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REGULAR 7-GONS AND FUCHSIAN GROUPS

MARJATTA NAATANEN

1. Introduction

In[2] A. F. Beardon found the greatest lower bound for the radius of a hyperbolic
disc inscribed in a hyperbolic triangle of a given area. Here we find the corresponding
upper bound for a convex n-gon P, n=3. We also consider the greatest lower bound
for the radius of a closed disc containing a convex n-gon P of a given area. Both are
attained when P is regular, i.e., the sides are of equal length and the angles are equal.

We apply the results for Fuchsian groups of signature (2,0), and calculate in
Theorem 5.1 the minimal trace in the group with the regular octagon with diametrally
opposite pairings of sides as a fundamental domain.

The formulas for hyperbolic geometry used in this paper can be found in Chap-
ter 6 of [1]. The hyperbolic metric is denoted by o, the hyperbolic area of an n-gon
P by |P|.

If G is a Fuchsian group of signature (2,0), then G has only hyperbolic elements,
and we denote by D(z) its Dirichlet region with center z. For g€G, we denote the
trace by 7(g), the transformation length by 7, and the axis of g by q,.

The author is grateful to Dr. A. F. Beardon and Professor Troels Jorgensen for
heplful discussions.

2. Octagonal Dirichlet regions

Let D be a convex octagonal Dirichlet region with center 0 for a group G with
signature (2,0). Then G has only hyperbolic elements and the genus is 2; hence
\D|=4n. By Euler’s formula all vertices are equivalent and hence they are at equal
distance R from 0. We claim that

coshR = (1+ ﬁ)2

with equality if and only if D is regular. For this we use the following two lemmas.

Lemma 2.1. Let the length ¢ of the hypotenuse of a right-angled triangle T be
given. Then the maximal area of T is attained when T is isosceles. Then the sides a, b
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and the angles o, p of T fulfil
cosh a = cosh b = (cosh ¢)/* = cot o = cot f§
and the maximal area A(c) is

T

A(e) = >

arc cos ((cosh ¢—1)/sinh ¢)2.
A(c) is strictly increasing and for cosh ¢=(1+ Vﬁ)z, we get o=f=n/8 and A(c)=
=n/4.

Proof. Let the angles of T be 7/2, o, . By using the formulas tanh ¢ cos f=
tanh a, sinh ¢ sin o =sinh a, cos a=cosh a sin § we obtain after a simple calculation

cos? (a+ ) = (cosh ¢c—1)? tanh? a (cosh? ¢ —cosh? a)/sinh* c.
Differentiating the right-hand side with respect to a@ we see that, for ¢ fixed,
cos (¢+ p) attains its maximum if and only if cosh a=(cosh )2 Since in a right-

angled triangle cosh ¢=cosh a cosh b=cot o cot f, this means that T is isosceles
and cot a=(cosh ¢)/2. Then

cos (a+ ) = ((cosh ¢c—1)/sinh c)?,

and we obtain the claimed formula for 4(c). Also, as ¢—~0, A(c)~0 and o, f—n/4;
as ¢—oo, A(c)>n/2 and «, f—~0; and A(c) is strictly increasing.

Lemma 2.2. Let D be a convex octagon with all vertices at equal distance R
from 0. Denote Ry=cosh™ (1+V2)2. Then if R<R,, |D|<4rn, and if R=R,,
|D|=4n, with equality if and only if D is regular.

Proof. We triangulate D into 16 right-angled triangles with one vertex at 0 and
hypotenuse R. By Lemma 2.1, A4(R))=n/4, and if R<R,, each triangle has area
less than =/4; hence |D|<4n.

For R=R, each triangle has area at most n/4. Hence |D|=4n, with equality
if and only if each triangle has area 7/4, i.e., has angles a=f=n/8. Then the sum
of the angles at 0 is 2z and D is regular with each angle n/4, the circumscribed circle
has radius Ry, and the inscribed circle has radius », cosh r=1+l/§.

Hence we have

Theorem 2.1. Let D be a convex octagon with |D|=4n and with all vertices
of D at equal distance from 0. Then the smallest disc containing D has radius
cosh™1t (l—l-]/ 2)2, attained when D is regular.

Remark. It follows that no Fuchsian group of signature (2,0) can have a con-
vex octagonal Dirichlet region included in a closed disc with radius
R=cosh~* (1+Y2)%, and for R=cosh™! (1+}2)?, the only occurring octagon is
the regular one.
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Remark. From Lemma 2.1 we also obtain that if P is an octagon with all
vertices on the circle with center 0, radius cosh™* (1 +]/§)2, and if P is triangulated
as in Lemma 2.2, then |P] attains its maximum if and only if each triangle attains its
maximum area. This corresponds to the regular case.

3. Smallest disc containing a convex n-gon with prescribed area

The results of Chapter 2 can be done generally:

Lemma 3.1. Let P be a convex n-gon, n=3, with area A. If P has a circum-
scribed circle C and the center O€ P\QP, then the radius R of C attains its minimum
value R(A) if and only if P is regular,

@3.1) cosh R(4) = cot % cot ((n—2)m— 4)/2n).

Hence R(A) is a strictly increasing function of A and vice versa.

Proof. We do the proof for n=3, since the cases n=>3 are treated similarly
with only a larger number of parameters.

We triangulate P into three pairs of right-angled triangles with angles o; at 0, 6,
at the vertices of P, and n/2 at the midpoints of the sides of P. Then

coshR=coto;cotf;,, i=1,2,3

3 3
A =T, A=mn-2 26,'.
=1 =1

13

Hence

3
3.2 n = 2 cot~!(cosh Rtan®,),
i=1
where the angles are subject to the constraints
3
3.3) 20 =m—A)2<mn/2, 6,=0, i=1,2,3.
i=1

The equation (3.2) determines R uniquely as a function of (8y, 6,, 65), subject
to (3.3), and the problem is to minimize R over the triangle 4 in R® with vertices
(a, 0,0), (0,a,0), (0,0,a), a=(n—A)/2.

We denote ¢ =cosh R and compute the minimum value of ¢ on 4. We consider
a horizontal section

0;=a—2c,0,=c—t, 0, =c+t, —c=t=c
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of 4. On this segment ¢ is a function of ¢, and differentiation of each side of (3.2)
yields

3
o’ (1) 3 tan 0,(1+02tan?0) "1 = o [(sin2 0, (62— 1)+ 1) "1 —(sin 0, (62— 1) +1)~].
i=1

Hence o¢’(1)=0 if 6,=0,, or equivalently, t=0; and o¢'(¢)<0 if ¢=<0.
Thus ¢ attains its minimum value on this segment when 0,;=0,. Hence we can con-
sider the original problem in the intersection of 4 with the plane 6,=0,, which means
one parameter less. In the case n=3, ¢ and R are now functions of one variable,
and by a similar differentiation we see that they obtain the minimum value for
0,=0,=0,=(n—A)/6.

In the case n=3 we divide P with rays from O into 2n right-angled triangles.
Since in the minimal case P is regular, the angle o at O is n/n and the other angle 0

satisfies the equation
0 =((n—2)n—A)/2n

because of the area condition. The formula cosh R=cot a cot 6 gives the result.

Theorem 3.1. Let P be a convex n-gon of a given area A. The smallest closed
disc C containing P is obtained when P is regular. The radius R fulfils (3.1).

Proof. 1f the center O of C is in PN\@P, and if all vertices of P are on 90C, the
result follows from Lemma 3.1. )

If O¢ P\OP, there exists a side s of P such that one of the two half-planes with
s on its boundary contains P but not O. By using the half-plane model with the con-
tinuation of s as a vertical line we see that there exists a disc C” with radius R'=R
such that s is on the vertical diagonal of C’. Let the center of C” be O” and let the
vertices of s be Ay, As, 0(0’, A))=0(0’, A,). Continue s through A4,, and the adja-
cent side with vertex 4, through A4, until they hit dC’, say at the points 43, A7.
Draw rays from the midpoint of s through the other vertices of P and denote the
points where they hit 9C’ by 45, ..., A,. Let P’ be the polygon with vertices 43, ..., A4;,.
Then |P|<|P’|, all vertices of P’ are on 9C’, O'¢ P’\JP’. By (3.1),

R = R(P) = R(P).
It also follows:
Lemma 3.2. If G is a Fuchsian group with signature (2,0), then the only funda-

mental polygon which is a regular n-gon and can be divided into 2n isosceles right-
angled triangles is the regular octagon.

Proof. Since the area is 4n, n=8 gives the only solution for equal angles in

(3.1).

Lemma 3.3. For given R=0 and ncN, n=3, the maximum area for a convex
n-gon P included in a closed disc with radius R is attained when P is regular.
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Proof. Let R=0 be given, and let P be a convex regular n-gon with circum-
scribed circle with radius R. Then |P| and R are connected by (3.1). If P’ isa convex
n-gon, which is not regular, and |P’|=|P|, then by previous lemmas P’ is not inclu-
ded in any closed disc with radius R.

There is a simple application to ‘“covering’:

Theorem 3.2. Let G be a Fuchsian group of signature (2.0). The translates under
G of the closed disc B(z, r) cover the hyperbolic plane if and only if r=R(G, z), where
R(G,z)=max, o(z, P) and P is a vertex of D(2).

Proof. 1t follows from the definition of R(G, z) that the closed disc B(z, R(G, z))
covers D(z). The image of this disc under g€G is the closed disc B(g(z), R(G, 2)),
which covers D(g(z)).

It remains to be shown that R(G, z) is the smallest radius with the covering prop-
erty. It follows from the definition of D(z) that if P is a vertex of D(z) and g(P)
is in the cycle of P, then

o(P, 2) = ¢(P, g7*(2)) = o(P. f(2))

for all fEG\J. Hence the radius of a closed disc with center in the orbit of z has to
be at least R(G, z) in order to cover the vertex with maximal distance from z.

Theorem 3.3. Let G be a Fuchsian group of signature (2,0). The
group which minimizes R(G, z) of Theorem 3.2 is a group with D(z) for some z the
regular 18-gon with any of the eight possible identification patterns.

Proof. Theorem 3.1 and the fact that R(4r) of (3.1) is a decreasing function of n
when 8=n=18, give the result, and for the minimal radius R the formula

There are eight possible identification patterns for D(z) ([3]).

4. Convex n-gons containig a maximal disc

Lemma 4.1. Let P be an octagon, which is a fundamental domain for a Fuchsian
group with signature (2,0). Suppose that P has an inscribed disc C with radius r. Then
cosh r=14+V2 and equality corresponds to P being regular.

Proof. We first consider the case when C touches each side in its midpoint. Since
the sides of P are congruent in pairs, we can divide P into 16 right-angled triangles,
each congruent with 3 others. Hence we can choose as parameters the angles o;
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at the center of C and the remaining angles 0;,i=1,2,3,4. Since |P|=4n,

4
7
0; = —.
igi b2
Also
4 7T
2573
By trigonometry, cosh r sin o;=cos §,. Hence
s cos 0, T
4. 1 =
@1 i;; s coshr 2

determines 7 as a function of (0y, 0,, 0, 0,) subject to the constraints

N

0,

1

09 oi =

z
5

Il
-

r

We want to maximize r over this subset of R*. Let ¢€[0, 7/2] and consider a section

0, = %—c, 05 = c—2k, 0, = k+1, 0, = k—1, 2k€[0, c], || = k.

We denote o=(cosh #)~'. On this segment ¢ is a function of ¢ and differentiation
of each side of (4.1) yields

o (1) 2 cos 0; 0 sin 0, osin 6,
1 (1—02cos?0)2 ~ (1—02cos? 0 (I —o2cos® O,) 2"

Hence o'(¢1)=0 if 0,>0, or equivalently, t>0; ¢’(t)<0 if /<0, and ¢ attains
its minimum value on the segment when 6,=6,.
Next we assume that

4

2 0;

i=1

—’21 =0, = [%—Zk]/Z, 0, = k—1,0, = k+1,|f| = k.

On this segment, as above, ¢ attains its minimum value when 6,=6,. Hence we can
assume 6,=0,, 0;=0,, and we can examine o as a function of 6, and 0;=n/4—0,.
A derivation like the one above yields that ¢ attains its minimum value when 0,=
n/8, i=1,2,3,4 and hence P is regular. The formula for r becomes

. T ]
cosh rsin g = ©0s 3
and hence coshr=1+)2.
The assumption of the inscribed disc touching P at the midpoints is irrelevant

— by increasing the number of parameters we can do a similar proof without it.
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Remark. A similar proof shows that in the set of convex n-gons with given area
A, and having an insribed disc, the largest disc is obtained for the regular n-gon. The
radius r of the largest disc fulfils

cos ((n—2)n—A)/2n)

4.2) coshr = prp

Hence, for n fixed, r is strictly increasing as a function of 4. We denote the maximal
radius by r=r(4).

Theorem 4.1. Let P be a convex n-gon with given area A. Then if P is regular,
it contains the largest disc, and the radius r fulfils (4.2).

Proof. The result follows from the previous remark if the disc C touches all
sides of P. If all sides of P do not touch C, we can find a convex n-gon, P’, P'C P,
|P’|<|P|, with all sides of P’ touching C. Then, with the notation in the remark,
if r is the radius of C,r=r(|P’'|)<r(|P)).

Remark. It follows that if P is a convex octagon which is a fundamental
domain for a Fuchsian group with signature (2,0), and if P contains a disc with radius
r, then

4.3) coshr=1+)2
with equality when P is regular.

Remark. We can now examine the ratio cosh R/coshr when P is a convex
n-gon, n=3, of given area 4, 0<A<(n—2)n, R and r are, respectively, the radii
of closed discs C;,C,, CoC PCC;.

Due to Theorems 3.1 and 4.1 we obtain that

mljn cosh R/cosh r
is attained when P is regular. Then, with the notation used,

cosh R/cosh r = cos o/sin 0,

where a=n/n, 0=((n—2)n—A4)/2n.
For A given, we denote J(n)=cosh R/coshr. Then &(n) is strictly decreasing.

Lemma 4.2. Let P be a convex n-gon, which is a fundamental domain of a
Fuchsian group of signature (2,0). Then with the notation above

max mgn cosh R/coshr = 1+ V2.

Proof. Since the minimum number of sides for P is eight, and J(n) is decreasing,
the maximum is attained when P is the regular octagon.

There is an application to “packing”:
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Theorem 4.2. Let G be a Fuchsian group with signature (2,0). The translates
under G of the opendisc B(z, r) do not overlap if and only if r=r(G, z), where r(G, z)=
(1/2) min {o(z, g(2))|g€G\J}.

Proof. Tt follows from the definitions of 7(G, z) and D(z) that B (z, r(G, z))C
D(z). Hence the images under G of B (z, r(G, z)) are distinct, since

g(B(z, (G, 2))) = B(g(2), r(G, 2))cD(g(2)).

Since (G, z)=0(z, g(2))/2, where g(z)#z is the point closest to z in the
orbit of z, the images of B(z, r) are not disjoint if r=r(G, z).

Theorem 4.3. Let G be a Fuchsian group with signature (2,0). The group which
maximizes r(G, z) of Theorem 4.2 is a group with D(z) for some z the regular 18-gon
with any of the eight identification patterns.

Proof. Theorem 4.1 and the fact that r of (4.2) is increasing as a function of n
give the result and for the maximal radius the formula

-1
. s
coshr = (2 smﬁ] .

5. The group of the regular octagon

Theorem 5.1. There exists a group G with signature (2,0) and min {|z(g)|lg€
G\I}=2(1+V2).

Proof. We derive generators and relations between them for a group G with
D(0) a regular octagon with diametrically opposite pairings. Then dD(0) consists of
arcs of eight circles of equal size, intersecting at angles n/4.

Let two of the circles have centers on the real axis and let f; pair the corres-
ponding sides s, s” of 0D(0). Then f;(R)=R and hence we can assume

az+c

2 L2
a®?—c* =1, a,cER.
cz+a >

VAGES

Then the triangle with vertices 0, an edpoint of s and Rns has angles 7/8, n/8,
7/2 and the distance from 0 to Rns is Tfl/2.
By (4.3)

1) *(f) = 2cosh 2T, = 2(1+12) = 43.
Hence a=1+V2, c=—V2(1+V2) "2

Let g(z)=(exp (i5n/4))z. Then f; 1=g “ofiog", k=1,2,3, pair the remaining
diagonally opposite sides of 0D(0) and t(f,)=1(f1), k=2, 3,4. The cycle of the
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vertex gives the relation £,/ fs fufi ' fs - fs fa '=I. By Euler’s formula the genus

is two.

Next we show that the traces of the generators are minimal in the set {|7(g)l g€
G\J}. By (5.1) we can consider transformationlengths, and such geG\J that
T,<T;,. We denote 2r=T, .

Since an image of a, has to meet D(z), where z is a vertex of D(0), we can
assume a,nD(z)#0 by conjugation. By symmetry we can then consider the case
when D(z) is the regular octagon with sidelengths 2r and vertices the images of 0

under 1, £y, fufs» fifs Sos fufoSoSus Jufo fos f1feand fi. Hence for some i ¢ (h(0), a,)<r

and by conjugation we can assume ¢(0, a,)<r. By hyperbolic geometry

1

5 0(0, g(0)) = cosh ¢(0, a,) sinh 1 T,.

sinh 5

Together with the assumption T,<2r it gives
sinh% 0(0, g(0)) < cosh rsinh r = V2 (1+V2)¥2 < 5.23.

To finish we have to calculate 7(g) for such geG\J that ¢(0, g(0))<4.7.
By elementary calculations and symmetry it suffices to calculate [t(f,fo)| and
[t(fifofs)|. These are not smaller than [t(f)].

Lemma 5.1. If G is a Fuchsian group with signature (2,0) and such that D(0)
is the regular octagon, then the diametrically opposite pairings give the group where
maximum of min {|t(g)|gEG\J} is attained, and is 2(1+V2).

Proof. Each midpoint of a side of D(0) is mapped to a midpoint of a side.
Hence we can consider the case z=re'® with coshr=1+}2 and w=Z in the orbit
of z. By hyperbolic geometry

1 11— ziwf? [1—rie*?p?
2 __ = =" 1 __..22
e T TR A

which has its maximum when @=n/2 or ¢=3n/2, corresponding to the diametri-
cally opposite pairings. By (5.1) the maximum is cosh (o(z, w)/2)=1+V2.

If all pairings are not diametrally opposite, there exists a mapping gcG\/
with cosh (7,/2)<1+YV2. Since

cosh % T, =1(9)2,

7(g)<2(1+V2). Theorem 5.1 now gives the result.



300 MARJATTA NAATANEN: Regular n-gons and Fuchsian groups

Theorem 5.2. Let G be a Fuchsian group of signature (2,0) and let G have
a Dirichlet region D(z) which is a convex octagon. Then

max min {|z(g)| [g€G\1} = 2(1 +12),
attained when G is the regular octagon group of Theorem 5.1.

Proof. There is a pair of equivalent points on the maximal circle with center
z contained by the octagonal Dirichlet region. Hence the result follows from the Re-
mark of Theorem 4.1 and from Lemma 5.1.
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