8.

Hence a:t *y'2, ": -l/2(t *{21rrr.
Let g(z):(exp (i5nl4))2. Then .f*+r:E-k o.ftogk, k:1,2,3, pair the remaining

diagonally opposite sides of åD(0) and r(fo):r("fr), k:2,3,4. The cycle of the

cosh r -(z,in+)-'
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vertex gives the relation frfrfrfnfr' f;' .f;'-ff':t. By Euler's formula the genus

is two.
Next we show that the traces of the generators are minimal in the set {lt(S)llSe

GV). By (5.1) we can consider transformationlengths, and such S€G\1 that
Tn'Trr. We denote 2r:T7r'

Since an image of an has to meet D14, where z is a vertex of D(0), we can

assume anaD-121*0 by conjugation. By symmetry we can then consider the case

when D(z) is the regular octagon with sidelengths 2r and vertices the images of 0
under I,fr,fnfr,fofr-fr,fnfrfrfr,frfrfu,flfrandfi.Henceforsome h e(h(O),an)-r
and by conjugation we can assume g(0, a)-r. By hyperbolic geometry

sinh + ,(0, g(o)) : cosh q(0, ar) sinh |r,

Together with the assumption Tr-2r it gives

To finish we have to calculate r(g) for such g€GW that g(0,g(0))<a.7.
By elementary calculations and symmetry it suffices to calculate ft(frfr)l and

ft(rtfrf)|. These are not smaller than |t(i)I.
Lemma 5.1. If G is a Fuchsian group with signature Q,O) and such that D(0)

is the regular octagon, then the diametrically opposite pairings giue the group where

maximum of min {lz(g)llgec\f} is attained, and is 20+fr).

Proof. Each midpoint of a side of D(0) is mapped to a midpoint of a side'

Hence we can consider the case z:Feia with cosh r:l*{2 and w:Z in the orbit
of z. By hyperbolic geometry

sinh + r(0, g(o)) < cosh r sinh r - 1/, (L + l/r)'tz < s.23.

lL - rz eziElz

(1 - r')' )coshz + r(r, w):
(1 -lrl')(1 -lwl')

11 - zwl'

which has its maximum when E :nl2 or E:3n12, corresponding to the diametri-

cally opposite pairings. By (5.1) the maximum is cosh (oG,v,)12):l+fi.
If all pairings are not diametrally opposite, there exists a mapping C(G\/

with cosh (rrlz)=t+y'2. since

.orr, f Tn: r(g)12,

t(g)-2(l+/2). Theorem 5.1 now gives the result.
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Theorem 5.2. Let G be a Fuchsian group of signature Q.,0) and let G haue
a Dirichlet region D(z) which is a conuex octagon. Then

m6uxmin {lz(g)l lge c\ I} : 2(r+{»,

attained uthen G is the regular octagon group of Theorem 5.1.

Proof. There is a pair of equivalent points on the maximal circle with center
z contained by the octagonal Dirichlet region. Hence the result follows from the Re-
mark of Theorem 4.1 and from Lemma 5.1.
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