
Annales Academire Scientiarum Fennicrc

Series A. I. Mathematica
Volumen 7, 1982, 301-322

ON Z/.INTEGRABILITY IN PDE'S AND
QUASIREGULAR MAPPINGS FOR LARGE EXPONENTS

TADEUSZ IWANIEC

Introduction

We begin with presenting a local version of the celebrated lemma of F. W.
Gehring invented with references to quasiconformal mappings [6].

Lemma 1 (Gehring). Let Q be a domain in R',q=l,f(Lq(Q). Suppose

that for each cube QcQ the inequality

holds with a constant M>l independent of Q. Hereafter fnf stands 7or the auerage

xalue of f, i.e., fa.f:.fa:lQl-'Iaf. Then there exist yt:p(n,q,M)=q and

C:C(n, q, M)=l such that

to.z) (fVV)'''=c-fttl-oa
for each cube QcQ.

(0.1)

(0.3)

(fvln)'*=Mfttt
oa

=M f trt,
o

We call (0.1) the inverse Hölder inequality. Following Gehring we notice that
the derivatives of quasiconformal mappings satisfy (0.1) with 4:n. In major
cases of PDE's we only succeeded in proving weak forms of (0.1); this means that
,on each cube QcO and for some 0=o=1, independent of Q, we have

( fvr)'''
oQ

where oQ stands for a cube of the same centre as Qbut contracted by the factor of o.

In general, M may depend on o. In this case Gehring's lemma reads as follows:

This paper amplifies a fragment of the lecture by prof. B. Bojarski and T. Iwaniec, "Some
new concepts in the analytical theory of QC-maps it Rn, n-3, and differential geometry" [2], deliv-
ered at the Conference on Global Analysis, Garwitz, DDR, October, 1981, In anotfarremote
future we intend to give a more systematic and complete discussion of the topics.

koskenoj
Typewritten text
doi:10.5186/aasfm.1982.0719



302 T.q.orusz lwaNmc

there exist p:p(n, q, M, o)>q and C -C (r, Q, M, o) = 1 such that

( f vr)''' = c f tf l, ror each cube QcQ''oQ 
A

We call (0.3) the weak inverse Hölder inequality.
These two and a few other variants of Gehring's lemma were successfully

adapted to PDE (see [4]). Here we shall discuss two typical examples which illus-
trate the practical use of the lemma. They will provoke us to further investigations.

Consider the divergence elliptic equation with measurable coefficients

(0.4)

(0.s)

(0.6)

,,å,*(o,,nr#):0,
where air(x)-aii(x) satisfy the uniform ellipticity condition

ä 
,,,(x)('Ci = P(', 0 <

all vectors E€R". We are

understood in the sense

!2,,;(x) ##dx-

for almost all xQQ and
W*(o) for which (0.5) is

(0.7)

for any test function
Insertingasuitable E

(0.8) (

q= fr =*
looking for solutions u fro rn
of distributions, i.e.,

0

a('=

q€711:((2) - the completion of Co"(O) in the space WltSll.
one can easily derive from (0.7) the Caccioppoli type estimate

({ t'o-',t')''',{ lvul')'''

By Poincare's inequality, see Lemma 6 of § 4, we are led to

(0.e) [,-f tr rl')"' = 
9!-':2-il-t f loulr*,,,,+zt)u+z)r{zo), e,ce,

so the hypothesis (0.3) of Gehring's lemma holds with q:(n*2)ln and

f:lYs12o/(o+zl. Hence we conclude that u€W],,1."(o) for some p'>) and

(0.10) {"f lr rlr)''o = c(n, d, fr, o, il( f lvrp)'''

holds for each cube QcA.
The second example deals with quasiregular mappings.

Definition l. Asstrme that J': Q*R" is a mapping whose components

.fr,fr,...,.f, belong to W,',rc"(Q). Let Of:1aftldxr) denote the Jacobi matrix
oJ f and let J(x,f) be its determinant (Jacobian). Then f is said to be K-quasiregular
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(1 =K=..) iJ' and only if
(0.11) lDf(x)|" = nntzKJ(x, f)
for almost all xQQ.

We denoted bV lAl the norm of a matrx A, lAlz:ZlAulz:Tr A*A. -Ihe

smallest K for which (0.11) holds will be called the analytical distortion of f. lf
K:1, the map/becomes a generalized conformal transformation (1-quasiregular).

On account of Corollary 2 of § 5 we have

(0.12)

(0.13)

for each cabe QcO. Hence by Gehring's lemma we obtain the mentioned result

of Gehring, that f(W;,b"(O) for some p>n and

t f t»l(r)l' d*)rtn = c@)K( f wr@)Yt'o*)''"
(t/z)Q a

(.,{l»f(x)P d*)''' = c(n, K, p) ( f pf@)Y d*)'"', QcQ'

In comection with the above examples there arises a natural question: How
large can tlte exponent p be? The proper answer requires scrupulous analysis of
(0.5) and (0.11). Let us remark that if the coefficients att(x) are smooth, the solu-

tion u is also smooth. In particular, u<W],1""(o) with p aslarge as one likes. In
general we shall see that the closer to continuous functions the coefficients a;t(x)
are, the larger p canbe taken in (0.10). The idea of the proof will be exemplified by

Proposition l. Suppose that arr(x):öi*eu@), where öi denotes Kronecker's

symbol and e,r(x):eii(x) are measurable functions small enough to satisfy

(0.14) lZu,i(x)€'41 =t(2,6<1

for almost all x€Q and all 1(R". Then there exists k:k(n)=O .such that each

solution u€wirc"(o) of (0.7) belongs to wj,w(a) for e,*erv p((1,2+k log (l/e))
ond

(0.15)

holds' -fc,, eaclx cube O
Commenting the r

nxn-matrix A
(0.16)

observe that for every

!Al" >- nntz det A,

the equality holding for matrices proportional to orthogonal ones. Thus the Jacobi

matrix Df(x) of a l-quasiregular mapping is (at almost every point x€O) a simi-

larity translirrmation of ,R'. Therefore the concept of generalized conformal mapp-

ing is (up to smoothness conditions) much like the one familiar in the differential
geometry, the more so because the Liouville theorem states that every l-quasiregular

mapping, if n>3, is either constant or a restriction to g of a Möbius transforma-

{ 
., {lv 

ul')''' = c (n, r) { { lY ul')'''

C.Q.

ole of the constant K in (0.11) we
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tion, i.e., the finite product of reflections with respect to spheres. For the simplest
and very elementary proof see [3]. Generally the distortion K should be thought of
as a distance measure between f and, a Möbius transformation. That is why / is
expected to possess good regularity properties when K is sufficiently close to 1.

We shall prove

Proposition 2. There exist p:p(n,K)>n and C:C(n,K)>l such thqt
a) euery K-quasiregular mapping f: Q-R" belongs to Wo',r*(A),
b) for any cube QcQ we haue

(0.17)

(0. 18)

(0.1e)

t f prl)''"
(1/2)Q =cI{iory)''.,

c) the exponent p:p(n,K) increases to inftnity as K tends to l.
The principle of the proof will be the same as that of Proposition 1. However,

the details will be quite different and perhaps interesting in their own right.
The problem of I,e-integrability (p>n) of derivatives of quasiregular mappings

was first solved by B. Bojarski [] in two dimensional domains. Later Gehring and
then N. Meyers and A. Elcrat [4] have extended it for arbitrary dimension. In 1916
Ju. G. Re§etnjak [9] examined the asymptotic behaviour of p:p(n,K) in K close
to 1. The exact value of p:p(n,K) is unknown. Re§etnjak's method relies on
deep arguments relating to quasiconformal theory, especially on a strong stability
theorem, and it seems to be ineffective for PDE's.

In this paper we present a tool for dealing with problems of Ze-integrability
in both quasiregular mappings as well as solutions of PDE's. The following lemma
is the most important one in this paper.

Lemma 2. Let Q be an open subset o.f R", f€LL,(O),0-o=1, 7<p-*.
Suppose that for each cube QcA the inequality

holds. Then "fe Lo""(0), and -fo, each cube QE 0 y,e haue

f Vrr)-f,aldy = 10- u., 
.f l.fb)ldt,

oQo

t f t.rr)''o =rc':' fvi$12)Q on a

For the case of o:l see Corollary I of §2.
In other words, a function which can be approximated locally by constants

with errors, small relative to its mean values, belongs to Lp with large p.
This extends somewhat the lemma of John-Nirenberg concerning the theory

of BMO spaces. For Lemma 2 we were inspired by the inequality of Fefferman
and Stein [5]. What we really need is a local version of their inequality; for the
completeness of our arguments we will give a proof imitating the original one.
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The proofs of Propositions I and 2 are divided into three stages. First we study
the extremal cases, when e;r(x):Q and K:1. We derive local estimates which in
fact are consequences of the regularity of harmonic functions (Lemma 7) and of
generalized conformal mappings (formula 4.5). Next we find that solutions of ellip-
tic equations and quasiregular mappings behave stably with respect to coefficients
(Lemma 8) and to distortion K (Lemma l0), respectively. And, finally, we complete
the proofs on the basis of Lemma 2. This procedure works in many other cases not
discussed here (see for instance [7]).

We are taking the opportunity here to show how this method works if Gehring's
lemma is used. To this end we look at (0.1) again. For simplicity assume that q:).
The extremal case corresponds to M:1. Functions which satisfy the inverse Höl-
der inequalitr (fal[l,)rtr=fal/l must be constant in their absolute values. Since
in general

whence the stability property of (0.1). Now, Lemm a 2 with o -I
implies that for each cube Qc A

lNfvt,
o

(see Corollary 1)

whenever l=p<-(tlQOn))log4(M2-l). In this way we are led to the following
addendum to Gehring's lemma:

Proposition 3. Under hypothesis of Lemmo l, (0.2) holds with the exponent
p of order O(logll(M-l)).

Let us remark that one can obtain Proposition I by applying singular integral
operators. However, having other applications in mind we use our method, which
is fairly universal, particularly when non-linear equations are concerned.

1. Decomposition lemma

Let Qo be a cube in Ro. We define by induction the families M1,, k:0, 1,2, ...
of open subcubes of the cube Qn: Mo: {Qo}. suppose that the family Mo is -eiven.
Then we divide dyadically every cube of Meinto 2" equal cubes. They form together
the family Mo*r.The cubes of Mo are disjoint. In general every two cubes from the
union ]Lf:UoMo are either disjoint or one includes the other. Let us observe that
any cube QCM initiates uniquely the increasing sequence of cubes from M such that

Q - QrcQr_lc... c QrcQo, Q,€M,, s - 0, 1, ..., l.

The volume of the cube Q"(M" is equal to 2-"'lQol. Let f be an integrable function
defined on Qo. we will work with the following local maximal functions of Hardy-

!ll/l-t,ftal=Vfitt-lJ"ta|,),,,:{{,'|2-{ftri),)',<

{ f vlo)''' = z . ton,' f tfl

(1. 1)
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Littlewood and Fefferman-Stein:

Jo(x) - sup { f tf(y)l dy; x€Q.gr\
a

fo (*) - sup { f tttil-.fal,ty; x€Qc2rl,.

The following version of Calderon-Zygmund lemma will be used in the next sec-

tion.

Lemma 3 (Decomposition lemma). For any a>u:lflao there exist dis-
joint cubes Q|€M, .i:1,2, ... such that

a) a -.fn, l.f1)l dy =z' a,

b) If u>B>a, then each cube Qj is a subcube of one from the family {Qf ;
;-1 a IJ-r>-s,..1>

c) l/(x)l<a for almost all xeQo-UiQi,
d) ZilQil=^(")-mes {x(Oo; fb(x)=a\ for a-a,
e) ,t(5'a)<5"2jQil for a>a.

Proof Let Q be an arbitrary cube from M. We examine the sequence

(1.2) Q: QrcQr-rc...cQrc.Qo, Q"€M", s: O, l, ...,1.

The cube Q will be included in the family {Qi; i:t,2,...) if and only if

(1.3) "=.flfl and fttt=u for s:0, 1,..., 1-1.
oo"

Clearly any two cubes Q' and Q" from {Qi} are disjoint. In fact, if not, then it would
be Q'cQ" or Q" cQ'. Hence both would appear in the same sequence initiated by
a smaller cube. This contradicts the obvious fact that no two cubes from (1.2) can be

in {Qi; i-1, ...\.
Since lflo":a=a, Q, cannot be a membet of {Qj), in particular

f tfl = fi n,f 
,t,:z 

o,f 
lfr = 2na,

whence a) verified.
Now,let q=P=a and Q({Qi; i:1,2, ...). Then the Q", from (1.2) with the

smallest index s'€{1,2,...,1} for which fr=fa.,l.fl, must belong to {af;
j:1,2,...), Proving assertion b).

Let x(UiQi anabt Q(M be an arbitrary cube containing x. Then none of
the cubes QcQt-rc...cQtcQo belong to {83],, which means that fa"l.fl="
for each r:0, 1,...,/, and in particular falfl=o. By the Lebesgue theorem we

conclude that

Lf(r)l = t"p{ f ltl; x€QeM} < a for almost every x€Qo-UiQ\.
a
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Actually we have shown that [J; gi:{x(Qo; .f*(x)=a}, where /*(x) :rW {fal"fl,
x€Q€M|. Obviously we have f*(x)=f (x). Hence ZtlAil<mes {x(Qo;
fb(x)>al:)@1.

In order to prove condition e) we will show the inclusion

(1.4) {x(Qo; .fo(x) = 5u}cl)i5Q}.

Let x ( U i sQi and let Q be an arbitrary cube such that x(Qc Q6 . From a) and c)
it follows that

ttn: I tn+z {vt
O Q-uQi t Q\QS

= alQl+ Z IVl=alQli-2'u Z lZil.
QtnQ*o di QinQ#o

Now we use the elementary fact: if Q+sQi and QoQj#0, then Q3c2Q. There-
fore we can write

I ltt = alQl+2',a _ z loil = alQl+2',al2Ql = 5qlQl,
a Qiczg

so l"fla<5'a whenever x€Q-lJiSQ]. ln other words, fb(x)=5"a for x( Ui5Qi,
which proves (l. ).

2. A local version of the Fefferman and Stein inequality

Lemnra 4. Suppose that f+€L'(Qi, 1=p-*. Then J'b(Lp(Qo) ancl

(2.r) (fV',)'''510r,p(ftt"F)''o*ro,*, flfl.
Proof. First we shall show the following estimation:

Q.2) ).(5'a)= 5'mes {*rr,, fo(x) = *}*#7(a2-'-r1
for q,=2"+ta:T*'l.flao and any positive l.

By d) and e) of Lemma 3 we see that it suffices to prove that

< mes {*ro,, .fo (x) = *}*i Z lei'-"-'t,.

Fix a cube Qe{Qi'-"-'; i:1,2,...}. Then by a) we have l.fal=2"(a2-"-'):r12.
Moreover, Ioilfl=-alQil for every cube Qi. Thus

I v-r,r = (.-å) tost:;toit.
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Hence by summing over those cubes Q] which are contained in Q we get

nån,a? = *,F, I v-nt = * I v-rat.

Now we consider two cases:

Case t. fnlt-tal=alA. Then Zoi.elQil=QlglQl.
Case 2. falf-frl>alA. This means f+(x)=ulA for every point x€Q, i.e.,

gclx(Qo; f+ (x)=alA). In particular

,-ZrlZl = mes Qa{x€Qo; fo (x) = +}
In either case one can write

(2.4) 
nZrlOSl< 

mes qa{x€Oo;.fo (x) - *l*} Ol

for each cube g€ {Q1'-"-'; j:1,2,...}. Appealing to property b) of the decom-
positions {Qi; .i-1,2, ...\, q=?.!+'l.flao we see that after summing (2.4) over

Q€{Qi'-"-';.i:7,2,...} all cubes from {Qi; i:t,2....} will be counted once,
i.e., we obtain (2.3).

Now we proceed to the proof of (2.1). We be-ein with the well-known formula

I f@f at, : p i /p-1 mes {x(Qo; lF(x)l > r}r/r for Fe Le (Qo).
Qoo

Take an arbitrary number N=2'+ra. It follows from (2.2) that

p I u'-Ll"(s'a)du
2n +ao

- ,' o f, o'-' *.,{,; .fo (x) = *}*n?* I ,o-';-t z-'-tsdx.

Changing the variable a accurately in each integral we -set

, ,,i: P-l)'(t)ctt

= sp,t+pApp I u-,mes{x; fo(x)=rya,+LffiN t-rl61dr.

This and ttre 
"uiOirt 

inequality

z,L0tta z.t0na

p I P'a|(t)dt =-lQrb I P-tdt:lQolQ.t0'a)o
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Yield 
5,,N

p { P -t ).(r) ctt

(2.5)

< spn+pAp Itt.y+2:9]!" o !" u-,^1t)dt+2plo,porlQol.
aiAd

Now we put here A:4.LU''+o, giving

5nN

n I t-' l,1t)dt - 2. 4p . LOnp"+r' . 5,0+o J tt"lp +2e+r. t}r. ao leol.
Qo

This shows that the integral .[;t'-'l,gyr is finite, i.e., fb<Le(e) and

Qo a; -Qo

which is as sharp as (2.1). This completes the proof of the lemma.

Corollary l. Let "f€L'(O) and suppose that for each cube QcA

f tf -fal = )-r 1 o-bup f 11.ao

Then f(L|,"(A) ancl for any QocQ

(2.6) (fVf)''' =2.to'*'a-f lfl
holds.

Proof. lf f€L\".(O), then inequality (2.6) follows immediately from (2.1). In
fact, by (2.5) we have f+ (x)=-2-t .10-'"ofu(x) for every xeQo. Then by (2.1)

(nf trt)''' = !(rf tt'l')''o *ro'*'nf l"rl,

which implies (2.6) when one takes into account that lf(x)l=.fo(*).The general
case follows from this particular one by an appropriate approximation. The details
can be recovered from the proof of Lemma 2-
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3. Proof of Lemma 2

Hereafter on frequent occasions we will appeal to

Lemma 5. Let UCL? (Q), l=p= -, [J: Q,*Rk. Then

(3.1) {f lu0)-uoydy)''o =r{fluLr,) -cloh,)'''ao
-fo, any constant aector C €.Rk.

Proof. The proof is a simple consequence of Hölder's inequality;

( f rt -rnl,)''o : ( f lu *c)- (u - c)alo)''o

= ( f tu -cl')''' +l1r.l_c)al = ){ f t(-r - rf)''0.
oa

Now we shall show how to reduce our problem to the case of f(L\""(Q). For
this purpose we take an arbitrary subdomain (2oc c O. We also consider mollifier
functions E,(C|(R") which approximate the Dirac measure, i.e., g"(x)=O,

IE,O)dy:t, supp E,cB(0,r) for r<dist (Qo,0Q). Then the convolution

F,(x): I E,O)lf(*-»lh'

is well defined and it belongs to Ze (Oo) with p = l. Moreover , |f @)i:lim,*. F,(n)
for almost all x€ gs. We verify that hypotheses of Lemm a 2 are valid for F, and for
the cubes QcQo. By Fubini's theorem and by (3.1) we get

flr{i- r,aldx = _[ oo) ffira- »t* f l.re _t\ld:laxay
oQ Rn oQ dQ

= z [,lte) ,flru-rtt-1,{rc oa=lla*a,

= z { v\il,fltu - rt- .{ fl, - rt a =l a* ay.

where we omitted the index r in F and E for notational simplicity. Since/(x) satisfies
(0.18), the shifted function/(x-y) does it as well. Hence referring again to Fubini's
theorem, we conclude that

(3.2) flr@)-r.sldx=2.!o-a,p frlga* for ecer.

Our aim is to derive from (3.2) the estimate

(3.3) {.,tFU)o Or),''' = 108n',p .o-,, 
,{ 

o0,)c1t,
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for all F(y): F,(y) with r=dist (Qr,0A). As we see, the factor on the right hand
side is independent of r, wherefore the lemma will follow if we let r tend to 0.

For the proof of (3.3) we need an auxiliary function ä defined on Ä' by

1d(x)F(x) for x€QoH(x):t o for x{eo,

where d(x):dis1(x,R"-Qi. Notice that ld(x)-d(y)l<l*-yl. We intend to
prove that

(3.4) Ho(x) =ffi+2.tl-sop(i-)l Hb@)+2.n't'(r+o-LtrD' ,[ r

for every x(Q, and any number N>2.
Let x be a point of Qo andlet Q be a cube such that x€.QcQo. Two cases are

possible:

Case l. d(x)=r'Jo-t diam Q' Then

f ln{»- nnldy = 2Ha = zlQl-'st6o d'(il { orrror.

But if yeQ, we have d(y)=d(x)+l*-yl=a@)*diam Q=(l+o-rN)diamQ,
and so d"(y)=(l+o-rN)"rfl'lQl. Hence

f ln{t»-arldY =z'n"t'(r+o-'N)' I r1)ar.
QQo

Case 2. d(x)>No-rdiamQ. Then o-tQ is a subcube of Qo and we are justi-

fied in using inequality (3.2) for o-tQ. From (3.1) it follows that

f v tt> - Haldv = 2 f lct' (v) F (v) - ct (x)Feldv
OQ

= z f ld." (y) - d' (x)l F (y) d y * 2d' (x) f lr t» - F al d y
oa

sup fd'(y) - d'(x)l ^ 2 ' lO-6'P dn (x)

= z »e-6m- 
{ o rr, o,' * -ff;FOf . _{nr rr, o,'.

To estimate the factor in front of the first integral we observe that for any y€Q,
d(y)=d(x)+lx-yl=d(x)*diam Q<QaoN-t)d(x) and d(y)=d(x)-lr-yl=
d(x) - diam Q>(l - oN -')d(*). Hence
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Furthermore, if y(o-'Q, then d(y)=d(x)-lx-yl=d(x)-diam o-rQ=
(1-N-r)d(x), so

d'(x) =(*- J' ,is{nd'(y).

Summarizing the second case we write

f tutt»- nn1o, = ffi { urrro, *2.tl-a'p ({-)" , .[Hg)dy =

= l# * 2. to-anp(#)l Ho @).

The estimations for the two cases imply (3.4).
Now we insert (3.4) into (2.1), getting

( 

r-f 
, o 

{ r), o r)''' = t0,,, ffi * 2 . to - an p(i-ll 
( 

o-f 
, o {», a r)"'

*2.n t2to5"p(1+ o-lN), 
{ 

,rrror*10,*, 
of 

Ho)dy.

Take N large enough to make the factor in front of the first integral on the right-hand
side =112, as for instance N:2n+LL06"e giving

( -f ,ot»'or)''' = to?n'p . o-" 
;[ 

r{»a!*2.!o'+r 
n-frt»or.

Clearly H(y)=Uo(y) for almost all y(Qo. Thus

(3.5) ( -f Utr>',Or)''' =2.70n+L -f 'O)Or*l}in',p.o-' Irg\av.'oo ao ai

Let us recall that H(x):a'61p1*7. By the simple observation d"(x)=2-'lQrl
for x(Qo and d"(x)>4-"Qo for x((ll2)Q, we eliminate from (3.5) the auxiliary
function ä as follows:

(,,,f 
"r{r)onr)'' 

= #(r,,,{"no)odv)''o = w({norar1"
= 2.4'.2":ei.y: f ruO)arl 4n.2ntp'loin'p
= lQo, oi J"'t'lo'

=,' 
4' #fY:W f ,"tnr*ff#- { rrrro,

_ 108,'p f ro)ay.o'd
This is exactly the inequality which we claimed to prove.
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4. On the regularity of harmonic functions and generalized conformal maps

We state without proof the following well-known Sobolev-Poincard's lemma:

Lemma 6. Let B:B(x, R) be a ball in R' with centre x and radius R. Suppose
that u€wqt(B), l=q=n. Then ,rytth'-t(B) and

(4.1) (f Vf,rl-url",rt"-n)dy)@-d/(ts\ = c(n, q)R(-f lrrt lyor)'' .

The same holds when B is replaced by a cube of diameter 2R.
This will be essential for proving the folloving regularity result.

Lemma 1. Let H be a harmonic function defined on a ball B(x,R)cR" and
hauing ualues in N. Suppos" that H€Le (B(x, R)), 2=p<2nl(n-2). Then for euery
B(x, r)cB(x, R) the inequality

(4.2) ffiar- f wrl= c@)* f wr
A(x,r) ,(x,r) -t B(x,R)

holds with a constant C(n) depending only on n.

Proof. Let B-B(x, r). By Lemma 5 and some standard inequalities we get

,fllrt,- fläl,l = z -fltrl _l*ul,l=zp f 1n-nolcat+ H,t)o-'

= 2p ( f t, _ u a,)''' ( f qrl + lH Bl)p)(p-')/ 
p

=zp( f s-u,t)''' f( f wt)''' +tH,tJ' '

= ,,, 1 71, - HBlo)''' ( ftnV)(P-.,)t, .

Since 2=p=2nl @-2), we may use Sobolev-Poincarö's lemma -eiving

(ftn-u,to)''' = c1n1,(f lvrl')'' ,

inserting it in the last inequalities we obtain

!fiur - ftrpl = c Qt, p)r ( f tv ur)',' ( {tut )"-"'' .

Now we observe that functions lä(x)le and lVä(x)12 are subharmonic, i.e., Ål}lle:
plrule-'z (lv nl' +@ -z)lvlall')=0, Llv Hlz :2lvY Hl2>0. It implies that the
integrals frlVl' and fulYHlz, B:B(x,r), are increasing in r. In particular we
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can write

(4.3)

flur - f4l,l = C(n, p)r(^.,{o,lvn1z)ttz {,r.f lr1)*'u'' ror r < Rl2.

Since ä satisfies the Laplace equation, we may use a Caccioppoli type inequality

(compare it with (0.8)). It in addition, Hölder's inequality is used, then

( 

^.,{,rlv 
n 1')ttz = #L {,,I1, P)''' = ryL \,Il ul')''' .

Inserting it in (4.3) we get (4,2) for r<R12. The case Rl2<r<R is obvious.

For convenience let us reformulate the above result by replacing balls by cubes.

Given a harmonic function H(Lp (Q), where Q is a cube in .R', we have

,{lll*- .{,ri'l = c(n, n, {IHP, 
ror o < 6 = L-{4.4)

(4.5)

This follows from (4.2) after it has been applied to the balls which satisfy

oQcB(x,r)cB(x,R)cQ, provided O=o=lfli, thecase lf{i=o=t being ob-

vious.
It is now quite easy to infer the corresponding regularity result for generalized

conformal mappings. We notice that for every such mapping, say g: O*A', the

function H(x):11v,r1(n-z)/(zn) is harmonic; for an elementary proof see [2].
Therefore referring once again to (4.4) with p:2nl@-2) we immediately obtain

,{1, @,s) - ,{ , o, s) avla* = c (n), { t tx, g) ctx

for any 0 < 6 = I and each cube Qc A.

5. The weak stability

Lemma 8. Let u€Wz'(O) be a solution oJ'

(s.1) å*(",,r*>ff):0,
where arr(x) satisfy the hypotheses of Proposition l. Then there exists a harmonic

function h€Wr@) such that

(s.z) [lv"{»-vh(y)l,dy=e'[lvu(il'dt.

Proof. We define htobe the solution to Dirichlet problem; /h:O on O and
0

u-h€.W'(O). It is a well-known fact in the calculus of variations that such a solution
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exists and is unique. We write the Laplace equation as follows:

{ <onO),YEO))dv : g for anv test function r'i'}tol'
{2

We subtract side by side the equation

I § "o), 
v E 0D dv : - [ (uo)Y u(v), Y E (i) dv,

which is a weak form of (5.1), S(y) being the matrix of entries e;;(y). This yields

[ <vu-vt ,yE) : - [ lavr,vE), for each *<#,]@).

In view of the boundary condition on hwe are allowed to set tp:q-h. By (O.A)

and by Hölder's inequality we then get

I lv 
" -v nl, : - ! (Ey u, y u -Y h) =, ( [ lv "l)''' ( [ lv u -v nlt'''.

This immediately leads to (5.2).

For further purposes we anticipate the following result:

(s.3) {itv"r-lvrrl,l = ze I lvul';

this we infer from the lemma by applying the elementary inequality llrl'-lrl'l=
((l+e)/e)la-wlz+elulz, for u,v(.R'. In fact

I ltv "l' -lvhl'zl = + { lY u-Yhlz + e I lv ul'

= 1tt 
^z f rv,,tzt" f lvulz = ze I lyulr.e " Jr'-t'"1 

s2

Our nearest aim is to establish the stability of quasiregular mappings. For this we

need a few non-standard facts on Sobolev's spaces.

Lemma 9. Let Q be an open subset in Rn and let f, g be ntappings from
W,!rc"(A), f:(fr, ...,f"), g:(g,, ...,g"). Then for etery E(C|(A) the inequalities

(5.4) l! v@)lt(x,.f)- r(x, dl't*l= I v- sllvEllDfl'+lDg1'1'-','

= ll U - dv Ell "(l 
Df ll?" + ll D sll?)' -' t'

hold, where llu ll,:([ al(Il")'/'.
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Proof. By an approximation argument one can reduce the problem to the case
of smooth f and g. Consequently, we may write

I v@)lJ(x,.f)-J(x, s)]clx : ! v@f'A ... A df"-ds' n ... n dg")

-f - ådf'A ... A clfx-t A d(fo-sk) A clgx+t A ... A cls"

f S',tfk- go)clft A...A clfx-t A ctq A clgt'+t A...A clg,,t Z-J \Jv k:1

We easily see that the differential forms under the last summation sign are equal to
t.-\oa1E6o -go)d.fr n ...nd.fo-' r'dgk+L x ...ndg"l.Therefore, by Stokes' theorem
the last integral vanishes. Now we shall use the inequality of Hadamard and others
which can be easily recognized from calculations below:

316

+ { å df'A ... A dfr"-t A dEUo-gft) A dgo*'A ... A dg',.

l\ttr-rldf' n...n dfx-r n dcp n ,lso*' n... n nr'l

= å vr- sollufl...lvfo-,1 lvEI lvso*,1... lyg,ldx

= lY ql lf - cl (å1yyr1z .. . lvyk -, l, lvso 
*, 

1,. . . 1v r, 1,)''' a*

= IvEl 11- cl[å(#) "-' 
,rrr,,,*...*lyfr,-r1z+ lvsk+112+... + lvg,l,),- ,l''' a*

= (n- 7)G-n'trclvqllf-slf}<lrff *...+vfk-Llz+lvg&+112+...+lvg,lr)] 
-"'' 

o*

: (n - 1)o - n) t z 
lv El lf - ciå@ - k) lvf ol, +(r - r ) | 

vg*l 
{ 

" 
- 
"'' o*.

Thus 
l[ v.,)rt(x, f)- J(x, g)]dxl
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Exchanging the roles of f and g and then adding by sides we easily get

zl[ v@lt(x, f)- r(x, g)]dx

= 2(n*l)G-n)tz I lf- ellvEllZ*_ Dlygklz+(n- r) 1v7r1,](''"'' o*

: z I lf- cllvEl(Dgl'z+lof 121<'-ttrz4*

= 2 ( I I U - d v El")' t' ( [ {l» sl' + 
| 
Df lz1" 

t z)t" - r t r',

which immediately implies (5.4).

Corollary 2. Let f: Q-R" be a K-quasiregular mapping. Then.for each tube
QcQ the inequality

(s.5) (r,,-f lonrll, or)'' = c(n) K( f t»tttlf,, dt)''

holds v,ith a constant C(n) depending only on n.

Proof. Let((x)be afunction of theclass C;(Q\ such that 0=((x)=1, ((r:1
for x((ll2)Q, lV((r)l=C(n)lQl''t'. Letting E(x):('(x), s(x):"fo in (5.4)
we get by Hölder's inequality

[ _t1*1t1*, f)dx = " ! <,-,{*)lv((x)l lf -fallDf(x)f -Ldx
OQ

- ,({ lvEy l.f-fal)''' ( I <,lDfl"),n-"'',

-1)tn 
.

eorem we deduce

Suppose that /',
c;"((2)

and applying (0.1 1)

f c"lDfy = n@+z)tzKU lv(i.i.f-fal")'''(f {iDfp)Q'
aao

Hence

U c, iDft )''. = W V tf 
_fatnl'," 

.

a

By Poincarö's inequality (see Lemma 6 for (t-nl2) we get

t f lDfl')L/" =c@)KI f wy'*)''','gfr)e ' e

which was stated in the Coroll ary.
As a consequence of (5 .4) by Rellich-Sobolev's compactness th

Corollary 3. Let f; be mappings from Q into Rn, fi€w,,' (o).
{'ot'n)erge weakly in [4,t (o) to a map .f€w,'(o) . Then .fo, e[erv E(

(5.6) lig { w@)J(*, fi\ctx - f v(x)/(x,/),tx.
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In fact, the norms 11O7rll" are uniformly bounded and by the compactness theorem

the sequence (f;-f )VE converges to zero strongly in L'(Q). Thus (5.6) immediately

follows from (5.4) when we set g:f..
We derive from Corollary 3 the following weak stability result for quasiregular

mappings.

Lemma lO. There exi.rts afunc:tion fr:B(K), fr: ll, -)*[0, -) (it may also

depend on n) such that
a) lim*-' B(K):0.
b) For each cube QcR" ancl any K-quasiregular mapping J€W,'(Q) there

exists q generalizetl conformal mapping g<W"'(Q) such that

(5.7)

(s.8)

t ft»t-DsY)''n * §(K){ fPri')"".(Uz)Q 
O

Proof. The proof of existence of g will be ineffective to the extent that we are

unable to give a formula for B(K) (see remarks after the proof). Assume that Q:Qo

- the unit cube of R'- and that .fa"lOf 1":t, .feo:O. These are illusive restrictions

of generality because (5.7) is invariant with respect to translation and homothetic

transformation of co-ordinates. Contradicting the lemma assume that we are given

fo=O and a sequence {Jj}, j:1,2,... of K;-quasiregular mappings such that:
lim Kr:O, .fo"lDf)' :t, .fao.fi:O and

( f lDJi-DgY)'''=§o
(Ll2)Qo

for any l-quasiregular mapping c(W,'(Qo).
We can choose a subsequence fr*, a:1,2, ... which weakly converges to a mapp-

ins sew,'(Qo). According to Corollary 3 we have

lip I v"@)J(x, -fi)clx - { v"(x)/(x, s)dx

I v"@)lDg(x)1" clx : n't' f E"(*)J(x, g)dx.

As g was an arbitrary non-negative function (of the class Ci(Qo)), we conclude that

lDg(x)1":rf/'J(", g) for almost every x(Qs, which shows that g is an l-quasiregular
mapping. Furthermore, since llEDfi,ll"*llEDgll,, with a view to uniform convexity

of Ii (Q) we infer that the sequence qDfi"actually converges to rpDg in the sense of

for every VeCf, 19o1' we shall assume that E(x)>O. On the other hand the ine-
qualities (0.11) and (0.16) yield

I e"(x)lDt(x)1"dx =hminf I E"@)lDfi,@)1"tlx

<* n"tz timinf Ki_ [ v" (x) J(x, f)ctx : n,tz { E, (x) J(x, g)dx = [ v" @)lDg(x)1, dx.

It proves that each relation must be equality, in particular
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strong topology of I)'(Q). Letting E to be equal to I on (112)Q, we are led to

,,p( fwrt--Dr1")'^:s,- '(uz)Qo

which contradicts (5.8). The proof of Lemma 10 is complete.
By a slight modification of the above proof or indirectly from (5.7) one can derive

the estimation

(s.8) f tr(x, f)- r(x, g)ldx =(L/2)Q

The indirect proof is based on the inequality

lJ{x, f)-J(r, g)l = c(n)lDf(x)-oe@)l(lof (r)l'-'* IDg(x)l'-').

Integrating it over (ll2)Q and applying Hölder's inequality we get

f lr(*, l) - J(x, s)ldx
(t/2)Q

="(r,,{lrr_orr)''"l\,,r[|of l,)"-"'"*(,,,$1,ry)'"-"''1,

and for the sake of (5.7) we are led to

f lr@,.f)-J(x, g)ldx = c(n)fr(x) fWtf < n"tzc(n)Kf 1x) f t1x, f)dx,
(Uz)Q Q A

whence (5.8) verified.

Remarks. A result of the kind of Corollary 3 is known in the theory of quasi-

conformal mappings. Some other functionals which behave like Jacobian (so-called

null Lagrangians) were investigated in non-linear elasticity.

Our Lemma l0 is the simplest one among several stability theorems for quasi-

regular mappings. The stronger ones require a much deeper study of the subject. We
do not need them in this paper. However, it is interesting to see the chief points of
these generalizations. Firstly, one can prove that the ftrnction P:P(K) is of order
O(K- 1). Secondly, the inequality (5.7) remains valid when the cube (112)Q is replac-

edby Q; the same may be done in (5.5), i.e., the reverse Hölder inequalities are valid
for derivatives of quasiregular mappings (see [8]). The last statement is not true for
solutions of elliptic equations. For these remarks we recommend [9], [0].

C (n) Kp (K) _f t @, .il crx.
a
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6. Proofs of Propositions 1 and 2

Let u(Wz!rc"(O) be a solution of (0.5). Then for each cube Qc-cQ u is a
solution of the class WrL(Q). Therefore by (5.3) we can find a harmonic function
hcwr'(Q) (which of course depends on Q) such that frllV"p-lvhlzl=3sfalvulz.
This implies

(6.1)

and
oo

,f 1tv ur - tvhrl = + f tv,t,

for any 0<o<1. We apply (4.4)for H:Yu andfor p:2.

-fltorf - f trrfl = C@)o -f ort'.
oQoQA

Combining it with (6.1) we get

fllva'- f trrfl-- (3eo-'* 4c(n)o) f iv,l'.
"Q' ,b I 

o

Put o: ie . Then by Lemma 5

{fiva,- "flval,l = 
"rh$ 

r8c(n)) -f V,r.

Now we deduce from Lemma 2 that for each cube Q*O

(r,,.f l'ur')" = §r1 flv'l',
n+1

provided li(a+aCg1)=10-u", i.e.,

(,,,-f louY)''' = *)( f lvu1)''',

,r+1_

provided le(A+SC1n1)=10-"'. The last condition holds for each p(11,2+
(An@+l))-rlog(1/e)) whenever €<r0:(6+8C(n))-"-'. On the other hand, if
to<e<1, then by (0.10) we infer that (0.15) is valid for peU,2+k(n)log(1/e)),
where k:k(n)>O is small enough to satisfy 2+k(n)log(lle)-.p: This proves
Proposition 1. We prove Proposition 2 similarly. Let f: d2*R" be a K-quasiregular
mapping. On account of Gehring's result, see (0.13), we may only consider the case

of K close to 1, i.e., for small B(K) (see Lemma l0). What we really need to assume
on fr(K) will be easily seen from the calculations we are going to carry out. Let Qbe
an arbitrary cube in O. We may indicate a generalized conformal mapping C<W"r(Q)



such that

f V@,.f)-J(x, g)ldx = c(n)K§(K) f t1*,ia*,
(Uz)Q A

see (5.8). As in the previous proof we infer that

(6.2\ fr@,s)dx=(2,+c1n1xB1g)f4x,gax(t/z)O a

and for Q<.o<112

(6.3),{rrr*,f)-t(x,s)ldx=Wfr(x,f)itx.
On the other hand, replacing Q and o in (4.5) by (ll2)Q and 2o we see that

fltf*,d- f 4y, g)dylax = c(,),.,-f.r(x, g)dx, , = |.oö' "ö 
-'r 

(uzie

Combining it with (6.2) and (6.3) we get

flrO, fi- f 4y, ddyldx = c(n)(§(K)o-"*o) f tO,.f)0,
o"e' oö t 

e

with a constant C(z) depending only on n. Put 1r"r" o:"*l,V@. Eliminating
the term f,eJ (y, ddy by using Lemma 5, we are led to the hypothesis of Lemma 2,
i.e.,

?l 
^ 

I ^+.]-
J lt(*, fl- J t(y, f)dyldx < c(n) | p(n J ly, nay.oQoQd

Now we conclude, assuming K is sufficiently close to 1, that there exists p :p (n, K)=n
such that

( f tu, -f)o d*)''o = c(n, p) f 4x,.ilax'gtöa ' e

for each cabe Q§Q and that lim*-r-p(n, K) : - The whole conclusion of Propo-
sition 2 follows from the inequality lDf(x)1"=n't'Kt1x,1=ylOf(*)f defining/
to be a K-quasiregular mapping.
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