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CONVOLUTION OF GENERALIZED
VECTOR MEASURES

OLLI MARTIKAINEN

Weakly compact operators from C *-algebras into Banach spaces are called
generalized vector measures. We construct their convolution in such a way that it
generalizes the convolution of regular Borel vector measures as well as that of non-
commutative analogues of vector measures.

1. Introduction

The concept of the convolution of Banach space valued regular Borel vector
measures was introducted by M. Duchoti in [4]. Let us apply his definition to the
case of a locally compact (Hausdorff) semigroup X with a separately continuous
composition (compare [19, p. 131]). If g: #(X)—~E; and v: #(X)~E, are Banach
space valued regular Borel vector measures, their convolution is the regular Borel
vector measure fixVv: Z(X )—>E1<§E2 defined by

[ fdpxy = . fX FGDAEDNs, ) (FECH(X)),

where we use the generalized Riesz representation theorem (see [5, Theorem VI1.7.3]).
In other words, if &: Co(X)—~E; and ¥: Cy(X)—~E, are the weakly compact
operators corresponding to i and ¥, respectively, the weakly compact operator
Dx¥: Cy(X )—>E1<§§>E2 corresponding to fix¥ is the combined mapping
(cbf_{; V) oP, where P: Cy(X)~Co(XXX)" is defined by (P(f))(s, 1)=f(st)
(fE'C(, (X); s, t€X). In fact, P is the restriction to C,(X) of the transpose of the mapp-
ing M: M(XXX)>M(X) given by

J s = [ fsnduts,n (FEC(X), 'ue MXXX)).
X XXX

Let G be a locally compact group and C*(G) its group C *-algebra. If G is com-
mutative, C *(G) can be identified with Cy(G). where G is the dual group of G. Then
regular Borel vector measures on G correspond to Banach space valued weakly com-
pact operators on C*(G). In the general, not necessarily commutative case, weakly
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compact operators from C*(G) into a Banach space are called noncommutative
analogues of vector measures [20]. If @ and ¥ are noncommutative analogues of
vector measures on C *(G), their convolution can be defined naturally to be the com-
posed mapping ((pv@é ¥)” op;, where v is the C*-norm on C*(G)®C*(G) induced

by C*(GXG) and p;: C*(G)~C*(GXG)” is the restriction to C*(G) of the
transpose 7’ of the operator #i: C*(GXG)Y~C*(G) given by

(mw)(s)=u(s,s) (s€G, u€ B(GXG) = C*(GXG))

(see [14]). In this case we must, however, assume that #®@ Y is a weakly compact

operator. This concept of convolution is consistent with the notion of a Fourier
transform introduced by K. Ylinen in [20].
To unify and generalize the two examples above we shall study an arbitrary
C *-algebra instead of the C *-algebras Cy(X) and C*(G). We observe that the afore-
mentioned maps M and 7 are in fact extensions of the multiplications of M(X)
and B(G):
M(uxv) =puxv foral p,véM(X), and

mu®v) =uv forall wu, v€B(G)= C*(G).

A C*-algebra 4 is said to be of type M if there exists a bounded bilinear multiplica-
tion on 4’ which can be extended to a bounded linear mapping m: A'®;4'~A4’,
where

mx®y)=xy (x,ycd)

and f is the unique crossnorm on 4’® A’ dual to every C *-norm on A® 4. We give
examples on C *-algebras of type M’ in Section 3.

Weakly compact operators from a C *-algebra 4 into a Banach space will be
called generalized vector measures. To define a bilinear convolution for generalized
vector measures on A the multiplicative structure of 4’ is clearly a necessary require-
ment, because the elements of the dual are simply complex valued weakly compact
operators on A4 and so their convolution induces a multiplication on the dual 4".

If A is of type M’, and & and ¥ are generalized vector measures on 4, the con-
volution &% ¥ can be constructed in a way which extends both the approaches
presented above. We shall consider @ ¥ in detail in Section 5. There ®* ¥ is
defined to be the composition of the product ¢ X ¥ and m’|A4, the transpose of m
restricted to 4. The product @ X ¥ of @ and ¥ is assumed to be weakly compact and
it extends @Y and ¢”® ¥” to the W *-tensor product A”®@A4”. This extension

ne ne
is necessary since the range of m’|4 is contained in (4'®,A4’)Y=A"® A” but not

always in A® ,A4 [14, p. 31]. We shall study #X¥ in Section 4.
Finally, in the end of Section 5, we shall examine the Banach algebra valued
convolution and conclude with the following application. Let 4 be a C*-algebra of
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type M’ such that 4’ is commutative. With some restrictive assumptions the space
of compact operators from A into a commutative Banach algebra B can be equipped
with convolution which makes it a commutative Banach algebra, and its spectrum
becomes equal to the cartesian product of the spectra of 4" and B.

2. Preliminaries

We shall use the results presented in this section throughout the text, usually
without explicit reference. The scalar field will always be the complex field C. We
shall denote Banach spaces by E, E; and E, and C *-algebras by 4, A; and 4,. The
(topological) dual of E is denoted by E” and the closed unit ball of E by E,. The
topology o(E, E’) is called the weak (or w-) topology of E and ¢(E’, E) the w*-
topology of E’. We say that a mapping 7 from E; into E, is an operator if it is linear
and continuous. Its transpose from E; into Ej is denoted by 7. If T maps the closed
unit ball of E; into a relatively weakly compact subset of E,, we call T weakly com-
pact. In particular, we shall call weakly compact operators from a C *-algebra into
a Banach space generalized vector measures. The canonical embedding from E
into its bidual E” will be denoted by J;. The symbol o stands for the composition
of mappings and the symbol % is used for the convolution. The basic theory of
Banach spaces is assumed to be known. As for Banach algebras, Banach x -algebras,
C*-algebras and W*- (i.e. von Neumann) algebras, we refer to [3], [15] and [18].
Especially, we shall always identify the bidual 4” of a C *-algebra 4 with the so-called
enveloping von Neumann algebra of A4 [3, p. 265]. The multiplication on A4” is then
the Arens product on A” [2, p. 869] and the involution is the dual involution with
respect to A’ [3, p. 6]. The canonical embedding J, of 4 into A” is a %-homomor-
phism. If x€ A4 and f€ 4’, we usually write (£, x) or (x, f) instead of /(x). Kaplansky’s
density theorem is used in the following form: if 4, is a w*-dense % -subalgebra of a
von Neumann algebra A4, then (4,), is w*-dense in 4, (see [18, p. 82]).

Let F, and E, be Banach spaces. The tensor product E;® F, equipped with
a norm o is denoted by E;®,E, and its completion by E;®,E,. For the & and

n-norms the completion is, however, denoted by E1<§E2 and E,®F,, respecti-
vely. For the theory of tensor products of C*-algebras we refer to [18]. In partic-
ular, we denote the injective and projective C*-norms by u and v, respectively.
For each C*-norm « we have e=u=a=v=r; see [9, pp. 11, 16 and 18] and [18,
pp. 206—208 and 216]. Let @ and ¥ be operators. If #® ¥ is continuous when
the tensor product of the initial (or final) spaces is equipped with the norm « (or ),
®® ¥ can be extended to the completions, and we denote this extension by ¢® Y.

For the W *-tensor product M®N of W *-algebras M and N we refer to [18,
p. 221]. The predual (M®@N), of M®N is M, ®,N,, where § is the dual norm on
M,®N, induced by (M®,N)". For C*-algebras 4, and A, the predual of 47®4;
is A{®pA;.
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Lemma 2.1. The dual norm on Ai® A; of any C*-norm on A,@ A, agrees
with f.

Proof. By [18, p. 209] the dual norms of all C*-norms on A4,® 4, agree on
A1® 4;. On the other hand, 4;&®,4, can be regarded as a w*-dense subspace of
A7 ® 45 [18, pp. 208 and 211], and so (4,® ,4,), is w*-dense in (4] ® A7), by Ka-
plansky’s density theorem. Hence f is equal to the dual norm u’.

Let X be a locally compact (Hausdorff) topological space. The dual of the
C*-algebra Cy(X) of bounded continuous complex functions (with the supremum
norm) on X vanishing at infinity is identified as usual with the Banach space of
bounded regular complex Borel measures (with the total variation norm) on X,
and denoted by M(X). Let G be a locally compact group with a fixed left Haar
measure ds. For any function f€Cy(G) we write f(x) :f(x_"l) (x€G). If peM((X),
the measure p* is defined by u*(f)=u(f) (f€Cy(G)). We denote by LY(G) the
Banach space of the (equivalence classes of) complex Borel functions on G inte-
grable with respect to ds. We shallembed L'(G) in the usual way into M (G). Equipp-
ed with the convolution product and the involution u—pu* the space M(G) is a
Banach «-algebra having L1(G) as a closed x-ideal (see e.g. [3, p. 282] and [7, p.
185]). The enveloping C*-algebra of L'(G) is denoted by C*(G) and called the
group C*-algebra of G [3, pp. 48, 303]. The enveloping von Neumann algebra of
C*(G) is designated by W *(G) and it is *-isomorphic to the bidual C*(G)” of
C*(G). The set of linear combinations of positive definite functions on G will be
denoted by B(G) and called the Fourier—Stieltjes algebra of G. By [7, p. 192] B(G)
can be identified with the dual of the group C *-algebra C*(G) by the mapping t
which satisfies

G, fy= [u()f(s)ds (ueB(G), feL}(G)).

G

We also remark that for the cartesian products X X X and G X G we have Cy(X X X )=
Co(XN)@Cy(X) and C*(GXG)=C*(G)®,C*(G) (see [17, p. 357] and [9, p. 13]).

3. Spaces of type M, and M’

As mentioned in the introduction, we shall define the convolution of generalized
vector measures @ and ¥ on 4 as the composition of the product generalized vec-
tor measure X Y¥ and the mapping m’|4: A~A"® A”, where m is the unique
bounded linear mapping from 4"®,4’ into 4" extending a given bounded bilin-
ear multiplication on A4’. However, it is not always trivial that such a bounded
extension m exists. In this section we shall give examples on C *-algebras which
have this property. To shorten our presentation we give the following definition.

Definition 3.1. Let E be a Banach space equipped with a bounded bilinear
multiplication and let « be a norm on EQE. Denote by m the linear mapping Sfrom



Convolution of generalized vector measures 373

EQE into E defined by m(x®y)=xy (x, y€E). We say that E is of type M, if m
is bounded on EQ,E.

It is clear that if E is a Banach space of type M, and B is a norm on E® E not
less than «, then E is of type M. Let us have two concrete examples.

Example 3.2. Each Banach algebra B is of type M. The estimate |m(z)|=
n(z) (z€B®B) follows from the inequality [xy|=|x||yl (x,yEB).

Example 3.3. Commutative C *-algebras are of type M,. This is a result of
the fact that they can be identified with spaces Co(X), where X is locally compact.

Now Co(X)®Co(X)=Co(XXX) and

@1 = | 2 s8] =] Zree|_=ee

forall z= ?=1ﬁ®g;EC0(X)®C0(X)

In what follows we shall be dealing with C *-algebras whose duals are of type
Mﬂ-

Definition 3.4. Let A be a C*-algebra, A’ its Banach space dual and B the
unique dual norm on A’® A" of any C*-norm on AQA. If A’ is equipped with a
bounded bilinear multiplication which makes it a Banach space of type My, we say
that A is of type M’.

On A’ there may exist several multiplications which make A" a Banach space
of type B. For instance, if G is a finite group, then Co(G)' =L (G) is of type M,
with respect to the pointwise multiplication and the convolution product.

In particular, if the multiplication of 4 or 4’ is commutative, we can develop
sufficient conditions for 4 to be of type M’.

Assume first that 4 is a commutative C *-algebra such that there is a bounded
bilinear multiplication on A4’. Then A can be identified with a space Cy(X) for some
locally compact space X. So, the dual of 4 is M(X), and since M (X) has the (Gro-
thendieck) metric approximation property, the dual norm f on M(X)® M(X)
Is equal to the n-norm. Hence A’ is of type M, and A of type M’. On the other
hand, 4” is also a commutative C *-algebra so that it is of type M’ when A" is equip-
ped with one of the Arens extensions of the multiplication of 4’. Similarly, 4””
is of type M’, and so on. Let us state this as a theorem.

Theorem 3.5. If A is a commutative C *-algebra such that its dual has a bounded
bilinear multiplication, then A is of type M’, and so are all its even duals.

Suppose now that A4 is a C *-algebra whose dual 4’ is a commutative Banach
algebra. When we define a multiplication on the algebraic tensor product 4’® 4
by the natural formula

u = sty (u= 3 5;0t, v= 3 si®1),
Ly 4 J
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A’ ® A" becomes a commutative algebra, and m is a homomorphism from 4’'® A’
into 4". If we assume that A’® ;4" is a Banach algebra and m can be extended to
it, we get the following theorem.

Theorem 3.6. If A" is a semisimple commutative Banach algebra such that
A’'® A’ is a Banach algebra and m can be extended to a homomorphism from A'® s A’
to A’, then A is of type M’.

Proof. Since any homomorphism from a Banach algebra into a semisimple
commutative Banach algebra is continuous [15, p. 75], the assertion follows
straightly.

Corollary 3.7. Let A" be a semisimple commutative Banach algebra. Let o
be a C*-norm and suppose that (AQ,A) is a commutative Banach algebra having
A’® A’ as a subalgebra. If there is a homomorphism m: (A® ,A)Y ~A" which extends
m, then A is of type M’.

We can establish the boundedness of m: A'®;4’~A" also by studying its
transpose. It is well known and easy to see that if m is bounded, then m’(x)=x® x
for each element x in the spectrum &(4") of A4’.

Theorem 3.8. Let A be a semisimple commutative Banach algebra such that
o(A")u{0} is stable under the involution and the multiplication of A”. If there exists a
% -homomorphism p from the closed linear span of a(A)u{0} into A"R A" such
that

P() = x&x (x€a(4)
then A is of type M’.

Proof. Denote the linear span of ¢(4’)u{0} by F and its norm closure by F.
Since A’ is semisimple, F is a w*-dense involutive subalgebra of 4”. By Kaplansky’s
density theorem Fn(A4”), is w*-dense in (4”),. Now, F is a C*-algebra and
p: F>A"®A4” is a x-homomorphism. Consequently, p is contractive [3, p. 9].
We have for all w=3,u4,Qv; in A'® A" and x=3; B;k; in F (B;€C,
k;€a(A))

(m(w), x) = %’ﬁj@il’ia k;y = le'.Bj@i@Ui’ k;@k;)

= %'ﬁj<ui®vi, p(k;)) = (w, p(x)).

Hence we obtain

Im Wl = sup {|im (w), x)|| x€ Fn(4")o} = sup {|(w, p(¥))][x€ Fn (A7)} = |[wl).

So |mll=1, and A4’ is of type M,.
If the mapping p in the previous theorem can be extended to a normal % -homo-
morphism from A” into A”® A”, then it is necessarily the transpose of m.

We conclude this section with examples.
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Example 3.9. Let X be a locally compact semigroup with a separately con-
tinuous multiplication. Equip Cy(X) with the pointwise multiplication and the
involution fi~f. The convolution of measures defines a bounded bilinear multi-
plication on the dual M (X) [8]. So, by Theorem 3.5, Co(X) is a C *-algebra of type
M’, and so are Cy(X)”, its bidual etc.

Example 3.10. Let G be a locally compact group and B(G) its Fourier—
Stieltjes algebra, i.e., the set of linear combinations of continuous positive definite
functions on G. Identify B(G) with the dual of the group C *-algebra C*(G). Equip-
ped with the pointwise multiplication inherited from B(G) and the dual involution,

C*(G) is a unital semisimple commutative Banach -algebra. The mapping 7:
B(GXG)—~B(G) given by

(M) (s) = u(s,s) (s€G, u¢ B(GXG))

is a homomorphism and it extends the mapping m: B(G)® B(G)-B(G) which
corresponds to the pointwise multiplication of B(G). Hence the conditions of Cor-
ollary 3.7 are fulfilled and so C*(G) is of type M"’.

Example 3.11. If 4 is a so-called Hopf—C *-algebra [11, Definition 2.2],
there exists a *-homomorphism d: 4—~(A®,4)”. The mapping

(x, ) = d’ (Jus, 4y (x®Y)) (%, y€A)

defines a bilinear multiplication on A" which can be extended to a bounded linear
mapping m on A’'Q,A’c(A®,A4)’. Consequently, 4 is of type M’, and d agrees
with m’|A.

Example 3.12. If 4” is a Hopf—von Neumann algebra [6, Definition 3.1],
there exists a *-homomorphism d: A—~A"® A”. The mapping

(6, ) d'(Jae,a(x®) (x, yEA)

gives now a bilinear multiplication on A” which makes 4 a C*-algebra of type M’.

4. The product of generalized vector measures

Let &: A,~E, and ¥: A,~E, be generalized vector measures. For the

construction of the convolution of generalized vector measures the operator #® ¥
u,e

must be extended to the w*-tensor product of 4; and A4;.

Theorem 4.1. Let &: A,—~E, and ¥: A,—~E, be generalized vector meas-
ures such that @ ¥ is weakly compact. Denote the operator ((15’®ﬁ'11’)’ by dX VY,
,

B, e
Then ®X ¥ can be regarded as a weakly compact and w*-w-continuous operator from
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A] @ A3 into E1(§>E2. Moreover, ® XY is the only w*-w-continuous operator which
extends ®Q Y (consider A, ® ,A; as a subspace of A7®A7).
ne

Proof. By assumption the operator ®® ¥ is weakly compact. By Gant-
e
macher’s theorem [5, p. 485] its transpose (P® ¥)" is a weakly compact operator
o

from (Elé) EyY into (A4:®,4,)". Since the crossnorm = is the largest of all cross-
norms, the inclusion mapping E;® E;c~ (E;® E,)" can be extended to an operator

J: E}®E] — (E,QE,).

Let © be the canonical embedding from 4;® ;45 into (4,® ,4,). By Lemma 2.1,
@ is an isometry. Now we have the following commutative diagram.

s .., @owy _ ,
(E: & Ey) —5—(4,® 4 45)
A
Ji 0
> ©

E{QE —=— 48,4
Since @ isan isometry, O (4;® ;.43) is norm closed and convex, hence weakly closed
in (4,®,4,). By the Hahn—Banach theorem the weak topology in (4, ,4,)
restricted to © (4, ® 4 A,) corresponds via @ to the weak topology in A, @, 4,.
Hence any set in 4;® ;A5 is relatively weakly compact if its image under @ is so.
Now (CD”Q Y)Y oJ is a weakly compact operator so that the set

@(GD’T:E% P (E{ & E)) = (@ ® ) o J)((E] & E),)

is relatively weakly compact. Consequently, also & ® ¥’ is a weakly compact

T, B

operator, and so, by Gantmacher’s theorem, is its transpose
((ﬁ'@;3 YY: AR AL —~ (E{ R E,).

Since the dual norm of the crossnorm = is the crossnorm &, we can embed Ey § Ey
isometrically into (E; ® Ej)’. Because EIQ%EQ is a norm closed and convex subspace
in E{QE; and so also in (E|&ELy. it is weakly closed in (E,®FE). Now
(@’}r}%‘l”)’ is w*w-continuous (see [3, p. 484]) and it maps the w*-dense subset
AR A, of AR A, into the weakly closed subset EléEg of (E{®QFE;). Hence we
obtain

(#'® V) (4T 43) = E,®E,.

By the Hahn—Banach theorem the weak topology of (E;& E;) induces the weak
topology of E; X E, so that ( dy@;)? ¥’) regarded as an operator into E&?E2 is weakly
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compact and w*-w-continuous. The w*-w-continuity of (915’@6 ¥’y and the fact that
A;® A, is w*-dense in A;® A, imply the uniqueness of ®X ¥, and the proof is
complete.

Conversely, if we assume that @ X ¥ is a weakly compact operator, then & @Y%’

B

is weakly compact, or equivalently, ® X ¥ is w*-w-continuous. Hence ®X ¥ maps
A{R A, into E;QE,. Since @ X ¥ extends #RQ V¥, we obtain that QY is also
"e e

weakly compact. So we have the corollary.

Corollary 4.2. The following conditions are equivalent.
(i) The operator ®RY is weakly compact.
u,e

(ii) The operator ®X ¥ is weakly compact.
(iii) The operator ®X ¥ is w*-w-continuous.
Definition 4.3. Let ®: A,~E, and ¥: A,~E, be generalized vector meas-
ures. If ®Q Y is weakly compact, the generalized vector measure ®XV: A{ R A5~
Bt

El(fg)E2 is called the product of ® and V.
In particular, we observe that if 4, and A4, are commutative C *-algebras, then
p=¢ on A,QA, and dRY is weakly compact whenever @ and ¥ are weakly com-
g€

pact (see e.g. [19, p. 128]) and so X ¥ is weakly compact as well.
Let « be any C*-norm on 4, 4,. If Q¥ is weakly compact, PQ Y is also
n,e o,

weakly compact, and the generalized vector measure ®X ¥ is related to (PR Y¥)”

in the following way. Let I: (4,®,4,)"~A7®A; be the normal extension of the
inclusion mapping from 4;® A4, into A7® A, (see [18, p. 208], and [3, p. 266]). Then
(PRY) (x)=PRQY¥ (x)=(®X¥)ol(x) for each x€A;®,A4,. So the w*-density

of 4,8,4, in (4, ,4,)” implies that the following diagram commutes.
AR A;  @ewy

@y &

5. Convolution

In this section we apply the concepts developed in Sections 3 and 4 to construct
and study the convolution of generalized vector measures. Throughout, 4 is a C*-
algebra and E; and E, are any Banach spaces.

Definition 5.1. If Aisa C*-algebraof type M’ and &: A—~E, and ¥: A—E,
are generalized vector measures such that ®QY is weakly compact, then the convolu-
M, &
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tion &« ¥ of ® and ¥V is defined by
DxY = (DX P)o(m'|A).

Clearly @ % ¥ is a weakly compact operator from A into E1®E2. Furthermore,
it shares several properties of the convolution of ordinary regular Borel vector meas-
ures. In the following theorem we shall identify Elé)E2 with E2<§>E1 and (Eé) El)é)E2
with E é (El(gg E,) canonically, and assume that the corresponding convolutions exist.

Theorem 5.2. Let A be a C*-algebra of type M~ and ®, ¥ and y generalized
vector measures on A. Then ®x ¥ is bilinear with respect to @ and V. Moreover, if
the multiplication of A" is commutative, then ®x ¥ =¥ % ®, and if it is associative,
then @+ (Vxy)=(PxV)*y.

Proof. The bilinearity follows straightly from the definition of @ ¥ and the
bilinearity of @« ¥. Let the final spaces of @ and ¥ be E, and E,, respectively. If
the multiplication of 4’ is commutative, we have for each x€A4, f€E; and g€E;

(D ¥ (x). [@g) = (PX¥(m'(x), [@¢)
= (m’'(x), ¥ (@Y () = (x, D' (NHY ()
= (x, ¥(¥ (f)) = m'(x), V(2 (f)
= (IXP(m' (%), g&f) = (¥ x P (x), g+/f).

Since E;R E, separates the points of Elé)Eg, we obtain that &« ¥V =¥ % ® with
respect to the identification of EI@%E2 with E2®E1. The proof of the associativity
is analogous and will be omitted.

Our motivation was to unify and generalize the concept of the convolution of
ordinary regular Borel vector measures as well as that of noncommutative analogues
of vector measures. The following examples show how this goal has been achieved.

Example 5.3. Let X be a locally compact semigroup with a separately contin-
uous multiplication, and let @: Cy(X)—~E; and ¥: Cy(X)—~E, be weakly com-
pact operators corresponding to regular Borel vector measures i1 and ¥, respectively.
By Example 3.9 Cy(X) is a C *-algebra of type M” when Cy(X)' =M (X) is equipped
with the multiplication

(1, v) — uxv  (u, ve M(X)).

We denote the bounded linear extension of this multiplication to M(X)QM(X) by
M. The transpose of M is an operator from M (X) into (M(X)® M(X)) and for
each f€C,(X) and u,véeM(X) we have

(M f, 1@y = (fy M(u@W) = (f; wevy = [ [ fist)dp(s)dv (o).
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Further, the operator M has a bounded linear extension M: M(XXX)~M(X)
given by

[ = [ fsydu(s, ) (feCo(X)).

X XXX

The mapping (s, #)—f(st) is integrable by [12, p. 422]. By the definition of M its
transpose M’ restricted to Co(X) is the mapping P: Cy(X)~Co(X X X)” defined by
PN, D =11 (f€Co(X); s, tEX).

Let I: M(XXX)~(M(X)®QM(X)) be the transpose of the inclusion mapping

J: M(X)QM(X)>M(XXX). Since M=0MoJ, we have
M’ = ToM’.
Because [/ is also the normal extension of the canonical mapping from Cy(X X X)

into (M (X)QM (X)) (see the discussion after Definition 4.3), the following diagram
commutes.

e, MAXXY @ oy

co(X)\/ : >E1é52
, v
MIGONMx) & M)y P
Now, the convolution of @ and ¥ as ordinary regular Borel vector measures is the
composed operator (@R Y¥)”oP. Since P=M’'|Cy(X), this ordinary convolution
agrees with (@X Y’)o(M ’ICo(X)), the convolution of @ and ¥, when they are
interpreted as generalized vector measures.

Example 5.4. Let G be a locally compact group and C*(G) its group C*-
algebra. Let @ and ¥ be noncommutative analogues of vector measures, i.e., weakly
compact operators from C*(G) into Banach spaces E, and E,, respectively. By [14,
p- 25] the convolution of @ and ¥ can be defined to be the composed mapping
(@g@e ¥)” opr, where p;: C*(G)—~W *(G XG) is the restriction to C*(G) of the trans-

pose 7" of the operator #i: C*(GXG)—~C*(G) given by
(M@)($) = u(s,5) (s€G, u€ BGXG) = C*(GXGY).
This follows from the definition of p,,

[hs,9)dfs) = [ h(s,ndp,(f)(s. )
G

GXG
(RECH(GXG), fELY(G)) [14, pp, 23—25), and the equations

(), fy= f u@s Y = f udp,(f) = (u, pr(f))

where u€B(GXG)=C"(GXG)" and feL'(G). Clearly m restricted to C*(G)'® -
C*(G)'=B(G)®;B(G) is the linear mapping m corresponding to the multiplication
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on B(G) (Example 3.10). If I: W*(GXG)->W*(G)QW *(G) is the transpose of the
inclusion mapping J: C*(G)'®4C*(G)'~C*(GXG)’, we obtain, as in the previous
example, the following commutative diagram.

wiexe) o WHOXG)  @owy

©
O , SEGE,

N /
m’lc*(G)\W* (G) %W*(G)/@XW

So, the convolution of @ and ¥ as generalized vector measures agrees with their con-
volution in the sense of [14]. Consequently, it also interacts with the Fourier trans-
form ~ of [20] according to the formula (&% ¥) =& ¥ (see [14, p. 26]).

In the previous examples the convolution can be defined via 4”®A4” or via
(A®,A4)” for some C*-norm «. This reflects the property that in both cases m:
A'QpA’—~ A’ has an extension 1 (A®,A4) ~A’. However, in general it may happen
that m exists but 7% does not. With this in mind it seems to be reasonable to construct
the convolution of generalized vector measures making use of the operator m:
AQpA—~A.

Finally, we shall consider the convolution of generalized vector measures when
the final space has a bilinear multiplication. We begin with the definition.

Definition 5.5. Let A be a C*-algebra of type M’ and B a Banach space of
type M,. Denote by my the operator from BRB to B corresponding to the multiplica-
tion of B. If ®: A—~B and Y: A—~B are generalized vector measures such that

DRV is weakly compact, the operator mgo(®* V) is called the algebra valued con-
u,e

volution of ® and ¥ and denoted by &% P.

So, @ % ¥ is a weakly compact operator from 4 into B. The analogue of Theorem
5.2 follows immediately, and we assume again that the corresponding convolutions
exist.

Theorem 5.6. Let A be a C *-algebra of type M’ and B a Banach space of type

M,. Let ®, ¥ and y be generalized vector measures from A into B. Then ® % ¥ is bilin-
ear with respect to @ and ¥. Moreover, if the multiplications of A" and B are commu-
tative, then ® x ¥ =Y % &, and if they are associative, then ®% (P £7)=(P% V)%

The algebra valued convolution induces a multiplication on several operator
spaces, for the case when A=C*(G) see [14, Chapter 5]. Here we shall consider as
an example the space (A, Bj of compact operators from A into B. (An operator
®: A-B is called compact if @(A4,) is relatively compact in B.)

Lemma 5.7. If &: A,~FE, and ¥: A,—~E, are compact operators, then
D% YV is compact.
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Proof. By [10, p. 401] &Q ¥ is compact if @ and ¥ are compact. Hence ¢Q ¥

e

is compact so that by Schauder’s theorem [5, p. 485] (@ ¥)” is compact. Using the
n,e

commutative diagram in the proof of Theorem 4.1 we now deduce that @’(233 y’
™

B

is a compact operator and so is also its transpose @ X ¥. The assertion follows now
straightly.

It is easy to see that || @XW||=|®||¥| so that |®xV|=|D| |¥]||m]. If
A" and B are Banach algebras of type M, and M, with [m|=1 and |mg|=1, re-
spectively, then (4, B) equipped with the algebra valued convolution becomes a
Banach algebra. It is easy to see that in all the examples given in Section 3 we have
ml=1.

If A" or B has the (Grothendieck) approximation property, then (A4, B) is
isometrically isomorphic to A’éB [16, p. 113], which therefore becomes a Banach
algebra. Moreover, if 4 and B are commutative, we can apply the theorem of

Gelbaum and Tomiyama [13, p. 179], which states that if A’éB is a Banach algebra,
then its spectrum is homeomorphic to o(4")Xa(B).

Theorem 5.8. Let A be a C*-algebraof type M’ such that A’ is a Banach algebra.
Let B be a Banach algebra of type M. Lf the operator norms of m and my are less than
or equal to one, then A (A, B) is a Banach algebra. Moreover, if A" and B are commu-
tative and one of them has the approximation property, then o (# (A, B)) is homeomor-
phic to o(A)Xo(B).

This theorem can be regarded as a generalization of a result of P.S. Chow [1,
p. 118]. He has proved that ¢(# (Co(G), C(K))) is homeomorphic to ¢(Cy(G)" )X
o(C(K)), where G is a locally compact commutative group and K a compact space.
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