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TWISTED SUMS OF NUCLEAR FRECHET SPACES

TIMO KETONEN AND KAISA NYBERG

1. Introduction

In proving that a nuclear Fréchet space F with the property DN is a subspace of
s, Vogt [11] showed that there is a short exact sequence 0—s—X— F—0, where X is
a subspace of 5. Using the property DN he showed next that this sequence splits. It
follows that F is a subspace of s. This kind of technique has proved to be useful in
characterization of subspaces and quotient spaces of nuclear Fréchet spaces, cf. [1],
[2], [12], and [13]. We will take another point of view for investigating short exact
sequences. Let £ and F be nuclear Fréchet spaces. The problem is to construct a
nontrivial twisted sum of the spaces E and F, i.e., to construct a space X such that it
has a subspace Y isomoprhic to E with X/Y isomorphic to F, and such that ¥ is not
complemented in X. In [9] Kalton and Peck gave a general method of constructing
twisted sums of sequence spaces. This is our starting point. In Section 2 we show that
also in the case of nuclear Fréchet spaces there is a general method of constructing
twisted sums, provided that the quotient space has a basis. In Section 3 we construct
nontrivial examples of short exact sequences of the type 0-A,(x)~>X—A,(f)~0
and 0— A (x)—X—A,()~>0. We conclude in Section 4 by giving a fairly general
splitting condition when both the subspace and the quotient space have bases.

For undefined terminology we refer to [4] and [10]. The scalar field is assumed
to be the field of real numbers.

2. Construction of twisted sums

We recall that X is a twisted sum of topological vector spaces E and F if there is
a short exact sequence 0—~E—~X—F~0, ie., if E is isomorphic to a subspace of X
so that the quotient space is isomorphic to F. In their work [9] Kalton and Peck
constructed some very interesting examples of twisted sums of Banach spaces. They
did this by constructing a quasilinear map G: F—FE, and then defining the space X
to be the space EX F with the quasinorm |(x, y)|=|Gy—x|+]|y|l. In the case of
Banach spaces there is the problem that a twisted sum need not be a Banach space,
it is not necessarily locally convex [7]. On the other hand, Kalton [7] has shown that
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a twisted sum of for example Hilbert spaces is locally convex. This, and the fact that
a nuclear Fréchet space is a projective limit of Hilbert spaces, will imply that local
convexity is not a problem in the case of nuclear Fréchet spaces.

Lemma 2.1. (see [3, Hilfsatz 5.8]). Let E and F be topological vector spaces.
Assume we have short exact sequences

0-EL X, 1)L F~0
and

0—~EL (X,15) % F 0.
If ©,C71y, then 1,=1,.

Proof, For completeness we give the simple proof. Let U be 7,-neighbourhood
of the origin. Choose a 1, -neighbourhood ¥ of the origin in such a way that (V—V)n
J(E)YcUnj(E), and let WcCV be a t;-neighbourhood of the origin such that
WcUNV+j(E). We have WcUNV+jENW-UnV)cU+jENV-V)C
U+U. O

Theorem 2.2. A twisted sum of nuclear Fréchet spaces is a nuclear Fréchet
space.

Proof. First of all, a twisted sum of complete metric linear spaces is a complete
metric linear space. That it has a countable fundamental system of neighbourhoods
of the origin is a consequence of the above lemma, whereas completeness can be veri-
fied directly. Secondly, Kalton [8] has shown that a twisted sum of the real line and
a nuclear Fréchet space is locally convex, i.e., every short exact sequence O—~R—
X—F—0, where F is a nuclear Fréchet space, splits. This implies that a twisted sum
of nuclear Fréchet spaces is locally convex [3, Satz 2.4.1.]. Finally, to prove the nuc-
learity, it is not hard to verify that for every continuous seminorm there is a conti-
nuous seminorm such that summability with respect to the first one implies absolute
summability with respect to the second one [3, Satz 2.3.5]. [

The above theorem gives us free hands for constructing twisted sums of nuclear
Fréchet spaces; we always get a nuclear Fréchet space. In the case of Banach spaces
every twisted sum can be expressed with the help of a quasilinear map[9, Theorem2.4.].
However, in order to construct quasilinear maps one needs some simplifying assump-
tions, e.g. the existence of a suitable basis. On the other hand, if a nuclear Fréchet
space has a basis, it is absolute [6]. This gives us an additional simplification in that
we do not have to use quasilinear maps, but linear maps will suffice.

Let E and F be nuclear Fréchet spaces. Without loss of generality we may assume
that their topologies are defined by an increasing sequence of seminorms (|| - | ,)
and (||| - |||,), respectively, such that the corresponding unit balls form a neighbourhood
basis of the origin. Let F, be a dense subspace of F. Assume we have a sequence of
linear maps A,: F,—~E which satisfy the following compatibility condition:
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There is a function o: N—N such that for every p and g, p>gq, we have

14,y=A4, 10 = ¥lllsry»  YEFo.

Note that we do not require continuity of the linear maps 4,. Note also that the func-
tion ¢ can be chosen to be strictly increasing. Define E X4 )FO to be the space EX F,
equipped with the topology given by the seminorms

I, W, = 14, y=xl,+ [|I¥lllsmy»  PEN.

Here we could have used any sequence of seminorms

e, M = Call 4,y =1, +D,l[15]1g,.»

where C,>0, D,>0, and lim,_, ., p,=lim,_ .. g,=<; the topology does not change
as we see by using the compatibility assumption. The reason for our choice is that
in this way, increasing the values of the function ¢ appropriately, we get an increas-
ing sequence of seminorms.

Lemma 2.3. The sequence 0-E-+EX, )Fo——> Fo—0, where j(x)=(x,0)
and qo(x, y)=y, Is exact.

Proof. Since |j(x)|,=|(x, 0)],=lx[,, / is an isomorphism onto its image. As
regards the quotient map ¢,, we have

”Iqo(xa y)”]p = quo(xa y)]”o'(p) = I(X, y)lp and ;relg ](X, y)lp
= I |4,y =xl,+ oy =g e, Dllogny- O

Let E ><( A )Fo be the completion of the space E X4 )Fo Using the above lemma
and the next theorem we obtain that E ><( 4 )Fo is a twisted sum of the spaces E and F.

Theorem 2.4. Assume E and F are Fréchet spaces and F is a dense subspace
of F.If the sequence 0—~E-2~ X%~ F,—~0 is exact, then also the sequence 0-E-%~
X4 F—~0isexact. Here X is the completion of X and q is the continuous extension of qo.

Proof. That the map j: E—~X is one to one is evident. Similarly j(E)Cker g.
Let z€ker ¢, and let z,€X be a sequence converging to z. We have lim,_ .. ¢(z,)=
¢(z)=0. Let d be a translation invariant metric on X compatible with the topology
of X,and let V,={z€X|d(z, 0)<1/n}. Since ¢,: X—F, is an open mapping we may,
by passing to a subsequence if necessary, assume that g(z,)€q,(V,). Choose Z,€V,
such that ¢o(z,)=¢o(%,). We have z,—Z=/j(x,) for some x,F and
lim, .. (z,—2,)=2z—0=z. Since E is complete, it follows that z=j(x) for some
x€E. Therefore ker gcj(E).

To show that q: X—F is onto, let yc F=F,. As before, there is a sequence
Ya€Fy converging to y with (y—»,)—(¥—¥n+1)€4o(Van). Let z,€V,. be such that
90(Zs) = ~Yu+Vus1- Since 7 ; z;, n€N, is a Cauchy sequence in X, it converges.
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Let z=237,z. We have q(z)=lim, _ 37, q(z)=lim,_ _ 37 ; (iy1—2)=
lim, o (Yyr1—y1)=y—y1. Hence y=q(z)+y1=q(Z) for some zeX.

Using the open mapping theorem we conclude that j is an isomorphism onto its
image and ¢ is an open mapping. [J

Assume now that I has a basis. Let I, be the linear span of the basis vectors.

Theorem 2.5. Let 0~E—~X—F—~0 be a short exact sequence. There exists
a sequence of linear maps A,: Foy—~E such that
() there is a strictly increasing function ¢: N—N such that for every p=>q
we have
”Apy—Aqy“q = HIyH|0'(p)> .VEFO’ and

(i) there is an isomoprhism T: X—~E >2( AP)FO such that the following diagram
commutes:
0—E——X—F~>0
idg § Ty idr |
0— E—> EX4pFy— F - 0.

Proof. Let 0: F—~X be alinear map such that g0=idy, where g is the quotient
map. Let j: E~X be the embedding. Define R: X—~EXF by Rz=(j"'(z—0gz),
q(z)). We get the following commutative diagram:

0—E—1 X2 .F0
gy Ry idp
0—E2sEXFL-F 0.

Here j(x)=(x,0) and §(x,y)=y. If UCEXF is defined to be open if and only if
R~Y(U) is open, it follows that we can identify X with EXF.

Let (|Gl p) be an increasing sequence of seminorms on EX F, which defines its
topology. From the exactness of the sequence 0—~E—~EX F—F—0 it follows that
there is an increasing function ¢: N-N such that for every pcN we have

(@ Ixl, = 1Gx; Qe

(i) Il = 1= Doy, and

(iii) for every basis vector f,€F,, mEN, there is a vector x,,cE such that
1 ms Sl o=l Fulllomy- Define 4,2 ForE by A, (S, @y fn) =Sy GnXo(pym-

(Here a,=0 except for finitely many mé€N.) Since the basis is absolute, we may
assume that for every peN ||| S, fulll,=_, lan| |l fulll,. Therefore we have

(iv) (4,2, Mooy = ey YEFo-
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Fixgandlet p>q. From inequalities (i) and (iv), and from the triangle inequality
we get

HApy_'Aqy”q = I(Apy_Aqy’ 0)}9(11) = (!(Apya y){g(p)_’_ !(Aqy’ y)le(q))
= 2{|IMllleeton = ¥ llloea»

where o: N—N is a strictly increasing function.
We show next that the identity map id: EX Fy—~E X, AP)FO is continuous. This
is a direct consequence of inequalities (i), (ii), and (iv):

I!Apy—x”p—,- [Hyma(p) = I(Apy—x’ O)[Q(P)—’_ H[ymcr(p)

= IHyI”Q(Q(P))—l- [(xs y)lg(p) + |(x9 y)lg(o‘(p)) = 3!()6, y)!rs
where r=max {¢(e(2(»))), ¢(6(p))}. Since q: EXF~F is an open mapping,
EXF, isdensein EXF. To conclude the proof, it is sufficient to show that the exten-
sion id: EXF—~E >2( 4,) F, is an isomorphism. By the open mapping theorem we only
need to show that it is bijective. For this we should note that the diagram

0—F—FE X F—F->0
idg | i | idp }
00— E— EX4pF, - FO

is commutative and that its rows are exact. The exactness of the second row follows
from Theorem 2.4. O

To construct nontrivial examples of short exact sequences 0—E—~X-—~F—0
we need to know whether or not they split, i.e., we need to know if X can be
identified in a canonical way with the product space EX F. In terms of the linear
maps 4, we have the following criterion.

Theorem 2.6. A short exact sequence 0—>E—>E>A<(AP)FO—>F—>O splits if and
only if there is a linear map A: Fy—~E and a function ¢: N-N such that

14y —Ap¥1l, = I¥llew
Sor all ycF, and pEN.

Proof. If the sequence splits, there is a continuous linear map T: F—~EX, Ap)F
such that ¢gT=id,. Here, as before, g is the extension of the quotient map ¢,(x, y)=y,
(x, »))EEXF,. Fix ycF,. We have q(Ty—(0,»))=0. Hence there is a unique
element in E, call it Ay, such that Ty—(0, y)=(4y, 0). Since T is linear it follows
that we get a linear map A4: F,—~E. The continuity of the map T implies that there
is a function ¢: N—N such that for every y€F, we have

[Ay—A,yll, = 14,y— AV, + Vo = (A, V), = 1T¥], = [[1¥!]on-

For the converse, let T be the extension of the linear map y~-(4y, y). That it
is continuous is a consequence of our assumption. Since g(Ay, y)=y, vE€F,, we
have qTy=y, veF. 0O
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2. Examples

In this section we shall apply the construction method just developed and give
examples of non-splitting exact sequences 0— A, (o) >X—~A;(f)~0 and 0— A (x)~
X—A,(f)~0. Our method allows us to weaken the stability conditions present in
the earlier constructions of Vogt [12].

Throughout this section a=(c,) and B=(f,) are exponent sequences, i.e.,
increasing sequences of positive numbers that go to infinity, and we shall assume that
o is weakly stable, that is, Sup,¢p 0, 41/0;<o°.

Lemma 3.1. Let (f;) be an increasing sequence of positive numbers with
lim ;. t;=o and denote

I(m9 l) = {nEN]ﬁm/ti+1 = % = ﬁm/ri}

for m,i€N. Then there are arbitrarily large indices i, for which there are arbitrarily
large m with nonempty I(m, i).

Proof. Let us assume on the contrary that there is /)¢ N such that for every
i=i, there is m;¢N such that I(m,i)=0 if m=m; Naturally we can select the
sequence (m;) to be increasing. So for every m=m; =m, there is j, =7, such that
I(m,i)=0 for every i with i,=i=j,. Thissequence (j,) can be chosen to be increas-
ing and go to infinity. It then follows that the set {n|Bn/t; ;1 <o,=pn/1; } is empty
for m=m,; thus there are indices n,, such that

dnm = ﬁm/tjm+1 and Bm/tio = a"m'*'l'

Combining these inequalities we obtain

U1/, = 11/l

for all m=m,. Since lim,_..?; .;=c°, we have a contradiction with the weak
stability of . 0O "

In Section 2 the systems of seminorms in E and F were chosen to be such that
their unit balls form a neighbourhood basis of the origin. In the case of power series
spaces it has become a custom to use the fundamental sequences of seminorms

I, = 3 e, & =EIEA=(D, PEN,

and

Iell, = § (E,Je= Wb & = (E)EA(B). pEN.

Multiplying these norms by sufficiently large positive scalars we get systems of semi-
norms of the kind used in Section 2. Therefore the compatibility condition has to be
replaced by the following assertion:
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There is a function o: N—~N and positive numbers C,, p€N, such that
14,y—Aglly = CllIyllloy for all y€F, and p=gq.

The splitting condition will take the form:

There is a linear map A4: Fy—~E, a function ¢: N—N and positive numbers
C,, pEN, such that [|4y—A4,y],=C,ll[y|lls for all y€F, and peN.

Let (e,) and ( f;,) be the coordinate bases of A, («) and A4,(p), respectively, and let
F, be the linear span of the vectors f,,, mcN. Denote

I(m, i) = (ENIB,/i+1 <o, = B,/i}, i€N,
and define the maps A,: Fo~A,(2), pEN, by setting for every meN

p
An m = 2 e(1/i2)pm(1/![(m, l)l) Z €5
i=1 n€I(m,i)

where |I(m, 7)| stands for the number of elements of the finite set 1(m, ). If I(m, 7)

is empty, we put (1/[1(m, ©)]) Suerm, inen=0.
Let p>q. Then

lp o= Aafulla = 2 € Pm(10n, D) 5 el

= 2,, VA D VR, = po=/(P)B,,
i=g+1
where
a(p) = p*(p+1) = gi*(i+ 1)/~ qi—q),

for g<i=p. Thus the compatibility condition is satisfied and so the sequence of
maps (A,) defines a twisted sum X = A, («) X 4Fos which is a nuclear Fréchet space,
if the spaces A;(x) and 4,(f) are nuclear. We shall show next that the short exact
sequence 0— A;(x)~X—A;(B)—~0 does not split. Assume the contrary; accordingly,
there is a linear map A: Fo— A;(0), Afn=_2".10m n€,, a function ¢: N-N and
positive numbers C,, p€N, such that ‘

”Afm—Apfm”p = Cpe—(llﬂ(p))Bm,
for all méeN. Since

p . .
, |y — W] [I(m, D)]| e~ WP = || Af, = A, 1l
i=1n€l(m,i)
for a given p, we then have

Iam,n—e(l/iz’ﬁm/ll(m, i)]{e—@/"l’)’*m = C,e-o@Nh,
ncI(m,i)

for all meN and i=1,2, ..., p with I(m,i)#0. Consequently, for these indices m
and / we have

o |G ] = €V C 1P =110 = (AID,(1 — C, eMip=1/o)=1/iDB,).
n€l(m,i
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Choosing p=i we obtain that for every /€N there is ;€N such that
1 5
] = - €8
ncI(m,i) ’ 2

when m=m; and I(m,1)#0.
Let pEN be arbitrary. We then have, on the other hand, that

Mg

iam’nie~(1/P)a,,; Z’ e—-(l/ip)ﬁm
i=p+1ncl(m,i) i=p+1 ncl(m,i)

“A/;.—Apj;"pég

am,n.‘

According to Lemma 3.1. there exist arbitrarily large indices i=p+1 for which we
can be sure to find an index m; =m; such that I(m;, i)>0. For these 7/ we then obtain
from the above inequalities

| R, U v
C,,e_“/"(”»”m.- = | Afy—Ap Sl = _2_3(1/:2_11111)6,,.‘, = 76‘('“”)/("")'9"" .

Since lim;... (i—p)/i®» =0, we have a contradiction.

Although the short exact sequence 0— A, (a)~X— A4,(f)—~0 constructed above
does not split, the twisted sum X=A4,(x) >?( 4) F, is, at least in the stable case, iso-
morphic to the product space A,(x) X A,(f) [12]. On the other hand, nothing is known
about the nontrivial twisted sum of the spaces A..(x) and A4,(B) that will be construct-
ed next. The construction is very similar to the previous one.

In this case we define for m, €N

I(m, i) = {n€N|B,[(i+1)* < a, = B,/i%}.

Let F, be the linear span of the coordinate basis vectors f,, of 4;(8), and let (e,
be the coordinate basis of A..(x). For every peN we define a map A,: Fy— A..(2).

p
Apfon = 2 e~ VDI (1|I(m, D)) > e,, meEN.
i=1 necl i

(m, i)

For p=g we now have

4 . ]
14y fo= Ay fily = 2 W (U10m, D) S e

= Zp' e@/E=1(+1)b,, = pe=(/o()b,,
i=q+1
where
o(p) = p*(p+1) = *(i+D/(—ig—q),

for g<i=p. Thus the sequence of maps (A4,) defines a twisted sum X of A. ()
and A;(B), X=A. ()X F,. To prove that this twisted sum is not trivial, assume
that there is a linear map A: Fy—A.. (%), afunction ¢: N—N and positive numbers
C,, PEN, such that the following is true for every mcN

”Afm—Apfm”p = Cpe_(llc(p))ﬂ""
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Let

Af;ﬂ = Z;-am,nen;
n=

then
y = (/(+1)B,, ; [+ 1))B,, < —(1/a(p))B,,
2 e O G, |04 = €m0

for all peN and for allmand i=1, ..., p with nonempty /(m, ). Choosing p=i+1

we obtain
.| = €= WD C, | @(=HoG+D =1+ 1),
né I(m, i) !

= e~ WU+, (1 —C,, e~ oG+ 1B,),

Thus for every / there is an index ; such that

ia ] = le—(ll(i+1))ﬁm
3 mnl = o
ngd(m,i)

when m=m; and I(m,7)=0.
Let peN be arbitrary. Then

oo

”Afm_Apfm“pg Z 2 !am,n!e‘m":2 Z e(p/(i+1)2)lim Z {am,ni'

i=p+1nciQm,i) i=p+1 nel(m, i

According to Lemma 3.1 we can choose arbitrarily large indices 7 and m;=; such
that I(m;,i)>0. Combining the derived inequalities we then obtain for these 7

1 ;
Cpe—(lla(p))ﬂmi = ”Afmi—Apfmi”p = _2_3—(1/(i+1)2)b‘m“

where we have a contradiction.

The twisted sum of A (x) and A;(f) constructed above remains unexplored.
The general question is what kinds of nuclear Fréchet spaces one gets by forming
twisted sums of nuclear Fréchet spaces with bases. As one would guess, not every
nuclear Fréchet space can be expressed in this way. Let X=EX apbo be a twisted
sum of nuclear Fréchet spaces E and F and suppose that X admits a continuous norm.
It is easily seen that the canonical map between the completions of the spaces
(X, ](,)],+1) and (X, |(,)],) is one to one, if the corresponding maps of E and F are
one to one. It follows that a twisted sum of nuclear spaces with bases is countably
normed. However, Dubinsky [5] has constructed a nuclear Fréchet space with con-
tinuous norm which is not countably normed.
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4. Splitting an exact sequence

In his theory on characterizations of subspaces and quotients of certain nuclear
Fréchet spaces Vogt has introduced the properties DN and Q and has shown that if
E has Q and F has DN, then every short exact sequence 0—~E-» X~ F—0 splits [11],
[13]. Generalizations of these ideas have been presented in [1], [2] and in the talk
given by Vogt in the Colloquium on Nuclear Spaces in Ankara, June 1981. For exam-
ple, a condition on E and F has been given (see (V) below ), which quarantees the
splitting of sequences 0—~FE—X—F—0. In what follows, we shall require that both
spaces have bases. Then we can give a weaker splitting condition which is also almost
a necessary condition for a short exact sequence to split.

Theorem 4.1. Assume E and F are nuclear Fréchet spaces with bases. Then
every short exact sequence 0—E—~X—F—0 splits if for every function o: N—~N
there is a function @: N—~N such that for every p>q we have

21X 1o = 170l e+ 1

where x'€E’ and ycF. Here |x'|l,=sup {|(x, x")|||x[,=1)}.

Proof. Let (e,) be a basis of E and let (¢}) be the corresponding sequence of
biorthogonal functionals. For the space F we have similarly a basis ( f;,) and biortho-
gonal functionals (f,)). By nuclearity we may assume that the corresponding semi-
norms satisfy the equations

S ase,| =maxlale,,
and
m=1 p m=1

In particular, the series 37, a,e, converges if sup ,|a,||[le,/||,<o for every p.

By Theorem 2.5 there are linear maps A4, from the linear span F, of the basis
vectors (f,,) to E such that X can be identified with E >2( 4yFy. Also there is a function
o: N—N such that for every p we have ’

[4p11y—=4,90, = I¥lllory> YEFo.

Let ¢: N—N be the function given by our assumption. According to Theorem 2.6
it is sufficient to construct a linear map A4: F,—~E such that for every p we have

”Ay'——Apy”pé H].VHIQ(p)’ yEFD'
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We do this coordinatewise. Fix n and m and let for the moment p>g¢. By our assump-

tion we have
p—1
|<Apfm9 er,z>_<Aqus e,’,>] = r=2,q I<Ar+1 ms e,’,)—(A,fm, el’l>{

= 5 et lalor = gl + el il

Therefore
<Apfm’ er’t>_”er,zllpmfm”le(p) = <Aqu9 er,t>+”er,z“q[“ﬁrlme(p)'
Since this is true for every p and g, there is a real number x(n, m) for which we have

x(ns 'n) = n;lf {<Aqf;n9 er’l>+”el,l“q|HfmI”g(q)}
and
x(n, ’n) = Sgp {<Apfm’ e:l>_”er,1”pi||j;nme(l’)}

Hence for every p we have
IX(I’I, m)—(Ap m> e;l>| = ”e;”p“lfml”g(p)'

_1x(n, m)e, converges, and that we have for every p

oo

It follows that the series >

";’1 (x(n, m)y—{A, fon. €p)e,

14

p

l Z;JC(H, 'n)en_Ap m
n=
— max [x(n, m)—(Ay fors llenlly = 1 folllaco-

Therefore, if we define A4: Fy—~FE to be the linear extension of the correspondence

S x(n, m)e,, we get a linear map which has the required property. O
Assume now that every short exact sequence O0—-E—X—F—0 splits. Let

o: N—N be a function and let N,,, mEN, be any sequence of finite subsets of N.

Define linear maps A4,: Fy—~E inductively by 4,=0 and

Ap+1 m = Ap./;n'l—”lfm“;o(p)' E%v “er’n“pen'

It follows from Theorem 2.4 that we have a short exact sequence 0—~E—~E X AP)FO—»
F—0. Since by our assumption it splits, there is, by Theorem 2.6, a linear map

A: Fy—~E and a function ¢: N-~N for which we have

”A.},—Apy”p = ”iy”IQ(P)

for every p. Using maximum seminorms in E we get

KA, en)— A, s )l = lenll Ml fulllay
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for every p. Therefore for p>¢ and n€N, we have

:é; [”fm”la(r)”et,t”r: riz_q’ (<Ar+1 m’e;x>_<Arf1‘n:e;1>)

= [y s €)= Af s )|+ KASs 1) — A, S e Ellellgll fullloy +lenll ol fullloors
e., the converse of our theorem holds with the restriction n€N,,.

One of the splitting conditions in use is the following (cf. [1, III. 2] and [2]):
IPoVq03¢VpYras
V) I = X N gl 12 e+ 12 s
where x’€E’ and yt}. We are going to show that this condition implies the one
we have in Theorem 4.1. We need the following lemma used in the context of splitting
theorems [1, III. 2].

Lemma 4.2, Assume E and F satisfy the above mentioned condition (V), and let
o: N—N be a function. Then there is a natural number p, a sequence (r;) of natural
mubers, and a function @: N—N such that for every i o(r;)=max {o(r;), po} and

" 21

E%-x,!lr,%!i!ymg(ri) =270 ”‘C ”h 1!‘ V“IP - !X ”"ii—l”i!y”w;(’("i+l)’
where x'€¢E’ and y€F.
Proof. We give only the induction step of the proof. Let p, be the natural number

given by (V). Assume we have chosen r; and defined ¢(r;) such that our claim holds
for j=/ and that ‘Vp\/r'%s

X ”rl+1’Hy|”p = “x ”rl |Iy||!po+“x’“rl|lyH s
Using (V), choose r;. 5 such that yp'vr'3s’
”x “rH.zll‘yH;p —'“x ”r.+1[”y|“170+1lx I EJt s’

Choose p such that 27+1]||y]|l, ylll,» and let r=r;.,. For some s we have

z+1) - ‘I.
X M 1P legre sy = 27700000, P, = 27700l T e+ 0 2 s

Let o(r;;2) be the maximum of this s and the number max {c(r;.,), po}. O
Corollary 4.3 Let E and F be nuclear Fréchet spaces with bases. Assume that

E and F satisfy the condition (V). Then every short exact sequence 0—FE—X-F—0
splits.
Proof. Let 5: N—N be a function. According to Lemma 4.2 there is a function
g: N—N such that, passing to a subsequence of seminorms, we have for every r
1% Nl Hlloy = 111D Iy = 270X =g + 1t 110 Lo 2y-
Let p=r=>q. We have
X oy = 2771 [10 o+ 1R 4l [19 o +1)
= 2—r”)‘ “qliJ’HJpo_‘_z (,+1)”x ”ql”ylllp.) “x/”r+2myme(r+‘z)
== 27X ot 11 g -
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Hence

p—1 o
Z ”x,”rmymc(r) = ”x/”q”|ymo'(q)+2~q+1|ix,”quin|po+pilx,lip§ gying(p)
r=4

= 201y + 21X oo -

If the values of the function ¢ are increased appropriately, it follows that the assump-
tion of Theorem 4.1 is satisfied for a subsequence of seminorms. Since this subsequence
generates the original topology of E, the proof is complete.

In his proof of the above result Vogt used a Mittag—Lefller type procedure to
construct a continuous linear converse of the quotient map. Our construction in
Theorem 4.1 is, instead, based on an argument analogous to one used in the proof of
Hahn—Banach theorem.
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