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QUASICONFORMAL MAPPINGS WITH FREE
BOUNDARY COMPOI{ENTS
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1. Introduction

Let i- denote a closed subset of the boundary of O: {wllrl = 1} and T a compact

subset of D, such that D-T is a domain. We consider a quasiconformal mapping F,

z: F(w), which maps D - T into D, such that öD is mapped onto itself. The class of
all such mappings which agree with F on I is denoted by Q, .We do not indicate the

dependence on Iand ,l-, since these sets are fixed throughout this paper (except in § 6).

If F has minimal maximal dilatation in the class Qr, we call F absolutely extremal.

We use the notation o'absolutely extremal" to indicate that the image domains of
competing mappings G€Qr are not fixed. So F is absolutely extremal, if

KIF): Ko:: inf K[G],

where K[G] denotes the maximal dilatation of G.

By normality we conclude that Qp contains at least one absolutely extremal

mapping. If there is only one such mapping, it is called uniquely absolutely extremal.

To derive necessary and sufficient conditions for a mapping to be absolutely

extremal,we use the method of E Reich [5] in connection with a similar problem. We

consider the inverse mapping f:F-', w:f(z), which is defined in F(D-T), and

its complex dilatation

x(z):ffi*ffi
The following Banach space of holomorphic functions plays a basic role in this

problem too:
@::OrrDt:{qlq holomorphic in D, Edzz real on öD-F(f),

llqll = 
oo).

First we derive a general necessary condition which leads to the possibility of
the existence of a so-called "substantial" boundary point [4]. After this we derive a

second necessary condition in the case when there is no such boundary point: Then

: $ lqk)lctxdv
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there is a quadratic diflerential E€.o such that.f is a Teichmiiller mapping with
complex dilatation x:koqllEl(ko:(Ko-ty(Kr+t)) and F(D-T) is a domain
which is the unit disk slit along some subarcs of vertical trajectories and connected
subsets ofthe vertical critical graph ofE (this is definedtobetheunion ofallvertical
critical trajectories and zeroes of E). These subarcs then correspond to the set Z.
we restrict ourself to the case where at most denumerably many components of
D - F (D - T) are points. With this slight restriction the necessary conditions turn out
to be sufficient for F to be absolutely extremal. Moreover F then is uniquely abso-
lutely extremal.

2. The general necessary condition for absolute extremality

If F is as above, then the complex dilatation x of Ji: 7t -r is a measurable func-
tion in F(D-T). We extend z by setting

x(z) :0 for z(D- F(D-T)
to get a measurable function in D. We prove the

Theorem 1. If F is absolutely extremal in Q,r, then

llzll "" .

Proof. we apply a technique employed by Krushkal [3] and elaborated by Reich
[5]:

Let ko:llxll-. If /co:0 nothing has to be shown. We assume /.0>0. If (1)
does not hold, then

- ko.

By the Hahn-Banach and Riesz representation theorems there exist a complex
valued measurable function a(z) with

E€9,
and llall*:s.

We form v(z):2a121-a(z), z€D. For 0<t<Ullvll_, let g denote the quasi-
conformal selfmapping of D with complex dilatation ty and with g(1):I, g(i):i,
S(-l):-1. Then we put h:fog-t and have

(1)

,,x,?,|['f 
xrpdxdvl-

,,*,?,1$ 
xEdxdl'l- a

lf xqdxdy - $ aEdxdy, for every

(2)

By the Fundamental variational lemma ([5], p. l0T) there exists a (l +c)l1-c)
quasiconformal mapping g* of D onto itself whose boundary values agree with those
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of g at F(J-) such that

" - t'llull'- 
-" - 1-rllvll-+r'zllvll'z-'

We put f:hog*-fog-log:*. Thenf is defined in g*-r ogoF(D-T) and maps

this domain onto D-Zwith boundary values of/on F(.1-). Therefore f-t belongs

to Qr.We want to show that

Klfl <. KlFl for , '=- 0, sufficiently small.

This would contradict the absolute extrem ality of F.
Let

vt : {r, F (D - r)l l, Q)l = ry\,

r,: 
{ze 

F(D-r)('l,o - lx(z)l= u.}.

Since ko>O, it is immediately clear from (2) that there exist är>0, l.>0, such that

lt og)t : y, 1 r11 -, t, l: ?)l' Re (u (z) x (z)) + o 1t1'.r r." \-,,r lx(r)l

Here O(t2) is uniform with respect to z in V2.Wehave uil:lxlz-ail and therefore
Re ax=lxlz -lallxl>lxl(lxl- a)>lxl(ko- a)12, hence

L-lrl'
-,_ rleux=(1 -lxlr)ko;o = (1 _ k1)ry> 0.

Therefore there exist öz=0, tz>A such that

llro11()l =/co-ört, if 0<t=tr, (€s(Vr).

Expanding (2) we obtain for e€S(Vr) and (:g(r),

llro()l = /co -ört, S = t =tr, C€s(Vn).

We consider the effect of g*, using c-O(t'), and obtain

for 7 >0, sufficiently small.
Kt/l < Klfl: Ko
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3. The existence of a substantial boundary point

Let (<f . Then the local dilatati on HI of Flzp in ( with respect to i- is defined by

H{ :inf {KlC,lG:u(OY* u(F(0), Glrnu«r: Flrnu(er},

where the inf is taken over all such mappings G and all open neighbourhoods U(()
of ( and U(F(O) of f($ in D. For this definition and notation we refer to [4, 8, 1].

lf Ko:H[, then ( is called a substantial boundary point. Since the function (*H[
is upper semicontinuous, there always exists a point (o€I with ä1.:Uaxa6rH[.

We assume now that F fulfills the general necessary condition (1). It is possible
that there is a sequence E,e 4 ll9,ll :l such that E, tends to zeto locally uniformly
in D and

-'ll %ll*) tt -+oo

We recall that t<:.fzlf, in F(D-T) and x:0 in D-F(D-T). Letf* be the
quasiconformal selfmapping of D with complex dilatation x in D and /*(l):1,
f* (i):i, .f* (-L): - 1. By [] we conclude that f* has a substantial boundary point
on F(i-) and is hence extremal for its boundary values on F(^l'). Since/and/* have
the same complex dilatation in F(D-T), there is a conformal mapping hin D-T
such that h of:f'r in F (D - T). But because Klfl : Klf*l and because local dila-
tations are conformally invariant, this point is a substantial boundary point for -f
too, and we conclude that F has a substantial boundary point on l-, i.e. KlFl:
Max,..af. We remark, that this forces Fto be absolutely extremal, since Ks=
Mut.. HI clearly holds, hence Ko:KlF} Therefore the general necessary con-
dition (1) together with the existence of a degenerating sequence Enas above is a suf-
ficient condition for F to be absolutely extremal.

4. A second necessary condition in the case without substantial boundary point

Jr{ %Qndxdvl

We consider the case where Ko=Maxs €r H{
hence the condition (1) is fulfilled. Since there is
every sequence QnC0, llE"ll :1 with

and F is absolutely extremal,
no substantial boundary point,

n **,

contains a subsequence which tends to a function A€fi,}-<llrpll=l. It is known
that then

$ 
%endxdy *

fl xEdxdy
D

- kollEll -
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Therefore we conclude that x:korpllEl u.". in D. Since fto>O we conclude that
the measure of D - F(D - T) is zero (because z :0 there) and that F is a Teichmiiller
mapping.

But as can be seen by an example these conditions are not sufficient. We derive
a second necessary condition: We claim that every component zl of D\F(D-T)
is a subarc of a vertical trajectory of E or a connected subset of the vertical critical
graph of g. To prove this we may assume that A contains at least two points. We
consider again the quasiconformal mapping f*;D*D with complex dilatation
t<*:koEllel in D and f*(l):|, .f*(i):i, "f*(-l):-1. The mapping f*oF is
conformal in D - T. Let us consider the class of mappings from D - z1 onto D -f* (Ä)
with the boundary values of/* on r'(f). The mapping/* must be extremal in this
class, otherwise we could replace F*::f*-' by a quasiconformal mapping G*:
D-f*(l)*D-2l rvith KIG*l<l{o and boundary values as f*'-t. The mapping
G* of* o F would contradict the absolute extremality of F.

Therefore/* is extremal in this class of mappings between these two ring domains.
We have already seen that the lack of a substantial boundary point on .f for F im-
plies a lack of a substantial boundary point on F(f) fot f*. We conclude by [1, 2]
that E is real along A, i.e. by transformation of the ring domains D - A and D -f* (A)
onto annuli, the induced quadratic differential must be real along the interior bound-
ary component. But O:[{claz is conformal in neighbourhoods of points zoe A
wherc rp (zr) I 0, therefore ,,4 must consist of horizontal and vertical arcs of E includ-
ing zeroes. We show that horizontal arcs do not occur by using the following lemma.

Lemma. Let R be the square {x+iyl-112-<x<112, }-<y<l}, s its hori-
zontal side {y:O} and Aa denote the affine stretch A6(x*iy):Kx*iy, K>1.
Then there is a quasiconformal mapping Fo defined in Ax(R), such that ^F'o(lK(R))cA,
Fo agrees with Aal on öAy(R)-A*(s), and the maximal dilatation of Fsis less than K.

Proof. We consider the right half R+:Rn{x*rylx=0} of the square R.
We choose f :öAx(R+)a{x*iyl x:Kl2 or /:1}. Let Frbe an extremal mapping
from 16 (R+) onto ,R+ which agrees with A*t on ,f. If Fo has a substantial boundary
point with respect to I, then its maximal dilatation is less than K. Otherwise, if there
is no substantial boundary point, then Fo is uniquely determined and it is a Teich-
miiller mapping with associated quadratic differential of finite norm, which is real
along ä16(R+)-l-. Therefore Ait* Fo since the quadratic differential -l of A*L
has a pole of first order at the corner (0,0). We conclude that the maximal dilatation
of Fo is less than K.

Next we consider ,Fo(0). This point must be on the interior of the vertical side

{iylo=<y<l\ of R+, since otherwise the ratio of the moduli of the rectangles
lK(R+)(0, Kl2, Kl2+i,r) and R+(r'0(0), l12,112+i,ri) would be larger or equal to
K. By reflection we extend F, to a rnapping from l^(R) onto the slit rectangle
R-{ryl0<y=Im Fo(O)}, and this lemma is proved.
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We assume now that z{ contains ahorizontal arc of E. Since/* is locally equal to
a conformal mapping @ followed by an affine stretch Ayo and again by a conformal
mapping Y-1, we canchoose a q-rectangle R*, which is mapped Uy A:ffidz
onto a square p:{x*iyl-ll2<x<t12,0-<y<l} such that a horizontal arc of E
on ,1 is mapped onto - 112<x<112. We apply the Lemma on R and 16o. Therefore
we can replace F*-f*-L in /*(R*) by di-r oFooY, i.e. we define

E*t'
A -R*),
,f*(A*).

[F* in J'*(D-
to-, o lä o Y/ in

Because F* and iD-L o Foo Y agree on those three sides of/*(R*) which are contain-

ed. in f*(D-l), f iswell-defined.infx(D-A),Ko-quasiconformalandnotaTeich-
miiller mapping since its dilatation is not constant. In the class Q, the mapping

F*of*oF is absolutely extremal but not a Teichmiiller mappin-e.') This contradicts
the first conclusion of §4, that an absolutely extrernal mapping without substantial
boundary point must be a Teichmiiller mapping. We have proved the

Theorem 2. If Ks>MaxE6yH[, then an absolutely extremal ntapping F is
a Teichmilller mapping and the holomorphic quadratic dffirential q of the inuerse
mapping f:F-' i.s in $:Orsy The set D-F(D-T) has area-measure zero and
each component of it is a subarc of a uertical trajectory) of E or a coilnected subset of
the uertical critical graph of E.

5. Sufficient conditions

We have already seen that condition (1) together with the existence of a degener-
ating sequence En as described in §3 is a suffi.cient condition for Fto be absolutely
extremal. Now we want to show that with a sli-eht restriction the necessary conditions
of Theorem 2 are sufficient for absolute extremality.

Theorem 3. With F giuen as aboue, let 1':7:-t be a Teichmiiller mapping
with associated quadratic dffirential e(fr::Bprr., and let the follotring conditions be

fuffiled:

a) D-F(D-T) has area-measure zero,

b) the components of D-F(D-T) are subarc,c of aertica! trajectories of q or
connected subsets of the uertical critical graph of q,

c) at most denumerably many components of D-F(D-T) are points. Then F
is uniquely absolutely extremal.

1) In the set of positive measure which is rnapped by F onto F(D-T)|\R+, the maximal di-
latation is less than Ko.
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This theorem is a consequence of the Main Inequality of Reich and Strebel [7],
stated in the following form:

Main Inequality. Let e€Or and L be a compact set in D, such that D-L is a
domainandeachcomponent tLofLisasubarcofauerticaltrajectoryofEoraconnected
subset of the aertical critical graph of E. Furthermore, suppose that the set of all uerti-
cal trajectories of E in D-Lwhichmeet L has area-measure zero. Then a quasiconfor-

mal mapping g with complex dilatation x which maps D - L into D, öD onto itself and

keeps the points of I pointwise fixed fulfills the inequality

(3) nEri =$,aW-dxdy

Proof. We consider non-critical vertical trajectories ll of E.If B is contained in
D-L, we have the length-inequality (see [9])

(4)

As in the proof of the Main Inequality in [7], we consider each vertical strip ,S of
<p in D. By our assumption all vertical trajectories § of E up to a set of area-measure
zero fulfill the length-inequality (4). Therefore the length-area method applied to
each strip and then summed up yields

V_{tE 
u)i rt x d t)z =,,!!,,tE Q)t d x ct v 

ll:tE 
(4t

Using g(D-L)c,D and the fact that L necessafily
(3). (The intersection of L with each strip rnust have

'Wdxdy

has area-measure zeto qives

(p-area zeto!).

Proof of Theorem 3

Let G be a mapping in QF. We apply inequality (3) for E:G o p-r:G of,
where .l- is replaced by F'(f . The mapping G of is defined in F(D -T) and keeps

F(l-) pointwise fixed, and L:D-F(D-T). By assumption c), there are at most
denumerably many vertical trajectories B which meet components of Z which are
points, so these trajectories cover only a set of area-measure zero. L has area-measure

zero by assumption a), so the vertical trajectories f which meet components of .L
which are vertical subarcs of positive length can only cover a horizontal length-
measure zero in each strip. Therefore these trajectories cover only a set of area-meas-
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ure zero too, and we may apply the Main Inequality:

l, -- E l'
(s) llEll = {JwtffiLEtE, F,Gtctxdv.

l,*x(z)Wffi\ffii,p@11
ffii)IEG)lHere Elq, t, Gl(z) -

and w -f (z), %t:G wlG* , fr : F6l F* ,

and get

| - lrr(,r)12 '

x-frlf,. Then we use x-k@llEl and fi=Jf[G]

KlFl = KlGl,
i.e., F is absolutely extremal.

By the procedure of [6] one concludes from (5) that if KlGl:t11pL then

%t:ft a.e. in D-7,

and therefore G of is conformal.
Because Go/ keeps F(.1-) pointwise fixed, we conclude at once: If l- does not

only consist of single points, then G o/ is the identity. So then F is uniquely abso-
lutely extremal. We can see this also in the general case where I- contains at least three
points.s) We assume F and G to be absolutely extremal mappings and necessarily

f:F-t and 9:6-r to be Teichmiiller mappings with quadratic differentials E and
rlt in 0. So the conformal mapping G o/ consists of two Teichmiiller mappings, and
there is a quadratic differential E, of finite norm in D-7, such that

%L:k-k Qtt
ole-J'

We consider a component Ä of D-I'(D-T), which necessarily is a subarc of
averticaltrajectoryoraconnectedsubsetoftheverticalgraphofE.Wemap D\/(,,{)
conformally onto an annulus (without loss of generality a punctured disk can be
excluded), and in the conformal image of D- 7 we get an induced quadratic dif-
ferential @0. Along one boundary circle of this annulus @o is real and the zeroes of
E and the g-length of the subarcs of ,,{ determine the zeroes of @o on this circle. But
the same can be done with the corresponding component of D-G(D-T) and the
quadratic differentials r! and go. Therefore, corresponding slits of D\F(D-Z)
and D - G (D - 7) have the same length in the metric of the quadratic differentials
and the same configuration. Hence the conformal mapping G of can be extended
homeomorphically in all of D. Therefore it must be the identity.

2) We exclude the conformal case where non-uniqueness may occur.
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6. An applicationt H-MaxH,

We consider the special case, where I : öD, f : {wllrl =, } for some r, 0 = r < l,
and the boundary homeomorphism of äD onto itself is called h. The local dilatations
of h are denoted by He .If Max6.6p .tI, is finite, it is known that å is quasisymmetric,
i.e. quasiconformally extendable in D [1]. Then the dilatation H of h is defined in [8]
by

H : inf {r<tcllc: U@D)-qc-- U'(0D), Glap: h}

where the inf is taken over all such mappings G and all open neighborhoods U(äD)
and U'(6D) of äD in D. the class of all extensions of å in D- 7 which map D-T
into D is denoted by Q,, in view of the dependence on r. For the same reason we call
the absolutely extremal mapping in this class ,f, and its maximal dilatation K,.
Evidently we then haye H:lirn,*1 1(,.

The function r*K, is strictly monotonic decreasing as long as lK,>Max qeao He .

This can be seen by the preceding result: For each number r, 0<r<1, where
K,=Max Hs, F, is a uniquely determined Teichmiiller mapping, and the associated
quadratic differential E, of its inverse mapping .f,:F,' is defined in all of D. More-
over D\F,(D,) @,:{wir<lwl=1}) consists of a subarc of a vertical trajectory
of q, or of a connected subset of the vertical critical graph of E,.

We remark that the Main Inequality (5) holds for F:F',, E:E, and G, if G
is an extension of h and if it is defined in a domain which contains D,. We prove the

Theorem 4. The dilatation H of a quasisymmetric mapping lt: öD-öD is
eEtal to Maxluxp Hq.

Proof. We may assume K,=Max(<aoHq,0=r-.1. Let E,and ry'. denote the
quadratic differentials associated with the Teichmiiller mapping f": F,(D,),D,,
which are normalised by

T'hen we have Iocally

J- - V;' s Ax,o Q,,

wlrere Q,(r)- I1i g,p\dr, Y,Q,,-)- f /r1t,qvt1 aw and Å*,((+ i,?')- K,:-riq.
For every measurable subset Ec. F,(D,) we have

We extend the functions ry'" in I by putting

,lr,(w):0 w(D-D,.

Then ry', are measurable functions in D with finite Zr-norm llrl,"ii:.[ [ ol,tr,et)ldud"^,
i.e. r!,(L1(D). If r*1, then r!, tend to zero locally uniformly in D and their

t, ll,l'Ålo, : f I lt,@)ldudu - K, (ru -_
D,

K, ff lE,{r)lctxcty : 
{,{l,l,,tn)l 

ctudu.

u { iu:).

(6)
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Z1-norms ll{)l:K, are bounded (K,*Hl), hence the assumptions of Lemma 4.1

of [] are fulfilled.
Let 1 denote an open interval on äD with endpoints wy w2 and atg wl<atg w '<.

argwz for w€L We then v1vi1s 1:frfr, and define

S1:: {w(Dlarg wr < argw -< argwr\.

For a given sequence r,*1 we Put

0U)'- ;e ,[f 1,,1,,^(w)i dudu
sr

0(():- inf {0(I)l(e t, I an open interval on öD}

for every ((öD.
By Lemma 4.1 of [1] we can choose for given numbers e >0, />0 a subdivison

{rr, ..., wly} of öD and a seeuence ro*1 such that

I{

2 o(w,) -

and finally

(7)

E and hq.- t 1r', | * !.

(Here lw;-14i denotes the arc length of tu;-tw:.1

We apply the method for the proof of Theorem 4.1 in [1]. Let H'r-Max(e a» Hc.

There is an />-0 such that the restriction of h to an arbitrary interval on äD with
length less than I can be extended }I'-quasiconformally in a nei-ehbourhood in D of
this interval. We apply Lemma 4.1 of [1] on e and / and Corollary 4.1 of [1] on e, /
and the sequence tr.. Therefore we can cut off some nei-ehborhoods Gr(i<N)
of subintervals in r';1w; by Jordan arcs ),i, such that h can be extended g'-quasi-

conformally in the G;, and for O":D-l)!=., G; we have

itr $ l'in,,(w)l ctuctu:5'

The construction in [] yields a quasiconformal extension h" of h in {1rri= 1} which is

ä'-quasiconformal in [J;G, and å-quasiconformal in a neighborhood U(öD) of
äD, where ä does not depend on e (only on Max,n;, ä,!).

We apply the Main Inequality (5) for F:F,, rp-E, and G:h". Then

l, -* !-l't'lEll I-1-Ea-: 4'
and, ElE,, F,, h"\(z)< Do"(f,(r)), where D6. denotes the dilatation of h".If r is close

to one, the image ofl. ii contained in U$»1. Hence Do" is boundedby fr, and in
Gi:-f;L(Gt) we have Dn.=H'. Therefore, (5) yields

Å. :s H' ff iq,t )l clxdv,+ r{ ff lrp,(r)l dxcll;.
u fl=, Gl ,- U,{, GI
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Because J;(F,(D,)-U!=re;):»,-UI=.G,, we have by (6) and the fact that
D - F,(D) has measure zero,

K, II lq,(z)ldxdy : II filt,(w)lctudu.
D-Uy=§i D.-U jo=rc,

since D,-[-l!=rGicD" and ! ! uy=,e')<o,k)ldxdy=llE,ll :1, it follows that

u, = r,*{, {[ lv,tu)larar.

Putting r-r, and letting r, tend to one we get because of (7)

H=H'+frHe.

Since E does not depend on e, we conclude that H=H'. H' was arbitrarily close to
MaxgET2 116, and so

' = Yf§u''
which finishes the proof.

I wish to express my gratitude to Edgar Reich and Kurt Strebel for offering the
opportunities for many inspiring discussions.
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