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ON L*-INTEGRABILITY IN PDE’S AND
QUASIREGULAR MAPPINGS FOR LARGE EXPONENTS

TADEUSZ IWANIEC

Introduction

We begin with presenting a local version of the celebrated lemma of F. W.
Gehring invented with references to quasiconformal mappings [6].

Lemma 1 (Gehring). Let Q be a domain in R", g=1, fEL(Q). Suppose
that for each cube QCQ the inequality

©.1) ( S = m i

holds with a constant M =1 independent of Q. Hereafter f, o f stands for the average

value of f, ie., fof=fo=|0|"'[o f. Then there exist p=p(n,q, M)>q and
C=C(n,q, M)=1 such that

0.2) [Qf ) = ¢ fir

for each cube QC Q.

We call (0.1) the inverse Holder inequality. Following Gehring we notice that
the derivatives of quasiconformal mappings satisfy (0.1) with g=n. In major
cases of PDE’s we only succeeded in proving weak forms of (0.1); this means that
on each cube Qc Q and for some O<o<1, independent of Q, we have

©3) (f = w1

where 6Q stands for a cube of the same centre as Q but contracted by the factor of ¢.
In general, M may depend on ¢. In this case Gehring’s lemma reads as follows:

This paper amplifies a fragment of the lecture by prof. B. Bojarski and T. Iwaniec, “Some
new concepts in the analytical theory of QC-maps in R", n=3, and differential geometry” [2], deliv-
ered at the Conference on Global Analysis, Garwitz, DDR, October, 1981. In a not far remote
future we intend to give a more systematic and complete discussion of the topics.
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there exist p=p(n,q, M,0)>q and C=C(n, g, M,0)=1 such that
0.4) ( f1r17)" = flifl, for cach cube Qce.
aQ Q

We call (0.3) the weak inverse Holder inequality.

These two and a few other variants of Gehring’s lemma were successfully
adapted to PDE (see [4]). Here we shall discuss two typical examples which illus-
trate the practical use of the lemma. They will provoke us to further investigations.

Consider the divergence elliptic equation with measurable coefficients

©03) 2 () =o

i,j=1
where a;,(x)=a;;(x) satisfy the uniform ellipticity condition
(0.6) ait= 3 ay(x)EE =pE 0<a=f<e
i,J
for almost all x€Q and all vectors ¢€R". We are looking for solutions u from
W3(Q) for which (0.5) is understood in the sense of distributions, i.e.,

©.7) J S, o ax

0
for any test function @€W; (Q) — the completion of Cg (2) in the space W (Q).
Inserting a suitable ¢ one can easily derive from (0.7) the Caccioppoli type estimate

1/2 C(l’l, o, B) 12
(08) ( flv ’2) = (1 U),Qll/n [f!u quz}
By Poincare’s inequality, see Lemma 6 of § 4, we are led to
y
9 /! 5 Oy ld /(2n
0.9) [ f]Vu|~ ]1 : = C_(f:%ﬂ ( flvul(zn)/(n+2)]( +2)/@ ), 0cQ,
aQ Q

so the hypothesis (0.3) of Gehring’s lemma holds with ¢g=(#+2)/n and
S=|Vu*"*®_ Hence we conclude that u€W, ,,.(2) for some p’>2 and

0.10) ( f1vur)" = coa poo, o ( fiva)™
cQ Q
holds for each cube QC Q.

The second example deals with quasiregular mappings.

Definition 1. Assume that f: Q-R" is a mapping whose components
L2 o f3 belong 10 W, 10 (Q). Let Df=(df'ldx;) denote the Jacobi matrix
of f and let J(x, f) be its determinant (Jacobian). Then f is said to be K-quasiregular
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(1=K<oo) if and only if
(0.11) IDf(x)|" = n"2KJ(x, f)
for almost all x€Q.

We denoted by |4| the norm of a matrix 4, [4]*=2|4;;]*=Tr A*A. The
smallest X for which (0.11) holds will be called the analytical distortion of f. If
K=1, the map f becomes a generalized conformal transformation (1-quasiregular).
On account of Corollary 2 of § 5 we have

. 1/n o 2/n

0.12) ( fiorerax)” = conk( fipse)dx)
/2)Q Q

for each cube Qc Q. Hence by Gehring’s lemma we obtain the mentioned result

of Gehring, that f€W, 1,.(Q) for some p>n and

©013)  ( fiorepra)” =cm k) ( finferda)”, oce.
e o)

In connection with the above examples there arises a natural question: How
large can the exponent p be? The proper answer requires scrupulous analysis of
(0.5) and (0.11). Let us remark that if the coefficients a;;(x) are smooth, the solu-
tion u is also smooth. In particular, ueWpl, 10c(82) with p as large as one likes. In
general we shall see that the closer to continuous functions the coefficients a;;(x)
are, the larger p can be taken in (0.10). The idea of the proof will be exemplified by

Proposition 1. Suppose that aij(x)zéf +&;;(x), where 81 denotes Kronecker’'s
symbol and &;(x)=¢;;(x) are measurable functions small enough to satisfy

(0.14) ]2} g (0] =68, e<1

for almost all x€Q and all (€R". Then there exists k=k(n)=0 such that each
solution uEsz,OC(Q) of (0.7) belongs to WI,1 10e(Q) for every pe(1,2+klog(l/e))
and

©.15) [ fvar)"=cen(f vap)

e
holds for each cube QcC Q.
Commenting the role of the constant K in (0.11) we observe that for every
nXn-matrix A
(0.16) |A]* = n"2det 4,

the equality holding for matrices proportional to orthogonal ones. Thus the Jacobi
matrix Df(x) of a 1-quasiregular mapping is (at almost every point x€Q) a simi-
larity transformation of R". Therefore the concept of generalized conformal mapp-
ing is (up to smoothness conditions) much like the one familiar in the differential
geometry, the more so because the Liouville theorem states that every 1-quasiregular
mapping, if n=3, is either constant or a restriction to Q of a Mdbius transforma-
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tion, i.e., the finite product of reflections with respect to spheres. For the simplest
and very elementary proof see [3]. Generally the distortion K should be thought of
as a distance measure between f and a Mobius transformation. That is why f is
expected to possess good regularity properties when K is sufficiently close to 1.
We shall prove

Proposition 2. There exist p=p(n,K)>=n and C=C(n, K)=1 such that

a) every K-quasiregular mapping f: Q—R" belongs to WPI,IOC(Q),
b) for any cube QCQ we have

©.17) ( fiore)" =c| S )",

@/2)Q

c) the exponent p=p(n, K) increases to infinity as K tends to 1.

The principle of the proof will be the same as that of Proposition 1. However,
the details will be quite different and perhaps interesting in their own right.

The problem of LP-integrability (p=>n) of derivatives of quasiregular mappings
was first solved by B. Bojarski [1] in two dimensional domains. Later Gehring and
then N. Meyers and A. Elcrat [4] have extended it for arbitrary dimension. In 1976
Ju. G. Resetnjak [9] examined the asymptotic behaviour of p=p(n, K) in K close
to 1. The exact value of p=p(n, K) is unknown. ReSetnjak’s method relies on
deep arguments relating to quasiconformal theory, especially on a strong stability
theorem, and it seems to be ineffective for PDE’s.

In this paper we present a tool for dealing with problems of L”-integrability
in both quasiregular mappings as well as solutions of PDE’s. The following lemma
is the most important one in this paper.

Lemma 2. Let Q be an open subset of R", fcLi,.(Q), O<o<1, 1=p<eco.
Suppose that for each cube QCQ the inequality

(0.18) J 1) ~fioldy = 10-5 £ 7()/dy
cQ Q
holds. Then fe€Lf, (Q), and for each cube QE Q we have
i 108mp {
©0.19) ([ fur)” == fir.
1/2)Q Q

For the case of a=1 see Corollary 1 of §2.

In other words, a function which can be approximated locally by constants
with errors, small relative to its mean values, belongs to L” with large p.

This extends somewhat the lemma of John-Nirenberg concerning the theory
of BMO spaces. For Lemma 2 we were inspired by the inequality of Fefferman
and Stein [5]. What we really need is a local version of their inequality; for the
completeness of our arguments we will give a proof imitating the original one.
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The proofs of Propositions 1 and 2 are divided into three stages. First we study
the extremal cases, when ¢;(x)=0 and K=1. We derive local estimates which in
fact are consequences of the regularity of harmonic functions (Lemma 7) and of
generalized conformal mappings (formula 4.5). Next we find that solutions of ellip-
tic equations and quasiregular mappings behave stably with respect to coefficients
(Lemma 8) and to distortion K (Lemma 10), respectively. And, finally, we complete
the proofs on the basis of Lemma 2. This procedure works in many other cases not
discussed here (see for instance [7]).

We are taking the opportunity here to show how this method works if Gehring’s
lemma is used. To this end we look at (0.1) again. For simplicity assume that g=2.
The extremal case corresponds to M =1. Functions which satisfy the inverse Hol-
der inequality (fp |/|*)/2=f, |f] must be constant in their absolute values. Since
in general

Jln-17d = [Qf 1A1-1f10P) " = (Qf e [Qf )= YT f1

whence the stability property of (0.1). Now, Lemma 2 with c=1 (see Corollary 1)
implies that for each cube QcQ

( fure)” =2-100 fi
Q Q

whenever 1=p<—(1/(10n)) log 4(M*—1). In this way we are led to the following
addendum to Gehring’s lemma:

Proposition 3. Under hypothesis of Lemma 1, (0.2) holds with the exponent
p of order O(log 1/(M—1)).

Let us remark that one can obtain Proposition 1 by applying singular integral
operators. However, having other applications in mind we use our method, which
is fairly universal, particularly when non-linear equations are concerned.

1. Decomposition lemma

Let Q, be a cube in R". We define by induction the families M,, k=0, 1,2, ...
of open subcubes of the cube Q,: My={Q,}. Suppose that the family M, is given.
Then we divide dyadically every cube of M, into 2" equal cubes. They form together
the family M, ;. The cubes of M, are disjoint. In general every two cubes from the
union M=, M, are either disjoint or one includes the other. Let us observe that
any cube Q€M initiates uniquely the increasing sequence of cubes from M such that

(1.1) 0=0,CcOc...c0Q,cQy, OM,, s=0,1,..,1

The volume of the cube Q€M is equal to 27™|Q,|. Let f be an integrable function
defined on Q,. We will work with the following local maximal functions of Hardy—
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Littlewood and Fefferman—Stein:

/209 = sup{ Qf [f0)ldy; x€QCQ,}

F*() = sup{ Qf 1f)—faldy; x€QCQ,}.

The following version of Calderon—Zygmund lemma will be used in the next sec-
tion.

Lemma 3 (Decomposition lemma). For any a=a=|flo, there exist dis-
Jjoint cubes QF€M, j=1,2,... such that

a) a<fo= | f(y)|dy=2"a,

b) If a=p=a, then each cube Q5 is a subcube of one from the family (0%,

Jj=12,..},

o) |f(x)|=a for almost all x€Qy—\J;05,

d) >;|0%=i(x)=mes {x€Qy; f°(x)=a} for a=a,

e) A(S"w)=5"2,|05| for a=a.

Proof. Let Q be an arbitrary cube from M. We examine the sequence
(1.2) 0=0,cO_.C...c0,CQy, OEM,, s=0,1..,1
The cube Q will be included in the family {Q}; j=1,2, ...} if and only if

(1.3) oc<f[f} and f[f[écx for s=0,1,..,1-1.
g 0,

Clearly any two cubes Q" and Q” from {Qf} are disjoint. In fact, if not, then it would
be Q' Q” or Q" Q’. Hence both would appear in the same sequence initiated by
a smaller cube. This contradicts the obvious fact that no two cubes from (1.2) can be
in {0%; j=1,...}.

Since |flg,=a=x, Q, cannot be a member of {Q5}, in particular

fliri== fir=2 fifi=2a
0 0] 0, 9,7,

-1
whence a) verified.

Now, let a=f=a and Q€{Qj; j=1,2,...}. Then the Qy from (1.2) with the
smallest index s'€{1,2,...,I} for which B=<fp |fl, must belong to {Qf;
j=1,2, ...}, proving assertion b).

Let x¢J; 07 and let Q€M be an arbitrary cube containing x. Then none of
the cubes QCQ,_;c...c0,cQ, belong to {03}, which means that fp |f|=x

for each s=0,1,...,/, and in particular f,|f|=«. By the Lebesgue theorem we
conclude that

fx) = sup{flfl; xEQEM} =a for almost every x€Q,—J;0%.
g
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Actually we have shown that | J; Q%= {x€Qy; f*(x)=>a}, where f*(x)=sup {fo|f],
x€QEeM]}. Obviously we have [*(x)=f"(x). Hence 3;|Qj=mes {xcQy;
SPx)=a}=A(x).

In order to prove condition ¢) we will show the inclusion
(1.4) {x€Qy; fP(x) = 5"a}c(J;505%.

Let x¢J; 507 and let Q be an arbitrary cube such that x¢QcQ,. From a) and c)
it follows that

firn= [ rn+z [
Q Q- u ;0% 7 0nQ;

=d0l+ X [Ifl=alQ+2e X |0
0,nQ2#0 o=

Q50 0=0

Now we use the elementary fact: if Q507 and QnQj#0, then Qjc2Q. There-
fore we can write

JIfl=alQl+2a 3 |03 = 2|0]+2"% 20 = 5"%0),
0 03c20

0 |f|o=5"a whenever xé 0—|J;505. In other words, f*(x)=5"« for x¢J;507,
which proves (1.4).
2. A local version of the Fefferman and Stein inequality
Lemma 4. Suppose that f*cLP(Q,), | =p<oce. Then f°cLP(Q,) and
1/p - . 1/p s
2.1 ( f1ree)" =10 firep)” + 100 £,
Ql} Qo QO
Proof. First we shall show the following estimation:
2.5 .
(2.2) A(5"a) = 5"mesy1x€Qy; fH(x) > ‘|'—— J(2-""1)

for a=2""'a=2"""fly, and any positive A.
By d) and e) of Lemma 3 we see that it suffices to prove that

@) 3105 = mes {xeQy £+ () = S} + 2 3l

Fix a cube Q€{Q¥™""; j=1,2,...}. Then by a) we have |fp|=2"(227""")=2/2.
Moreover, fQ‘ﬂf|iOC|Q:} for every cube Q%. Thus

Q[ =t = (27 ) 051 = 3 105
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Hence by summing over those cubes Q% which are contained in Q we get

z o= 2 [ir- fgfs——flf fol-

oico jc0 g
Now we consider two cases:
Case 1. folf—fol=afd. Then Soscol03=2/4)0]
Case 2. fo | f—fol=0/A. This means f*(x)=o/4 for every point x€Q, ie.,
Qc {x€Q,; fT(x)=a/A}. In particular

2 |Qj] = mes On {xEQO; SF(x) = %}

0ico
In either case one can write
- ) o 2
(2.4 > 104 = mes Onx€Qy: f*(x) = —{ +— |0l
0%cQ A A

for each cube Q€{0%"™"; j=1,2,...}. Appealing to property b) of the decom-
positions  {Q%; /=1, 2, ..}, a=2""f lo, we see that after summing (2.4) over
0c{O¥™""; j=1,2,...} all cubes from {Q% j=1,2....} will be counted once,
i.e., we obtain (2.3).

Now we proceed to the proof of (2.1). We begin with the well-known formula

le(y)j"dy =p f P-1mes {x€Q,; |F(x)| = t}dt for FELP(Q,).
g, 6

Take an arbitrary number N=2"*"'a. Tt follows from (2.2) that

N

P f oaP =t A (5" o) do

2n+1g

2-5"p

o N
=5"p f oz”‘lmes{x; ff(x) = %}da-{- f aP 1 (27" Y da.
0 0

Changing the variable a accurately in each integral we get

57N

p =120 dr
2-166;
MmN

ot .1opn+e
= 5P"tPAPp f P-tmes {x: f*(x) = r}dt+—2——17—p—f =t dr.
0 0

This and the evident inequality

2-10na 2-10na

P f =11 dr = Qo p f Pl = [Q,[(2- 10"a)?
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yield

5MN

p P-1)(Hdt
/

57N

. 10p+np
—%—l()———pf P=15(0)dr +2P 10" a?|Q,|.
0

— §Ph+Dp 4P #|p
=smerar [ifrp

o
Now we put here 4=4-10"""?, giving

MmN
p [ AW < 24710t e [P 0Pl 107 g Q).
0

0
This shows that the integral [5°¢"~'Ai(r)dr is finite, ie., f*€LP(Q,) and
f’fb}ﬁ = 2.4p1QP+PE . 5t f!f#|p+2p+110"pIQof [ fm]”,
c, 0, 2,

which is as sharp as (2.1). This completes the proof of the lemma.

Corollary 1. Let fe¢LY(Q) and suppose that for each cube QcC Q
@5 S 17 —rol = 27110-2 fl7]
Q Q
Then feLf (Q) and for any Q,CQ

1p
26) ( fire)" =210 fiy]
) foX
holds.
Proof. If feLi,.(Q), then inequality (2.6) follows immediately from (2.1). In

loc

fact, by (2.5) we have f*(x)=2"1.10""?f*(x) for every x€Q,. Then by (2.1)

(f1re)" = 5 fire) "+ 10 fin

Q

which implies (2.6) when one takes into account that |f(x)|=f"(x). The general
case follows from this particular one by an appropriate approximation. The details
can be recovered from the proof of Lemma 2.
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3. Proof of Lemma 2
Hereafter on frequent occasions we will appeal to
Lemma 5. Let UELP(Q), 1=p=c, U: O—~R*. Then
) 1/p 1/p
@.1) (flum-velay)” =2( flu)-clrdy)
0 ¢

for any constant vector CER".

Proof. The proof is a simple consequence of Holder’s inequality;
1/p 1/
( fluo-uvge)” = ( flv-o-w-0)pr)”
0 0

= [Qf]U—Clp]l/P—i-l(U_C)Qf =9 [QfIU—CV’]l/p

Now we shall show how to reduce our problem to the case of f€L{ (). For
this purpose we take an arbitrary subdomain Q,c < Q. We also consider mollifier
functions ¢,£Cy (R") which approximate the Dirac measure, ie., ¢,(x)=0,
fgo,.(y)dyzl, supp ¢,<B(0,r) for r<dist (Q,,0RQ). Then the convolution

F® = [o,0)f(x—pldy
Rn
is well defined and it belongs to L”(Q,) with p=1. Moreover, |f(x)|=lim,_, F,(x)
for almost all x€Q,. We verify that hypotheses of Lemma 2 are valid for F, and for
the cubes QcQ,. By Fubini’s theorem and by (3.1) we get

JIF@—Fdix= [o0) [ =i~ f1fz—de| deay
o Rn a cQ
=2 [o0) f |/ -] g‘.f‘(:—md:H drdy

=2 o) flfc—n~ fre—yddaa.
R" cQ cQ
where we omitted the index 7 in F and ¢ for notational simplicity. Since f(x) satisfies

(0.18), the shifted function f(x—y) does it as well. Hence referring again to Fubini’s
theorem, we conclude that

(3.2) JIF@)—Fogldx =2-10-%7 fF(xdx for Qc Q,.
] ]
Our aim is to derive from (3.2) the estimate

(3.3) ( f F(y)vdy) 1090 . g f F(v)dy

1/2)Q
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for all F(y)=F,(y) with r<dist (Q,, 02). As we see, the factor on the right hand
side is independent of r, wherefore the lemma will follow if we let r tend to 0.
For the proof of (3.3) we need an auxiliary function H defined on R" by

d"(x)F(x) for x¢
e = {TOF 0,
0 for x¢Q,,
where d(x)=dist (x, R"—Q,). Notice that |d(x)—d(y)|=|x—y|. We intend to

prove that

n+2

(34) H*(x) = []\2[

4£2.10-% [FNT) ]H”(x)+2-n"/2(1+a‘1N)” [F
— o

—0

for every x€Q, and any number N=2.
Let x be a point of Q, and let Q be a cube such that xeQcQ,. Two cases are
possible:

Case 1. d(x)=No~'diam Q. Then
S IH) = Holdy = 2Hy = 20" syp d"() [ F(»)dy.
Q Q

But if y€Q, we have d(y)=d(x)+|x—y|=d(x)+diam Q=(1+0¢"'N)diam Q,
and so d"(y)=(1+0~N)"n"?|Q|. Hence

SIHG) —Holdy = 2-n">(1+0='N)" [ F(»)dy.
Q 2,

Case 2. d(x)>No~tdiam Q. Then ¢7!Q is a subcube of Q, and we are justi-
fied in using inequality (3.2) for ¢71Q. From (3.1) it follows that

f1H) —Holdy = 2 f1d"(y) F(»)— d" (x) Fgl dy
Q Q

=2 fld () —d" @ F)dy+2d"(x) fIF()— Foldy
Q 4]

sug [d"(y)—d" (x)| 2.10-5"P " (x)
ye

H(J’)d}"i‘mdn—(y)—a _!: H(y)dy.

=

XSO

To estimate the factor in front of the first integral we observe that for any y€Q,
d(y)=d(x)+|x—y|=d(x)+diam Q<(1+oN"d(x) and d(y)=d(x)—|x—y|=
d(x)—diam Q=(1—oN ~1d(x). Hence

sup |d"() —d" (9| _ supgd"(y) | _ (I+oNTy 2
nd () nd(») (—eN) - N-o
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Furthermore, if y€o™'Q, then d(y)=d(x)—|x—y|=d(x)—diam 710>
(1-=N"YHd(x), so

d(x) = (’N_]X‘T) inf d"(y).

Jnf,
N
(5

_ 2+ _W[ N )] .
:[N_G—I—Z-IO N1 Hb(x).

Summarizing the second case we write

SfIH) —Hyd 1)” S Heay =
Q c-1Q

The estimations for the two cases imply (3.4).
Now we insert (3.4) into (2.1), getting

+2-10- enp(N]Y_I )] [Qbe(y)"dy]l/p

o
b P = 10°"»
[Qof”’(” 1) =10 [N
+2-0210 (1467 NY [ F(y)dy+10"1 f H(y)dy.
Q) o

Take N large enough to make the factor in front of the first integral on the right-hand
side =1/2, as for instance N=2""'10°"" giving

/
( fEGrdy)" = 10m2 .67 [F(ydy+2-1070 fH(y)dy.
2, Q, Q,
Clearly H(y)=H®(y) for almost all y€Q,. Thus
1/ -
35 ( fHOra)" =210 fH@)dy+10mr. 6 [ F(ydy.
fe 0, I

Let us recall that H(x)=d"(x)F(x). By the simple observation d"(x)=27"|Q,|
for x€Qy and d"(x)=47"Q, for x€(1/2)Q, we eliminate from (3.5) the auxiliary
function H as follows:

(| frova)”=gr( frora)” = N (frora)”

e, we,

_ 2.4r.20p 100
- 1Qdl

_ 2420100t IQOJ
- Q|

10> f F(y)dy.
a" g,

This is exactly the inequality which we claimed to prove.

4. 2n/p .10™3p

a"|Qyl

4n 2n/p 104:1 p
" 10|

- SHG)dy+ [ FG)dy
Q,

f F()dy+ f F(y)dy

1A
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4. On the regularity of harmonic functions and generalized conformal maps

We state without proof the following well-known Sobolev—Poincaré’s lemma:

Lemma 6. Let B=B(x, R) be a ball in R" with centre x and radius R. Suppose
that UeW,'(B), 1=g<n. Then UcL"""(B) and

(n—q)/(nq)

@n  (floo-vpera)T < co, DR ( fvuordy)”

The same holds when B is replaced by a cube of diameter 2R.
This will be essential for proving the folloving regularity result.

Lemma 7. Let H be a harmonic function defined on a ball B(x, R)CR" and
having values in R*. Suppose that HEL”(B(x, R)), 2=p=2n/(n—2). Then for every
B(x,r)cB(x, R) the inequality

(42) flae= firpl=com—+  fime
B(x,r) B(x,R)

B(x,r)
holds with a constant C (n) depending only on n.

Proof. Let B=B(x,r). By Lemma 5 and some standard inequalities we get
S I|H|P—Bf |H?| = 2 fHP =Bl = 2p f H—Hyl(H]+ Hae =
o ( fi—top)” (f @i imar)” "
AN (WL
=20 ( flrmo ) ()"

Since 2=p=2n/(n—2), we may use Sobolev—Poincaré’s lemma giving

( f1—mlr)” = conr( fivap)™,

B B
inserting it in the last inequalities we obtain

Sl fiar| = co,pr( frome)e( frar)”"

Now we observe that functions |H (x)|” and |VH (x)|? are subharmonic, i.e., A|H|? =

pIH|"*([VH2+(p—2)|VIH|[*)=0, A|VH[?=2|VVHP=0. It implies that the
integrals f3|H|” and f3|VH[?, B=B(x,r), are increasing in r. In particular we

A

1A
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can write

4.3)
Sl £ |7

Since H satisfies the Laplace equation, we may use a Caccioppoli type inequality
(compare it with (0.8)). If, in addition, Hélder’s inequality is used, then

[ f IVHi2]1/2 = C]({n) [B(x:é) |Hl2]l/2 = C]({n) [B(x:é)lH{p]l/p'

B(x, R/2)

C(n, p)r[ f IVle]m( f‘H!P](p—l)/p for r = R/2.

B(x, R/2) B(x,R)

N

Inserting it in (4.3) we get (4.2) for r=R/2. The case R/2<r=R is obvious.
For convenience let us reformulate the above result by replacing balls by cubes.
Given a harmonic function HEL?(Q), where Q is a cube in R", we have

(@.4) flae— fimp
aQ oQ

This follows from (4.2) after it has been applied to the balls which satisfy
6QcB(x, r)CB(x, R)CQ, provided 0<o<1/Vn, thecase 1/)n=0=1 being ob-
vious.

It is now quite easy to infer the corresponding regularity result for generalized
conformal mappings. We notice that for every such mapping, say g: Q-R", the
function H(x)=J(x,g)" ?® is harmonic; for an elementary proof see [2].
Therefore referring once again to (4.4) with p=2n/(n—2) we immediately obtain

4.5) f‘J(x, 8)— JJ(y, 2) dy'dx = C(n)anJ(x, g)dx
aQ ]

= C(n,p)af{HﬁP for 0<o=1.
Q

for any O0<o=1 and each cube QCQ.

5. The weak stability
Lemma 8. Let u€Wy (Q) be a solution of
d [ du ) B
(51) ,,Z,vd_x, aij(x)—ax—j = 0,
where a;;(x) satisfy the hypotheses of Proposition 1. Then there exists a harmonic
Sfunction heW (Q) such that
(52) [IVuG)=Vhp)dy = & [[Vu(y)Pdy.
Q Q
Proof. We define h to be the solution to Dirichlet problem; 4h=0 on 2 and

0
u—heW;(Q). Tt is a well-known fact in the calculus of variations that such a solution
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exists and is unique. We write the Laplace equation as follows:

f(Vh(y), Vo (y))dy =0 for any test function ¢EV0V21(Q).
Q
We subtract side by side the equation
J VU Vo)dy == [ERTur), Vo0)dy,
which is a weak form of (5.1), () being the matrix of entries &;(y). This yields

f(Vu—Vh, Vo) =— f<£)Vu, V¢), for each (pEVlo/zl(Q).
2 2

In view of the boundary condition on h we are allowed to set ¢ =u—h. By (0.14)
and by Holder’s inequality we then get

[ 1Vu—Vh2 =~ [(&Vu, Vu—Vh) = e( [IVulP)”( [1Vu—Vhp)".

This immediately leads to (5.2).
For further purposes we anticipate the following result:

(5.3) [ VuP— VP = 3¢ [ |[Vul2;

Q (o}
this we infer from the lemma by applying the elementary inequality |}z‘}2— [w['zlé
((1+g)fe)lo—w]>+elv]?, for v, weR". In fact

1+¢
e

[ |IVup—|Vhp| =

Q

[ IVu—VhP+e [[Vuf

A

1+¢
&2 [ |Vulzd+e [ |Vu|2 =3¢ | |[Vu]>
o [(Vure [V =3[9

Our nearest aim is to establish the stability of quasiregular mappings. For this we
need a few non-standard facts on Sobolev’s spaces.

Lemma 9. Let Q be an open subset in R" and let f. g be mappings from
Wilioe(Q), f=(fY ou f"), g=(g", ... &"). Then for every @<Cq (Q) the inequalities

G4 |fe@Ue H—ICx, @ldx| = [1f~ellVol(Df 2 +(Dgl -2

= (/- Vol (IDf 15+ 1Dgl D"

hold, where |U|,=([q |y
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Proof. By an approximation argument one can reduce the problem to the case
of smooth f and g. Consequently, we may write

f(p(x)[J(x,f)—J(x, 2)]dx :fgo(dfl Ao A df"—dgt AL A dgh)

=f<p 2 df* A A dff P A d(ff g A dgirt AL A dg”
k=1

= —f S =gNdf* A A dff T A de A dgEtt AL A dg”
k=1

+fk;;df1 Ao A AU A do(FE—gM) A dghtt AL A dg.

We easily see that the differential forms under the last summation sign are equal to
(—=D*dlo(f*—g")df* A ... Adf* "  Adg** A ... Adg"]. Therefore, by Stokes’ theorem
the last integral vanishes. Now we shall use the inequality of Hadamard and others
which can be easily recognized from calculations below :

Zn’(f"—g")df1 Ao Adff Y A do A dgktt AL A dg”
o=
= kzzl | =g [ IVfY...[Vf =] V| [Vg 1. Vg dx

n 1/2
= 1Vollf—gl 3wt - pwe e ve] ax

1/2

n—1
: ) (’Vf1|2+---+|\7f"'1!2+!Vg"*112+...+!Vg"lz)”‘ll dx

n—1

= [Vol|f-¢g| [k;’l[

n (n—1)/2
= =Tl =gl | S (W e L we| ax

n (n—1)/2
= (=108l gl 3 - wrE s d- D]
Thus

|f€0(x)[1(x, N —Jx, g)]dx|

n (n—1)/2
= (= DR =g Vol | 3 VAR G e
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Exchanging the roles of fand g and then adding by sides we easily get
2| [ oI Cx, /)= I (x, Pldx

n (n—1)/2
= 2010 [ 1= [Vol [ S -V D] ax
=2 [|f—gl[Vol(|Dg[*+|Df [Bn-1"2dx
= Z(fl(f—g)V¢I”)""(f([Dg!2+ IDfIZ)n/2)(n—-1)/n’
which immediately implies (5.4).

Corollary 2. Let f: Q—~R" be a K-quasiregular mapping. Then for each cube
QcC Q the inequality

N 2/n
DL | )’]

(5.5) ( fiororay)” = cok( f

1/2)Q
holds with a constant C(n) depending only on n.

Proof. Let £(x) be a function of the class Cy (Q) such that 0=¢(x)=1, &(x)=1
for x€(1/2)0, [VE(X)|=Cm)|QI™'". Letting @(x)=&"(x), g(x)=f, in (5.4)
we get by Holder’s inequality

J & I6 Pdx = n [ @ NEW/ ol D! dx
Q

= n( frveri—rer) ( feor)
and applying (0.11)

Qf&_:n \Df|" = n(n+2)/2K(é/‘ e if_len)lln (Qfé" lDfl")(”_l)m.
Hence

Un (n42)/2 Un
(Jenr)” = ”—Wff")—’( (J ey

By Poincaré’s inequality (see Lemma 6 for ¢=n/2) we get
1/n ; n/2
( fiorm)" = conk( fior)
aRe ]

which was stated in the Corollary.
As a consequence of (5.4) by Rellich—Sobolev’s compactness theorem we deduce

Corollary 3. Let f; be mappings from Q into R", ijW,,l(Q). Suppose that f;
converge weakly in W,'(Q) to a map feW, (Q). Then for every @cCy(Q)

(5.6) Jim [0 (x)J(x, f)dx = [¢(x)J(x, f)dx.



TADEUSZ IWANIEC

In fact, the norms [ Df}|, are uniformly bounded and by the compactness theorem
the sequence (f;—f) Vg converges to zero strongly in L"'(Q). Thus (5.6) immediately

follows from (5.4) when we set g=f;.
We derive from Corollary 3 the following weak stability result for quasiregular

mappings.

Lemma 10. There exists a function B=B(K), B: [1, «)—[0, o) (it may also
b) For each cube QCR" and any K-quasiregular mapping feW,'(Q) there

depend on n) such that
a) limg_; B(K)=0.

exists a generalized conformal mapping gcW,' (Q) such that

. 1/n S \1/n

( fior—per)” = oy ( florr)™.

Q

5.7

— the unit cube of R" — and that fQ0 IDf|"=1, fo,=0. These are illusive restrictions

of generality because (5.7) is invariant with respect to translation and homothetic
of K;-quasiregular mappings such that:

1/2)Q
Proof. The proof of existence of g will be ineffective to the extent that we are
transformation of co-ordinates. Contradicting the lemma assume that we are given

unable to give a formula for B(K) (see remarks after the proof). Assume that 0=0,

Bo=0 and a sequence {f;}, j=1,2, ..

lim K;=0, fo |Dfil'=1, fo,f;=0 and
, 1

f[ij—Dgl”] = Po

(5.8)
w2)e,
for any l-quasiregular mapping g€W,'(Q,).
We can choose a subsequence f; ,a=1,2,... which weakly converges to a mapp-
ing geW, (Q,). According to Corollary 3 we have
lim [ 0" () (x, fi)dx = [ 0" (0] (x, g)dx
for every @€Cy (Q,); we shall assume that ¢(x)=0. On the other hand the ine-

qualities (0.11) and (0.16) yield
fq)”(x)ng(x)l”dx = liminf [ @"(x) |Df;, (x)|"dx

= /2 lim inf K, [o" () I(x, fi,)dx = n"2 [@" () J(x, g)dx = [ ¢"(x)|Dg(x)["dx.

It proves that each relation must be equality, in particular
[ o" () IDg(x)"dx = n"* [ 9" (x)J(x, g)dx.
As ¢ was an arbitrary non-negative function (of the class Cg (Q,)), we conclude that
|Dg (x)|"=n""J (x, g) for almost every x€ Q,, which shows that g is an 1-quasiregular
mapping. Furthermore, since [@Df; ll,—ll¢Dgl,, with a view to uniform convexity
of L"(Q,) we infer that the sequence @Df;_actually converges to ¢Dg in the sense of
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strong topology of L"(Q,). Letting ¢ to be equal to 1 on (1/2)Q, we are led to

lim( f !ija—Dg|"]1/n =0,

* Camie,

which contradicts (5.8). The proof of Lemma 10 is complete.
By a slight modification of the above proof or indirectly from (5.7) one can derive
the estimation

(5.8) [, H=J g)ldx = CKBK) fI(x, f)dx.
Q

1/2)Q
The indirect proof is based on the inequality
[J(x, /)= J(x, g)] = C(n)|Df (x)—Dg(¥)|(IDf (x)"~'+[Dg (x)["~").

Integrating it over (1/2)Q and applying Holder’s inequality we get

S, /)= I(x, )ldx

1/2)Q

c( fior—oar)"[( from) " ( froar)],

e 12)Q ase

[IA

and for the sake of (5.7) we are led to

f 1@ NI g)ldx = C(n)ﬁ(K)Qlefi” = w*C(n)KB(K) fI(x, fdx,
Q

1/2)Q

whence (5.8) verified.

Remarks. A result of the kind of Corollary 3 is known in the theory of quasi-
conformal mappings. Some other functionals which behave like Jacobian (so-called
null Lagrangians) were investigated in non-linear elasticity.

Our Lemma 10 is the simplest one among several stability theorems for quasi-
regular mappings. The stronger ones require a much deeper study of the subject. We
do not need them in this paper. However, it is interesting to see the chief points of
these generalizations. Firstly, one can prove that the function f=f(K) is of order
O (K —1). Secondly, the inequality (5.7) remains valid when the cube (1/2)Q is replac-
ed by Q; the same may be done in (5.5), i.e., the reverse Holder inequalities are valid
for derivatives of quasiregular mappings (see [8]). The last statement is not true for
solutions of elliptic equations. For these remarks we recommend [9], [10].
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6. Proofs of Propositions 1 and 2

Let uEW{l,,C(Q) be a solution of (0.5). Then for each cube QCcCQ u is a
solution of the class W;'(Q). Therefore by (5.3) we can find a harmonic function
heW;' (Q) (which of course depends on Q) such that fQIIVuP— [Vul2.
This implies

(6.1) fIvhE =4 fivup
Q Q

and
flIvul—|vhz = %f}wﬁ
cQ Q

for any O<o=1. We apply (4.4) for H=Vu and for p=2.

flvie— fivne = cone f1va.
aQ aQ Q

Combining it with (6.1) we get

flvae— f
. Q aQ

Put o= Ve. Then by Lemma 5

2 = (3e6~"+4C(n)o) fiVul‘l.
Q

n+l

hVul2 f|Vu| ] = Ve(6 +8C(n)) f\Vul-.

Now we deduce from Lemma 2 that for each cube QT Q

(S = 2 fve

1/2)Q

n+l

provided Ve(6+8C(m))=10""4, ie.,

(frvar)” =5
1/2)Q

n
n/ 2

||/\

[ fIVu|2]1/2

provided V5(6+8C (n))=10""P. The last condition holds for each p€[l,2+
(6n(n+1))~'log (1/e)) whenever e=g,=(6-+8C(n)) ™ % On the other hand, if
gg=<e=1, then by (0.10) we infer that (0.15) is valid for p€[1,2+k(n)log (1/e)),
where k=k(n)=0 is small enough to satisfy 2+k(n)log (1/¢,)<p: This proves
Proposition 1. We prove Proposition 2 similarly. Let f: Q—-R" be a K-quasiregular
mapping. On account of Gehring’s result, see (0.13), we may only consider the case
of K close to 1, i.e., for small f(K) (see Lemma 10). What we really need to assume
on B(K) will be easily seen from the calculations we are going to carry out. Let Q be
an arbitrary cube in Q. We may indicate a generalized conformal mapping g€W,'(Q)
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such that
Sl =T, gldx = CmKB(K) f T(x, f)dx,

a/2)Q
see (5.8). As in the previous proof we infer that

6.2) / jg J(x, g)dx = (2"+ C(n) KB(K)) f J(x, f)dx
(1/2)

and for 0<o=1/2

6.3) e n-se glac= i’gf—fﬁ—(’“{zf J(e, f)dx.

On the other hand, replacing Q and ¢ in (4.5) by (1/2) Q and 26 we see that

IJ(x g)— f I, 9 dy|dx =ty fI(x gdx, o= ;
1/2)Q

Combimng it with (6.2) and (6.3) we get

S ews Jo gdy|dx = C()(BK)o " +0) Jownay

n+l
with a constant C(n) depending only on n. Put here o= }B(K). Eliminating
the term f,,.J(», g)dy by using Lemma 5, we are led to the hypothesis of Lemma 2,

ie.,
n+l

J 7Gx, f)- (f (v, )dy| dx = C(n) VB f J(, f)dy.

Now we conclude, assuming K is sufficiently close to 1, that there exists p=p(n, K)=>n
such that
/
( f J(x, f)P dx]l "= C(n, p) fJ(x, fdx
]

1/2)Q

for each cube Q £ Q and that limk_,,—p(n, K) = > The whole conclusion of Propo-
sition 2 follows from the inequality [Df(x)|"=n""KJ(x,f)=K|Df(x)|" defining f
to be a K-quasiregular mapping.
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