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FUNCTIONS OF UNIFORMLY BOUNDED
CHARACTERISTIC

SHINJI YAMASHITA

1. Introduction

We shall introduce a new notion of functions of uniformly bounded characteris-
tic in the disk in terms of the Shimizu-Ahlfors characteristic function.

Let fbe a function meromorphic in the disk D={|z]<1} in the complex plane
C={z|<=}. Let f*=|fl(1+|/]), O<r=1, and z=x-tiy. Set

SC./) = fm) [J r#@)raxdy.

zl<r
The Shimizu-Ahlfors characteristic function of f;

r

T, )= [ 118G f)de,
0
is a non-decreasing function of r, 0<r<1, so that
T(, f) = i T(, f) = o=,
exists.
Let BC be the family of f meromorphic in D with T(1, f)<<-. Then, g meromor-

phic in D is of bounded (Nevanlinna) characteristic in D if and only if g¢ BC. Letting
w€D as a parameter we set

Pw(2) = (z+wW)/(1+Wwz), zeD.

The inverse map of ¢, is then ¢_,,. We set f,,(2)=f(¢,,(2)), z€D. If fcBC, then
f,€BC for all weD.

Definition. 4 meromorphic function f in D is said to be of uniformly bounded
characteristic in D if and only if

sup T(1, f,) <e-.
weD

Denote by UBC the family of meromorphic functions in D of uniformly bounded
characteristic in D. By UBC, we mean the family of functions Jf meromorphic in D
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such that
lim, 7(1, ,) = 0.

Then UBCcBC. However, the inclusion formula UBC,cUBC is never ob-
vious and needs a proof (Lemma 2.1.).

In Section 2 we propose a criterion (Theorem 2.2) for a meromorphic f'to belong
to UBC or UBC, in terms of the Green function of D.

In Section 3 we show that UBC is a subfamily of the family N of meromorphic
functions normal in D in the sense of O. Lehto and K. 1. Virtanen [5]; an analogue:
UBC,cN,, is also considered (Theorem 3.1). Use is made of J. Dufresnoy’s lemma
[1, p. 218], from which a criterion for fto be of N or of N, is obtained in terms of the
spherical areas of the Riemannian images of the non-Euclidean disks (Lemma 3.2).
We believe that this criterion itself is novel.

In Section 4 we consider Blaschke products

a,—z

b(z)=z’°]]|i”l-

a, l—a,z

(k = 0 integer; > (1—|a,|) <oo).

If f€UBC is not identically zero, then f, as a member of BC, has the decomposition
b,g/b,, where g€BC is pole- and zero-free, and b, and b, are Blaschke products
without common zeros. We observe that g€ UBC. One of the essential differences of
UBC from BC is that UBC is not closed for summation and multiplication. This is
a consequence of Theorem 4.2. For the proof, Blaschke products play fundamental
roles.

In Section 5 holomorphic functions fin D are considered. A criterion for f€UBC
or feUBC, is obtained in terms of the harmonic majorants (Theorem 5.1). In Theo-
rem 5.2 we claim that if the image f(D) is contained in a domain in C of a certain
type, then feUBC.

If £ is holomorphic and bounded in D, then f€¢UBC. In Section 6 we show that
if a meromorphic f satisfies the condition

[f 1@y <=

then fcUBC. Thus, if fis “bounded” in a natural sense, then f€UBC.

In the final section, Section 7, we consider BMOA and VMOA functions. These
are, roughly speaking, holomorphic functions in D whose boundary values are of
bounded or vanishing mean oscillation on the circle {|z|=1} in the sense of F.
John and L. Nirenberg [4] or of D. Sarason [7], respectively. The main result is that
BMOACUBC and VMOACUBC,.

To extend the notion of UBC and UBC, (as well as BMOA and VMOA) to
Riemann surfaces R is possible. Some arguments in D are also available on R. We
hope we can publish a systematic study of UBC and UBC, on R in the near future.
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2. Criteria

First we show, as was promised in Section 1, that UBC,c UBC; for the proof,
use is made of

Theorem 2.1. If f€BC, then for each o,0<p<I,
sup T'(1, f,) <ee.

w|<g

Proof. Set for wéD and for 1,0<Ai<]1,
A(w, 1) = {z€D; |w—z|/[l—Wz| < A};

this is the non-Euclidean disk of the non-Euclidean center w and the non-Euclidean
radius  (1/2) log [(1+24)/(1—-2)]. The change of variable {=¢-+in=g,(z) then
yields that

2.1) SW f) = (1/n>l [ fl S (2)dxdy = (/. (f {) F*(rdédy;

hereafter, (f,)*=£F and (¢,) =9/, for short.
Fix ¢,0<g=<I1, and then let w satisfy |w|<o. For ry=1/2<r<1, we shall
estimate upwards the characteristic function

T(r, ) = T(ros f)+ [ 1728, f,)dt = a+ B
7o
by a constant independent of r and w.
For the a-part we note that
2l =10 = o, (] = (Wl +12D/A+|2w]) < Ry = (ro+ @)/ +740).

Then, for |z]<r,,

@ =T (@w(@)ow(@)] = [max fFO]1—0r) =K <o

[LI=R,

by the continuity of f*. Consequently,
@ =K for |z]<t=< Tos
so that the inequality S(z,f,)=K22 yields
2.2) 2= K?8.
To estimate f we notice that, for 0<t<1,
Aw, ) = {lzl < u}, u=(t+0)/(1+ ).

By (2.1), together with R=(r+0)/(1+r0)>R,, we obtain

r R
p= [175@w fde= [ Clu QuSw, fdu,
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where

u(l—g®)  _ B
—od—gw = AR~0

because o<=R,<u<1 for ry<t<r. Therefore

B =2T(R, /)/(Ry—0) = 2T (1, /)I(R,—0),
which, together with (2.2), completes the proof.

C(u, 0) =

Lemma 2.1. UBC,cUBC.

Proof. For fcUBC, thereexists §, 0<d=<1, suchthat T'(1, f,)<lin {6<|w|<1}.
Then f¢BC because f is the composed function f=f,c¢_, for ¢=(1 +0)/2
with f,€BC. It now follows from Theorem 2.1 that

K= sup T, fw) <o
w|<g

whence
sup T(1, f,,) = K+1.
weD

Remark. Theorem 2.1 also yields:
For f meromorphic in D to be of UBC it is necessary and sufficient that

lilmlsup TA, f,) <-<e.
w|->1
The Green function of D with pole at weD is given by
G(z, w) = log [(1-#2)/(z—w)| =—log |p_,,(2)], zED.
We now propose the main result in the present section.

Theorem 2.2. Let f be meromorphic in D. Then the following propositions hold.
(1) feUBC if and only if

(2.3) sup { [ £*(@PG(z, wydxdy <.
(X) f€UBC, if and only if
eX) bm, [[ 727G (z wydxdy = 0.

For the proof we need

Lemma 2.2. For f meromorphic in D and for O<r=1 we have

@.5) T(r, /)= Wn) [[ 1¥(2)*1og (r/|z])dxdy.

|z|<r

Proof. For 0<r=1, we let X, be the characteristic function of the disk {lzl<r},
namely, X.(z)=1 for |z]<r, X,(z2)=0 for r=lz|<l.
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It suffices to prove (2.5) for O<r<1. For, if (2.5) is true for O<r<1, then
T(r, ) = (U/x) [[ f#(2)* X,(2) log (v/|z]) dxdy.
D

Since 0=X,(2) log (r/|z]) ~log (1/|z]) as r—1 at each z€D, (2.5) for r=1 follows.
Now, for 0<r<I1,

[ X @d=togllz) it |z <r,

=0 if r=lzl<1,
so that (2.5) is a consequence of

T /)= W) [ f*GF [ [ X, @) de] dxdy.

Proof of Theorem 2.2. Since f,f=(f* op,)|p,|, it follows from Lemma 2.2,
together with the change of variable {=¢,(z), that

2.6) T(, £,) = (1/x) 4 [ £*©*1og (1o -, (O)]) dédn.

This completes the proof of Theorem 2.2.

Remark. For f€BC, the function T(1,f,) of weD is well defined. The iden-
tity (2.6) shows that T'(1, £,,) is lower semicontinuous with respect to weD. Actually,
T(1, f,) is a Green’s potential in D of the measure in the differential form

(/m) f* ()2 dé dn.

3. Normal meromorphic functions

Let N be the family of meromorphic functions 7 in D such that
sup (1 —[z])f#(2) <,
zeD
and let N, be the family of meromorphic functions fin D such that
xll;gll 1=z f*(z) = 0.

Each fEN is normal in D in the sense of Lehto and Virtanen [5], and vice versa. By
the continuity of /¥, the inclusion formula N,CN is easily established.

Theorem 3.1. The following inclusion formulae hold:
UBCc N and UBC, C Ng;
both are shown to be sharp.

We begin with Dufresnoy’s result.
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Lemma 3.1 [1, Lemma, p. 218] (See [3, Theorem 6.1, p. 152].). Suppose that f
is meromorphic in D and that there exists r, 0<r<l1, such that S(r,f)<1. Then

FHO? = S Hr =S, HIT

Note that our Riemann sphere is of radius 1/2, touching C from above at 0,
while Dufresnoy considered the sphere of radius 1 bisected by C.

Lemma 3.2. Let f be meromorphic in D. Then the following propositions hold.
() fEN if and only if there exists r,0<r<1, such that

(3.1) sup S(r, £,) = (Imysup [ f#(2)Pdxdy < 1.
weD weD

A(w,r)

(I1) feN, if and only if there exists r, O<r<1, such that

. . e
(3.2) lim, S(, f"’)_l}vliqlll, (f [ £#(2)*dxdy = 0.

w,r)

In the proof of Theorem 3.1, the ““if” parts of (I) and (II) are needed. Lemma 3.2
(I) gives a new criterion for f to be normal in D.

There exist a nonnormal holomorphic function fand »=0 for which S(r, f,,)<1
for each weD; see [12, Remark, p. 226]. This function f must satisfy

sup S(r, f,) = 1.
webD
Proof of Lemma 3.2. For the proof of (I) we first assume that /€N with
(1—|z])f*(z) = K= o for all zeD.
Then, for each weD,
(=125 @) = (1=low @) [ (ou() =K, z€D.
Therefore, for a small r, O<r<I1, with K%?/(1—r*)<l,
aS(r, fu) = [[fu@) dxdy = 2K® [ o(1—0) "do = 7K*r|(1-17),
lzl<r 0
whence (3.1) follows. Conversely, let the supremum in (3.1) be S. Then, by Lemma
3.1, together with x/(1—x), 7 as 0=x71,
(=)W = £2 0" = 1 sa=9)"

for all weD, whence feEN.
To prove (I1) we first suppose that féN,. Then, for each ¢>0, there exists
6, 0<dé<1, such that

3.3) <zl =1= (1-|z)f*(2) < &~
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Choose r such that O<r<¢J and r?/(1—r2)<1. Then

3.9 0= (F+9)/(1+1rd) < |wl<1=d(w,r)c {§ <|z| <1}
because
0 < (wl—nr)/(L—rw]) < |z| for z€A(w,r).

The formula (2.1), together with (3.3) and (3.4), yields that
wS(r, f) = [[ fHEPdxdy = enr®f(1—r?);

A(w,r)
in fact, the non-Euclidean area of A(w,r) is mr2/(1—r%). Therefore,
S, fu) <e for (r+d)/(1+rd) <|w| < 1.

Conversely, suppose that (3.2) holds. Then, for each £>0, there exists §, 0<d<1,
such that
Sr.fw)<e for d<|w <1,

where O<g<1 and or 2(1—g) '<e¢/2. By Lemma 3.1,
A=) = f©° <& for 6= |w <1,
which completes the proof.
Remark. The condition (3.1) can be replaced by
li?»}xilip S(r, f,) < 1.
Proof of Theorem 3.1. Suppose that f¢ UBC. Then (2.3) of Theorem 2.2 holds;
we denote by 4 the supremum in (2.3). Choose r, 0<r<1, such that
3.5) Allzlog (1/r)] < 1.
Since, for each wé€D, the formula (2.1) yields that
A= [ f#(2°G(z, wydxdy = nlog (1) S(r, f,),

4Gw;n)
it follows from Lemma 3.2, (I), together with (3.5), that f¢N. Therefore UBCCN.
The proof of UBC,CN, is similar.
To prove the sharpness it suffices to observe the existence of fEN,—BC. Then
JEN,—UBC, and feN—-UBC. Consider the gap series

f(Z) = kgi ag ana ZED,
where the sequence {n} of positive integers satisfies ./, =¢g=1 for all k=1.
Suppose that

Z ]aki?‘ = and I},im Iakl = O.
= - oo

!
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Then it is known (see [10, Corollary, p. 34]) that
lim (1- |19 (2)] =0

and f does not have finite radial limit a.e. on {|z]=1}. Therefore, f€N,, yet f¢BC.

4. Blaschke products

First of all we prove

Lemma 4.1. Suppose that fcUBC and that g is a rational function. Then
gofeUBC.

Proof. There exists K=0 such that
g¥(z) = K/(1+]z|») for all zeC.
Since (gof),=gof,, it follows that

(/)% = (gof)* =(e” offi] = KA

T(1, (gof),) = K*T (1, ),

which shows that gofcUBC.

As we shall observe later in Theorem 4.2, UBC is not closed for summation and
multiplication. The family UBC resembles N at this point. However, a decisive dif-
ference between UBC and N is that, each non-zero f¢UBC, as a member of BC,
admits the decomposition

“4.1) S = big/b,,

where g€BC has neither pole nor zero in D, and b, (b,, respectively) is the Blaschke
product whose zeros are precisely the zeros (poles, respectively) of £, the multiplicity
being counted. For simplicity we shall call b, the polar Blaschke product of f. If f
is pole-free, then b,=1.

We shall show that g of (4.1) is a member of UBC if f€UBC as a corollary of

Consequently,

Theorem 4.1. Let feUBC, and let b be the polar Blaschke product of f. Then
bfe UBC.

For the proof of Theorem 4.1, we first deduce the formula (4.4) in Lemma 4.2
by making use of a precise description of the first step in the Nevanlinna theory. The
adjective “precise” in the preceding sentence means that there is no Landau’s nota-
tion O(1).

Let

I(r, /) = (1/47) [ log (1+|f(re")P) dt,
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and let n(r, f) (n*(r,f)) be the number of the poles of fin the disk {|z<r} (on the
circle {|z|=r}), the multiplicity being counted, O<r<1. Delete from {z|<r}
the closed disks, with poles on the closed disk {|z|=r} as centers, and with common
small radii ¢>0, apply the Green formula to log (1+4]f]? in the resulting domain,
and, finally, let &~0. Then, for O<r<I1, the identity A log (14|f]?)=4f*"
(except for poles of f) yields

“4.2) rd/dnI(r, f) = S, f)—n(r, ))—1/2)n* @, f).
Arrange r=0 with »*(r,f)=0 as
O<rp<..<rj<rjp1<..=<L

For each R,ry=R<1, there is a j such that r;=R<r;,. Divide both sides of

(4.2) by r, and integrate from ¢, O<e<ry, to R, to obtain

R R
4.3) IR, f)—1(e ) = [ r'S(r, fHdr— J rinG, Hdr,

where
R ry j r, R
J=l 20
& € r,_1 r;
Lemma 4.2. Let b be the polar Blaschke product of feBC. Then,

4.4 T(1, f) = I(L, £)—1/2)log [|b(0)]*+Lim |b(2)f(2)I*],
where

14, /) = lim 1 f).

Proof. Suppose that 0 is a pole of order k=0. Then

o
/ r~tn(r, f)dr = k (logry—log &)

and, in case k=0,

I(e, /) > (1/2) log (14| £(0)]?),
as ¢—~0, while in case k=0,
I(e,f) ~ —kloge+log4

as ¢—0, where
A = lim |2/,

Therefore, ¢-0, and then R—1 in (4.3) yield

T(1, ) = I(1, f)—(1/2) log (1+]f(0)[*) —log b (0)]
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if k=0, while if k=0, then
T(1, /) = I(1, f)~log 4~ log [lim |z 2)]]
= I1(1, f)~log[lim [b(2) /(2)[].

which completes the proof.
As an immediate consequence of (4.4) in Lemma 4.2 we obtain

Lemma 4.3. If f is holomorphic and bounded, |f|=K, in D, then
T, f) =10, 1) =/ log(1+K?)  for all weD.
Therefore feUBC.

Lemma 4.4. Let b be the polar Blaschke product of feBC. Then for each
constant o, |u]=1,

(4.5) T(1, abf) = T(, £)+(1/2) log 2.
Proof. By (4.4) in Lemma 4.2, applied to f with g=bf, we obtain
T(1, /) = I(1, f)—(1/2) log (Ib(0)]*+[g ()] 2,
and it is apparent that (ag)*=g®. Therefore,
T(1,abf) = T(1, g) = I(1, 9)—(1/2) log (1 + g(0)?)
= I(1, B+ I(1, £)—(1/2) log (1+|g(0)[2) = (1/2) log 2+ T(1, £)+(1/2) log 4,

where
A = (IbO)+[g©)/(1+]gO)) = 1.

We thus obtain (4.5).

Proof of Theorem 4.1. Let b" be the polar Blaschke product of ... Then [b*|=
|b,] in D. Actually, defining

V(z,a) = |z—adl/|l —az|, zeD,

for acD, one obtains

lP(Z, (p—w(a)) = ',b((Pw(Z), (l).

Since acD is a pole of order k=1 of fif and only if ¢_,,(a)is a pole of order k=1
of f,,, it follows from the expression

b = [0 a)
that

B @ = (2 0-u(@) = boo,(2)
for all z€D.
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Now, there is a constant «,|a|=1, such that b,=ab". Set g=bf. Then
g,=b, f.,=ab"f,. It follows from (4.5) in Lemma 4.4, applied to f,,, that

T, g,) =T, f)+(1/2)log2 for all weD.
Consequently, g€ UBC.
Corollary 4.1. If feUBC with (4.1), then gcUBC. The converse is false.
Proof. By Theorem 4.1, b,g=b,fcUBC. By Lemma 4.1,
h=1/(b,g) = (1/2)/b,€ UBC.

Again, by Theorem 4.1, 1/g=b,hc UBC, whence, by Lemma 4.1 once more, g€ UBC.
To prove that the converse is false we remember that there exist Blaschke products
b, and b, with no common zero in D such that the quotient b,/b, is not normal in D;
see, for example, [11] and [13]. Therefore, g=1€¢UBC, yet f=b,g/b,¢ UBC be-
cause f¢N.

Finally in this section we prove

Theorem 4.2.
(1) There exist feUBC and gc€UBC such that fgé¢N.
(I1) There exist feUBC and gc€UBC such that f+g¢N.

Combined with the inclusion formula UBCcN, Theorem 4.2 asserts that UBC
is not closed for the product and the sum.

Lemma 4.5. Let feUBC, and let g be a holomorphic function bounded from
below and above in D:
O<=m=|g|=M <o
Then fgc UBC.

Proof. By Lemma 4.3, gcUBC. Set
K= (1+M?/min (1, m?.

Then,
L4 fgl2 = K1 (141D (1+ g,
whence
@6 (foyrr = MERAI LN po pwn e gn gy

KR PrA g T
On the other hand, the Cauchy inequality, together with (2.1), yields

[A [[17()e* (Ddxdy] = 22S(r, £,)S(r, 2,)
(w7}

for all wéD and all r, O0<r<1. Consequently, by (2.1), together with (4,6), we

obtain
nS(r, (f2),) = nK*S(r, £)+S(r, g)+2[S(r, £,)S(, 2,01V}

= 2nK3[S(r, £,)+S(r, g
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Therefore

T(1, (fo)w) = 2K2T(, £,)+T(1, )],
whence fgc UBC.

Proof of Theorem 4.2. Again we consider the Blaschke products b; and b,
such that by/b, is not normal. To prove (I), set f=b, and g=1/b,. Then fc¢UBC
and gcUBC, yet fg¢N. To prove (II) we set f=2/b, and g=(b,—2)/b,. Then
JEUBC. Since 1<|b;—2]<3 and 1/b,c¢UBC, it follows from Lemma 4.5 that
g€ UBC. However, f+g=b,/b,¢N.

5. Harmonic majorant

Let u# —c be a subharmonic function in a domain 2cC. We call / a har-
monic majorant of # in 2 if h is harmonic and u=h in 2. If u has a harmonic majo-
rant in &, then u has the least harmonic majorant #” in &, that is, " is a harmonic
majorant of uin @ and u” =h for each harmonic majorant 4 of  in 9. In the special
case 9=D, u is given by the limiting function

u” (2) = lim (1/2r) f u(re“) 'f dt, zeD.

Theorem 5.1. Let f be holomorphic in D. Then the following criteria hold for
the subharmonic function F=(1/2)log (1+]|f]?) in D.
(@) feUBC if and only if
sup (F~(w)— F(w)) <-oe.

(II) feUBC, if and only if
nlvi;r-I}1 (F~(w)—F(w)) = 0.
Lemma 5.1. Suppose that a subharmonic function u in D has a harmonic majo-
rant in D. Then (uo¢,) =u" oo, for each weD.

Proof. Since u” o¢,, is a harmonic majorant of uo¢q, for each weD, it
follows that

(5.1 (uop,)” =uog,.
Apply (5.1) to v=uo¢e, and ¢_, instead of u and ¢,,, respectively. Then

= (UOQ—W)A = UA OP—w>
whence

u o, =v" =(ogp,)".

Combining this with (5.1) we have the equality.
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Proof of Theorem 5.1. (1) There exists K=0 for f€e UBC such that K=T(l, f,,)
for all weéD. On the other hand, by Lemma 5.1,

I(1, f,) = (Fo,) (0) = F" 0¢,(0) = F"(w),
whence

K=TQ,f,) =11, f,)—1/2) log(1+]£,(0)) = F~ (w)—F(w) for all weD.
The converse is also true, so that (I) is established. The proof of (II) is similar.

Remarks. (a) We may replace F in the UBC criterion (I) by log* |f|=
max (log | f|, 0) because

log* |f] = F=logt |f|+(1/2)log 2.
(b) Suppose that f€BC is pole-free. Since F~ exists and since the identity
T{, f,) = F (w)—F(w), weD,
is also true for the present f,
F(w)=F W)—T(, f,), weD,

represents the Riesz decomposition of the subharmonic function F which has a har-
monic majorant in D. The potential 7'(1, f,,) is continuous in the present case because
the same is true of F and F~. The problem is that T(1, £,) is or is not continuous de-
pending on whether f admits poles in D. If T(1, £,,) is proved to be continuous in D
for each meromorphic f¢BC, then Theorem 2.1 is immediate.

A subdomain 2 of C is called a UBC domain if each holomorphic function f
in D which assumes only the values in & is of UBC. We next consider a criterion for
a holomorphic fin D to be of UBC.

Theorem 5.2. Suppose that the function H(z)=(1/2)log (1+|z|*) has a har-
monic majorant in 9 C, and suppose that H —H is bounded in 9. Then 9 is a
UBC domain. The converse is true under the condition that the universal covering sur-
face of 9 is conformally equivalent to D.

Proof. Let F=(1/2)log (1+|f]?) for a holomorphic f: D—%2. The first half
follows from F=H of, F" =H  of and Theorem 5.1 (I). To prove the converse we let
p be the projection of the universal covering surface 2% of & onto &, and let g be a
conformal homeomorphism from D onto 2. Then f=pogcUBC. Since F=
(1/2) log (1+]f]?) and F~ both are automorphic with respect to the covering trans-
formations, namely, automorphic with respect to a group of conformal homeomor-
phisms from D onto D, H (z)=F " (f(z)) is well-defined in 2. Consequently,

F"—F=K in D by Theorem 5.1 (I)
implies
H —H=K in 9.
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6. Riemannian image of finite spherical area

In this short section we prove

Theorem 6.1. Suppose that a meromorphic function f in D satisfies
fff# (2)2dxdy < o=.
D

Then feUBCNN,.
See the remark at the end of the next section.
Proof of Theorem 6.1. For the proof of fEN, we set

A= [[f*(2)dxdy,
D
and we fix r, O0<r<l, arbitrarily. Since
lim [f 7 Graviy =0
d<|z|<1

it follows that, for each &=0, there exists §, 0<o<1, such that

[f 7 (22dxdy < ze.

d<|z|<1
Since
r<)r+9/d+or) <w<1=>dw,r)c {0 < iz <1},

it follows that

nS( f) = [[F*@rddy < e,

A7)

or S(r,f,)<e. By Lemma 3.2 (II), f is a member of Ni.
For the proof of f€UBC, we first note that

(A=1zP)f¥2) = (1=1pu(2P) f*(pu(2) = K
for allzand win D, because f¢N. Fix R,0<R<]1, andthenlet R<r<1. Wehave
then .

T(r, f) = TR, f)+ [171S@ f)de = 2+ p.

R
By (2.5) in Lemma 2.2,
(6.1)
R
o = J [ 1 (22 log (R]|z)dxdy = 2nK* [ o(1— 0 2log (R/@)de = Cy(R) <=
R 0

lz] <
On the other hand, since

nt~1S(, f,) = R4 for R<t<r,
it follows that
7 =(1—R)R'4 = Cy(R) <o,
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which, together with (6.1), yields that
m sup T, f,) = C,(R)+C,(R).
we

This completes the proof of Theorem 6.1.
Remark. There exists a holomorphic function f in D such that f¢ N, yet
_/:f If/(2)Pdxdy <o forall p, 0<p<2;
D

see [9]. Therefore f¢UBC, yet
(6.2) j f f#(2)?dxdy <o forall p, 0<p=<2.
D

In other words, condition (6.2) for meromorphic f does not necessarily assure that
feUBC.

7. BMOA and VMOA

Let |J] be the linear Lebesgue measure of a subarc J of the circle I'={|z|]=1}.
For each f of complex L'(I') we set

J(f) = /1) Jf fled,

called the mean of fon J. Then f'is said to have bounded mean oscillation on I', in
notation, f€BMO(I), if and only if the mean oscillation J(|f—/(f)!) of f on J,
the mean of | f—J(f)| onJ, remains bounded as J ranges over all subarcs of I
Furthermore, f is said to have vanishing mean oscillation on I', in notation,
fEVMO(I), if and only if f€BMO(I') and for each =0 there exists d=0 such
that
<o=J(/~IJ(N) =<e

For the properties of BMO(I') and VMO(TI'), see [6] and [8].

Let H” be the Hardy class consisting of f holomorphic in D such that | f}” has
a harmonic majorant in D, where O<p<<. Each f¢H” has a boundary value
f(eMeC, being the angular limit, at a.e. point e*cI’ and f(e") is of L?(I'). For
f€H?, the norm | f],=0 is defined by

1715 = (170 = (1)27) [ |f(eM)irdr.

By definition ([8, p. 90]; see also [2, Theorem 3.1, p. 34]),

BMOA = {feH'; f(e")¢ BMO(I)},

VMOA = {feH'; f(e")e VMO(T)}.
It is known (see [8, Theorem, p. 36]) that if fEBMOA, then for each p, 1=p<eco,
(7.1) sup (1~ ()7)"() = .
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An immediate consequence of (7.1) is that f¢ H? for all p, because, for p=1,

(7.2) (1" = 271 =/ O)7)" + 271 f(O)7,
where (| f—f(0)]")" exists by (7.1), namely,

(If=fOF)"(0) <<
Conversely, if fcH! and if (7.1) is valid for a certain p, 1=p<eo, then

JfEBMOA.
Therefore, a holomorphic function fin D is of BMOA if and only if

(7.3) Sup [Lhe =/ ()l <.
Actually, setting g=f—f(w) and considering Lemma 5.1, one calculates that
1A=z = (Ig 29, )"(0) = (g2 9,)"(0)
= (g7 09,0 = (g ) = (I/=FW)[*)"(w).
A straightforward modification of the proof of [8, Theorem, p. 36] yields the

VMOA version:
If f€VMOA, then for each p, 1=p<-oo,

(7.4) tim_ (|f—f(w)[?)"(w) = 0.

[w]~1
Conversely, if f€BMOA and (7.4) for a certain p, 1=p<eo, holds, then feVMOA.
However, it must be emphasized that the condition f€BMOA in the preceding
sentence can be dropped. Namely, if a holomorphic f in D satisfies (7.4) for a p,
l=p=<<, then f€VMOA. To ascertain this it suffices to show that fEBMOA
under the condition (7.4). First, there exists 6, 0<d=<1, such that

(7.5) o< wl<1=(/~WPF)"(w) < 1.
On replacing 0 in (7.2) by r,=(1+0)/2, we observe that fcH”. Now, for w,
lwl §’”0,
(If=FWP) W) = 221 f7)" (W) +27 2| f(w) 2.

The right-hand side is apparently bounded for w|=r,, which, together with (7.5),
shows that (7.1) is valid. Consequently, feBMOA.

By the observation in the preceding paragraph we can now conclude that a holo-
morphic function f'in D is of VMOA if and only if

(7.6) lim [l f,—=f(W)ll = 0,

w1

a VMOA counterpart of (7.3).
We propose

Theorem 7.1. The inclusion formulae

BMOA < UBC and VMOA c UBC,
hold.
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For the proof we first consider the holomorphic analogue T*(r, ) of the Shimi-
zu-Ahlfors characteristic function basing on the identity

(7.7) A(S]P) = 4171

for £ holomorphic in D instead of A log (1+|f[?)=4f*"
For f holomorphic in D we set

M(r, f) = [(1/27'5) 0'/2.” [f reit)lde]I/Z, 0<r=1,

where M(1,f)=lim,, M(r,f). If f€H? then |[fll,=M(l,f). Since (7.7) holds,
the Green formula yields

r(@d/dn)[M(r, f)] = AC, £),
where
A ) =@ [[1f @]dxdy

|z|<r

is the holomorphic analogue of S(r,f). Setting

T*(r, f) = [ 172 4@ fdr, 0<r=1,
)
one obtains the formula
(7.8 M@, fP=1fQF =T"(.f), 0<r=1L
Applying (7.8) to g=f,,—f(w) (g(0)=0), one observes from (7.3) and (7.6), together
with
T*(r, 8) =T"(r, 1)

fEBMOA if and only if sup T*(1, f,) <oo,
weD

that

while
SEVMOA  if and only if l}vilrgl T*(1,1,) = 0.
Since

T f) = @ln) [f1f @PFlog(r/lz)dxdy

zj<r

for £ holomorphic in D and for 0<r=1, the analogue of (2.5) holds, and it is now
an easy exercise to obtain the following holomorphic counterpart of Theorem 2.2.

Lemma 7.1. Let f be holomorphic in D. Then the following propositions hold.
(I) f€eBMOA if and only if

(212 ) ) < oo,
ilelll))[f f(D)2G(z, wdxdy
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(1) feVMOA if and only if

;13&{/ Lf/ (2)2G(z, wydxdy = 0.

Lemma 7.1 (I) is known [6, Proposition 7.2.13, p. 85]. Theorem 7.1 now fol-
lows from Theorem 2.2 and Lemma 7.1, because |f’|=f* for f holomorphic in D.

Remark. At this point we remark that if f is holomorphic in D and if
[[ 1 @Pdxdy <<,
D

then fEVMOA. By the theorem at the bottom of [8, p. 50] it suffices to show that

tim 1, (RA)NJ] =0,

B
where |J|<mn, and R(J) is the annular trapezoid

{z€D; z/|z|eJ, 1—|z| = |J|/2n)},
and

u(RW) = [[(1=I2Dlf (2)dxdy.

R(J)

Since 1—|z|=|J|(2n), it follows that

weRW) = 11/@m) [[1f @DPdxdy =[Cm) [ 1£/(2)Pdxdy.

R(J)) 1-Jl/@r)<|z]<1

Therefore u;(R(J))/|J|—~0 as |J]|-0.
A natural question then arises: Can the conclusion in Theorem 6.1 be replaced
by f€cUBC,?

References

[1] DurresNoY, J.: Sur les domaines couverts par les valeurs d’une fonction méromorphe ou
algébroide. - Ann. Ecole Norm. Sup. (3) 58, 1941, 179—259.

[2] DUREN, P. L.: Theory of H? spaces. - Academic Press, New York—London, 1970.

[3] HAymMaN, W. K.: Meromorphic functions. - Clarendon Press, Oxford, 1964.

[4] JonN, F., and L. NIRENBERG: On functions of bounded mean oscillation. - Comm. Pure
Appl. Math. 14, 1961, 415—426.

[5] LenTo, O., and K. I. VIRTANEN: Boundary behaviour and normal meromorphic functions. -
Acta Math., 97, 1957, 47—65.

[6] PETERSEN, K. E.: Brownian motion, Hardy spaces and bounded mean oscillation. - Cam-
bridge University Press, Cambridge—London—New York—Melbourne, 1977.



Functions of uniformly bounded characteristic 367

[7]1 SarAsoON, D.: Functions of vanishing mean oscillation. - Trans. Amer. Math. Soc. 207,
1975, 391—405.

[8] SarAsoN, D.: Function theory on the unit circle. - Virginia Polytechnic Institute and State
University, Blacksburg, 1978.

[9] YaMmasHITA, S.: A non-normal function whose derivative has finite area integral of order
0<p=<2. - Ann. Acad. Sci. Fenn. Ser. A I Math. 4, 1978/1979, 293-—298.

[10] YamasHITA, S.: Gap series and «-Bloch functions. - Yokohama Math. J. 28, 1980, 31—36.

[11] YamasHiTA, S.: Non-normal Dirichlet quotients and non-normal Blaschke quotients. -
Proc. Amer. Math. Soc. 80, 1980, 604—606.

[12] YAmasHITA, S.: Criteria for functions to be Bloch. - Bull. Austral. Math. Soc. 21, 1980,
223-—-2217.

[13] YaMAsHITA, S.: Bi-Fatou points of a Blaschke quotient. - Math. Z. 176, 1981, 375—377.

Tokyo Metropolitan University
Department of Mathematics
Fukasawa, Setagaya

Tokyo 158

Japan

Received 1 June 1982



