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CONYOLUTION OF GENERALTZf,D
YECTOR MEASURES

OLLI MARTIKAINEN

Weakly compact operators from C*-algebras into Banach spaces are called
generalized vector measures. We construct their convolution in such a way that it
generalizes the convolution of regular Borel vector measures as well as that of non-
commutative analogues of vector measures.

1.. Introduction

The concept of the convolution of Banach space valued regular Borel vector
measures was introducted by M. Duchoä in [4]. Let us apply his definition to the
case of a locally compact (Hausdorff) semigroup X with a separately continuous
composition (compare [19, p. 131]).lf p: fi(X)*E1 and i: fi(X)*8, are Banach
space valued regular Borel vector measures, their convolution is the regular Borel

vector measure ltxv: A(X)-EråA, clefined by

t) (rcco(x)),

where we use the generalized Riesz representation theorem (see [5, Theorem VI.7.3]).
In other words; if iD: Cr(X)*Et and V: C|(X)*E, are the weakly compact
operators corresponding to p and i, respectively, the weakly compact operator
iDxV: Co1X!-Br$g, corresponding to pxv is the combined mapping
(alglY)" oP, where P: C,(X)-C,(XXX)" is defined by (f(,flXr, y!:f(st)

€,€

(feCo1Xlt s, t(X).In fact, P is the restriction to Co(X) of the transpose of the mapp-
ing fr: M\XX)*M(X) given by

o {fe cr(x}, ip( M {xxx)).

Let G be a locally compact group and C*(G) its group C*-algebra. If G is com-
mutative, C*(G) can be identified with Co(G), where d is the dual group of G. Then
regular Borel vector measures on d correspond to Banach space vaiued weakly com-
pact operators on C*(G). In the general, not necessarily commutative case, weakly

{ fan*r, : 
.!.trst){t(,rlevXs,

! fnO(,u) - ,!.rfst)ctp(s,

koskenoj
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compact operators from C*(G) into a Banach space are called noncommutative

analogues of vector measures [20]. If iD and Y are noncommutative analogues of
vector measures on C + (G), their convolution can be defined naturally to be the com-

posed mapping (@8V)" opr, where v is the C*-norm on C*(G)@C*(G) induced
lrE

by C*(GXG) and p; C*(G)-C"(GXG)" is the restriction to C"(G) of the

transpose frt' of the operator fi: C*(GYG)'*C*(G)' given by

(41a1)1s1:,715, t; (s€G, u€B(GXO : C*(GXG)',)

(see [14]). In this case we must, however, assume that @8 Y is a weakly compact

operator. This concept of convolution is consistent lri fr'it" notion of a Fourier
transform introduced by K. Ylinen in [20].

To unify and generalize the two examples above we shall study an arbitrary
C*-algebra instead of the C*-algebras Co(X) and C*(G). We observe that the afore-

mentioned maps fr and fi are in fact extensions of the multiplications of M(X)
and.B(G):

fr@xv) - pxv for all p,v(M(X), and

fi(ugu) : v1l for all u, yQB(G) : C*(G)'.

A C *-algebra A is said to
tion on A' which can be

where

be of type M'if there exists a bounded bilinear multiplica-
extended to a bounded linear mapping rni A'g pA' -. A',

m(x8 /) - xy (x, y€A')

and B is the unique crossnorm on A'@ A' dual to every C *-norm on A8 A. We give

examples on C*-algebras of type M' in Section 3.

Weakly compact operators from a C*-algebra A into a Banach space will be

called generalized vector measures. To define a bilinear convolution for generalized

vector measures on A the multiplicative structure of A' is clearly a necessary require-

ment, because the elements of the dual are simply complex valued weakly compact

operators on I and so their convolution induces a multiplication on the daal A'.
If ,4 is of type M', and @ and V are generalized vector measures on l, the con-

volution iDxY can be constructed in a way which extends both the approaches

presented above. We shall consider @x!1 in detail in Section 5. There @xY is

defined to be the composition of the product öXY and m'lA,the transpose of rn
restricted to A. The product ö X Y of @ and Y is assumed to be weakly compact and

it extends @€)V and (0"@Y" to the Z*-tensor product A"8A". This extension
Prt Prt

is necessary since the range of m'lA is contained in (A'@pA')':Al6A" but not
always in A& *A I14, p. 311. We shall study iDX.V in Section 4.

Finally, in the end of Section 5, we shall examine the Banach algebra valued

convolution and conclude with the following application. Let A be a C*-algebra of
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type M' such that l' is commutative. With some restrictive assumptions the space

of compact operators from A into a commutative Banach algebra B can be equipped

with convolution which makes it a commutative Banach algebra, and its spectrum

becomes equal to the cartesian product of the spectra of A' and B.

2. Preliminaries

We shall use the results presented in this section throughout the text, usually

without explicit reference. The scalar field will always be the complex field C. We

shall denote Banach spaces by E, E1 and E, and C*-algebras by A, A, and Az. The
(topological) dual of ,Eis denoted by E' and the closed unit ball of Eby Es. The

topology o(E,E') is called the weak (or w-) topology of E and o(E',E) the w*'
topology of .E'. We say that a mapping Tfrom Erinto E, is an operator if it is linear

and continuous. Its transpose from E';into Ei is denoted by T'. If T maps the closed

unit ball of .8, into a relatively weakly compact subset of Er, we call 7 weakly com-
pact. In particular, we shall call weakly compact operators from a C*-algebra into
a Banach space generalized vector measures. The canonical embedding from .E

into its bidual E' wrll be denoted by J". The symbol o stands for the composition

of mappings and the symbol x is used for the convolution. The basic theory of
Banach spaces is assumed to be known. As for Banach algebras, Banach x -algebras,

C*-algebras and W*- (i.e. von Neumann) algebras, we refer to [3], [15] and [18].
Especially, we shall always identify the bidual A" of aC*-algebra Awith the so-called

enveloping von Neumann algebra of A 13, p. 2651. The multiplication on A" is then
the Arens product on A" 12,p.8691and the involution is the dual involution with
respect to A'13, p.6]. The canonical embedding Jaof Ainto A" is a x-homomor-
phism. lf x€A and f€A',we usually write (f, x) or (x,f) instead otf(x). Kaplansky's
density theorem is used in the following form : if A, is a w *-dense x -subalgebra of a
von Neumann algebra A,then (11)o is w*-dense in ln (see [8, p. 82]).

Let E1 and E, be Banach spaces. The tensor product EtgE, equipped with
a norm oc is denoted by ErgtoE, and its completion by Er6,Er. For the e- and

zr-norms the completion is, however, denoted by Er,6Z, and' Er6Er, respecti-

vely. For the theory of tensor products of C*-algebras we refer to [18]. In partic-
ular, we denote the injective and projective C*-norms by p and v, respectively.

For each C*-norm a we have e<p=a=v<7r; see [9, pp. 11, 16 and 18] and [18,
pp.206---208 ard216l.Let Q andY be operators. If @AY is continuous when

the tensor product of the initial (or final) spaces is equipped with the norm o( (or f),
@8 Y can be extended to the completions, and we denote this extensionby @3rY.

For the lV'*-tensor product MeN of W*-algebras M and N we refer to [18,
p.22ll. The predual (M8N)* of MqN is M*@rN*, where B is the dual norm on

M*E)N* induced ay (M@uN'. For C*-algebras Al and A2the predual of Ai@Ali
is AiAuAi*

371
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Lemma 2.1. The clual norru on A|@AL o.f any C*-norm on A1&Az agrees
with §.

Proof. By [18, p.209] the dual norms of all C*-norms on At@Az agree on
A|SA;. On the other hand, Ar§uA, can be regarded as a r?*-dense subspace of
Ai@A; [l8, pp. 208 and 2ll], and, so (Ara rA)o is r.r,s-dense in (AigA;)o by Ka-
plansky's density theorem. Hence B is equal to the dual norm p'.

Let X be a locally compact (Hausdorff) topological space. The dual of the
c+-algebra co(x) of bounded continuous complex functions (with the supremum
norm) on x vanishing at infinity is identified as usual with the Banach space of
bounded regular complex Borel measures (with the total variation norm) on x,
and denoted by M(X). Let G be a locally compact group with a fixed left Haar
measure ds.For anyfunction f(CoG) wewrite f(*):f@a (x€G). lf p(.M(X),
the measure p* is defined by p*(f):NA (feCrQ)). We denote by I1(G) the
Banach space of the (equivalence classes of) complex Borel functions on G inte-
grable with respect to d"s. We shall embed ZI(G) in the usual way into M(G). Equipp-
ed with the convolution product and the involution p*p* the space M(G) is a
Banach x-algebra having ZI(G) as a closed x-ideal (see e.g. 13, p.282) and [7, p.
1851). The enveloping c*-algebra of LI(G) is denoted by c*(G) and called the
group C*-algebra of G [3, pp. 48, 303]. The enveloping von Neumann algebra of
C*(G) is designated by W+(G) and it is x-isomorphic to the bidual C*(G)" of
C*(G). The set of linear combinations of positive definite functions on G will be
denoted by B(G) and called the Fourier-stieltjes algebra of G. By 11, p. t92l B(G)
can be identified with the dual of the group C*-algebra C*(G) by the mapping r
which satisfies

(r Qfi, f) : (u€B(G), -fe t (c)).

we also remark that for the cartesian productsxX x and GxG we have co(xxx):
Corx)ACo{.1-) and C*(GXG):C*(G)8,C*(G) (see 117,p.3571 and [9, p. l3]).

3. Spaces of type Mo and, M'

As mentioned in the introduction, we shall define the convolution of generalized
vector measures Ö and V on A as the composition of the product generalized vec-
tor measure @XY and the mapping m'lA: AtAa6A", where m is the unique
bounded linear mapping from A'6BA'into A'extending a given bounded bilin-
ear multiplication on A'. However, it is not always trivial that such a bounded
extension z exists. In this section we shall give examples on c*-algebras which
have this property. To shorten our presentation we give the following definition.

Definition 3.1. Let E be q Banach space equipped with a bounded bilinear
multiplication and let a. be a nornx on E@8. Denote by m the linear mapping from

[ ,(s)/(s) ds
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EbE into E defined by m(x@!):xy (x, y(.8). We say that E is of type Mn if m
is bounded on EqoE.

It is clear that if E is a Banach space of typ e Mo and B is a norm on .E@ ,E not
less than a, then.Eis of type Mr. Let us have two concrete examples.

Example 3.2. Each Banach algebra B is of type Mn. The estimate llmQ)ll=
n(z) (z€B@B) follows from the inequality llxyll=llxllllyll (x,yeB).

Example 3.3. Commutative C*-algebras are of type M". This is a result of
the fact that they can be identified with spaces Cr(X), where X is locally compact.

Now Co(X)6coq):Co(XxX) and

|n (z)|: Ilårr,ll_ = llir*r,ll_ :,ra
for all z: Zi=vrt@Et€Co(X)6Co(X).

In what follows we shall be dealing with C*-algebras whose duals are of type
Mp.

Definition 3.4. Let A be a C*-algebra, A' its Banach space dual and B the
unique dual norm on A'@A' of any C*-norm on A@A. If A' is equipped with a
boundedbilinear multiplicationwhichmakes it a Banach space of type Mp,.,ve say
that A is of type M'.

On A'there may exist several multiplications which make A' a Banach space
of type p. For instance, if G is a finite group, then Co(G)':Lr(G) is of type M,
with respect to the pointwise multiplication and the convolution product.

In particular, if the multiplication of A or A'is commutative, we can develop
sufficient conditions for A to be of type M'.

Assume first that A is a commutative C*-algebra such that there is a bounded
bilinear multiplication on A'.Then A can be identified with a space Co(X) for some
locally compact space X. So, the dual of A is M(X), and since M(X)has the (Gro-
thendieck) metric approximation property, the dual norm f on M(X)@M(X)
is equal to the N-norm. Hence A'is of type Mu and A of type M'. On the other
hand, A" is also a commutative C*-algebra so that it is of type M'when A"' is eqluip-
ped with one of the Arens extensions of the multiplication of A'. Similarly, A""
is of type M', and so on. Let us state this as a theorem.

Theo rem 3.5. If A is a commutatiue C x-o1f"Ura such that its dual has a bounded
bilinear multiplication, then A is of type M', and so are all its euen duqls.

Suppose now that Ais aC*-algebra whose dual A'is a commutative Banach
algebra. When we define a multiplication on the algebraic tensor product A'@ A'
by the natural formula

uu - å sisj &titi (u - ä r, &tt, u: 4 tjat:),



Onr MaRTTAINEN

A' & A' becomes a commutative algebra, and m is a homomorphism from A'@ A'
into A'. If we assume that A'6 pA' is a Banach algebra and m can be extended to
it, we get the following theorem.

Theorem 3.6. If A' is a semisimple commutatiue Banach algebra such that
A'6 fA' is a Banach algebra and m can be extended to a homomorphism from A'6 pA'
to A', then A is of type M'.

Proof. Since any homomorphism from a Banach algebra into a semisimple
commutative Banach algebra is continuous [5, p. 75], the assertion follows
straightly.

Corollary 3.7. Let A'be a semisimple commutatiue Banach algebra. Let u
be a C*-norm and suppose that (A@,A)' is a commutatiue Banach algebra hauing
A'8 A' as a subalgebra. If there is a homomorphism rh: (A6,A7' * n' which extends
m, then A is of type M'.

We can establish the boundedness of m: A'@BA'*A' also by studying its
transpose. It is well known and easy to see that if m is bounded, then m'(x):y6y
for each element x in the spectrum o(A') of A'.

Theorem 3.8. Let A' be a semisimple commutatiue Banach algebra such that
o(A')v {0} is stable under the inaolution and the multiplication of A". If there exists a
x-homomorphism p from the closed linear span of o(A')v{O} into A"@A" such
thdt

then A is of type M,. 
p(x): x&x (xeo(a'))'

Proof. Denote the linear span of o(,4')u{0} by F and its norm closure by F.
Since l' is semisimple, F is a w*-dense involutive subalgebra of A". By Kaplansky's
density theorem Fa(A")o is u.,+-dense in (1")0. Now, F is a C*-algebra and
p: F-A"@A" is a *-homomorphism. Consequently, p is contractive [3, p. 9].
We have for all y:)iu;gai in 1'@BA' and x:)i Biki in F (frjec,
kre o1.l'1\

(*(*), x) : f §i(u,u,, k,) : f fr1(u,8u,, kjeki>

: 
-Z 

fri(ut6ui, p(k)): (r, p(x)).

Hence we obtain

llm (w)ll : sup {l(m (}r), x)l lx€ rn (A')o} : sup {l(w, p (x))l lx€ rn (,4')o} = Ilwli.

So llmll=|, and A' is of type Mu.
If the mapping p in the previous theorem can be extended to a normal x -homo-

morphism from A" into A" & A", then it is necessarily the transpose of rn.

We conclude this section with examples.

374
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Example 3.9. Let X be a locally compact semigroup with a separately con-
tinuous multiplication. Equip Co(X) with the pointwise multiplication and the
involution f*J. The convolution of measures defines a bounded bilinear multi-
plication on the fual M(X) [8]. So, by Theorem 3.5, Co(X) is a C*-algebra of type
M', and so are Co(X)", its bidual etc.

Example 3.10. Let G be a locally compact group and B(G) its Fourier-
Stieltjes algebra, i.e., the set of linear combinations of continuous positive definite
functions on G. Identity B(G) with the dual of the group C*-algebra C*(G). Equip-
ped with the pointwise multiplication inherited from,B(G) and the dual involution,
C*(G)'is a unital semisimple commutative Banach'x-algebra. The mapping fr:
B(GxG)*B(G) given by

(n1u1)1s1: z(s, s) (se G, ze B(GxG))

is a homomorphism and it extends the mapping m: B(G)&B(G)*B(G) which
corresponds to the pointwise multiplication of A(G). Hence the conditions of Cor-
ollary 3.7 are fulfilled and so C*(G) is of type M'.

Example 3.11. If A is a so-called Hopf-C*-algebra [1, Definition 2.21,
there exists a 'x-homomorphism fli l*(A@"A)". The mapping

(x, y) - d'(J6d..e1, (x8/)) (x, yQA')

defines a bilinear multiplication on A' which can be extended to a bounded linear
mapping m on A'@9A'=(A6"A)'. Consequently, A is of type M', and d agrees

with m'lA.

Example 3.12. lf A" is a Hopf-von Neumann algebra [6, Definition 3.1],
there exists a x-homomorphism d: A-A16A". The mapping

(x, y)d'(J,e,ag@8D) (x, y€A')

gives now a bilinear multiplication on A' which makes A a C*-algebra of type M'.

4. The product of generalized vector measures

Let iD: Ar*8, and Y: Az*Ez be generalized vector measures. For the
construction of the convolution of generalized vector measures the operator iDAV

must be extended to the w*-tensor product of Ali and Al{. 
P'e

Theorem 4.1. Let (D: Ar*8, and V: Az*Ez be generalized uector meas-

ures such that O@Y isweakly compact. Dmote the operator (@'8-Y')' by AXV.
lt,8 *, F

Thm iDXY can be regarded as a weakly compact and w*-w-continuous operator from
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Ai@A; into Er§Er. Moreouer, 1DXY is the only w*-w-continuous operator which
extends O&V (consider Ar6uA, as a subspace of Ai@A[).

lr, e

Proof. By assumption the operator *P,, is weakly compact. By Gant-

macher's theorem [5, p. 485] its transpose @P"Y)' is a weakly compact operator

from (.816 Er)'inta (A16rAr)'. Since the crossnorm z is the largest of all cross-

norms, the inclusion mapping Ei6Eir*(Er6Z'r)' 
"un 

be extended to an operator

r: E{6r,; - (ELAE)'.

Let @ be the canonical embedding from AiAuAL into (ArArAr)'. By Lemma 2.1,
@ is an isometry. Now we have the following commutative dia-sram.

(Er 6 Er)' 
(@J?'Y)' 

, (A16, Ar)'
,i

JI

| *,&y,
E{eE; -n'F 

n
t,

Ai6 pA;

Since @ is an isometry, @ (Ai@ eAi) is norm closed and convex, hence weakly closed
in (Ar@ rAr)'. By the Hahn-Banach theorem the weak topology in (Ar@ uAr)'
restricted to @(A'rSpAr) corresponds via @ to the weak topology in Ar@oA|.
Hence any set in ,liAuAl, is relatively weakly compact if its image under @ is so.

Now (@ @Y)'oJ is a weakly compact operator so that the set
P,E

@ (o' nv' ((Ei 6 E;)o;) : (@@ Y) o J)((EI @ E;)o)

is relatively weakly compact. Consequently, also *'n*' is a weakly compact

operator, and so, by Gantmacher's theorem, is its transpose

(o'@pv')': AiSAt * @i@E;)'.

Since the dual norm of the crossnorm n is the crossnorm 6, we can embed E'{AE;
isometrically into (EiA E;)'. Because Er6 E, is a norm closed and convex subspace

in n'{gill and so also in (Ei6E;)', it is weakly closed in (E'.AE;\'. Now
(O'8^Y')' is r.r'*-u.continuous (see [5, p.  8a]) and it maps the rlx-dense subset

r,p

At\A, of Ai@Ali into the weakly closed subset E.,,äE, of (Eif-E;)'. Hence we
obtain

Y')'(A'{@ A';) C Et & Er.(o'&
TE, §

By the Hahn-Banach ttrreorem the weak topology of (Ei@ E;)'induces
topology of E'rEä, sc that (O'&^V')'regarded as an operator into Eo&Er

Tt' {J

the weak

is weakly



Convolution of generalized vector measures 377

compact and w*-rv-continuous' The w*-w-continuity of (iD'@Y')' and the fact that

Ar8A, is w*-dense in Ai@A; imply the uniqueness of @XY, and the proof is

complete.
Conversely, if we assume that @ X Y is a weakly compact operator, then iD' @Y'

is weakly compact, or equivalently, @XY is w*'w-continuous. Hence @XY maps

Ai@A; into .E.&fr. Since @XY extends @@Y, we obtain lhat iD@Y is also

weakly compact. So we have the corollary.

Corollary 4.2. The following conditions are equiualent.

(i) The operator ,n* is weakly compact.

(ii) The operqtor iDY.Y is weakly compact.

(iii) The operator iDXY is w*'w-continuous.

Definition 4.3. Let iD: Ar*fl,, and Y: Az*Ezbe generalizeduector meas'

ures. If ifr@Y is weakly compact, the generalized uector measure iDXY: Ai@A;*
lr, o

Er6Eris called the product of <D and Y.
In particular, we observe that if Arand Arate commutative C*-algebras, then

p:8 on At&A, and @@Y is weakly compact whenever A and. Y are weakly com-

pact (see e.g. [9, p. 128]) and so @X![ is weakly compact as well'
Let s be any C*-norm on A1$Ar.If 08Y is weakly compact, @8Y is also

Frt drt

weakly compact, and the generalized vector measure @XY is related to (iD@V)"

in the following way. Let I: (Ar6,Ar)"tAi@A; be the normal extension of the

inclusion mapping from Ar@Arinto Al{@A|! (see [8, p. 208], and [3, p. 266]). Then

(iD@Y)"(x):@@Y(x):(OXY)o/(x) for each x(AS,Ar. So the w*-density
d,a dr8

of A$,A2in (Ar@,A)" implies that the following diagram commutes.

A'{6 A'; (a eY),
\ 

dlg

\ \
/,/

,/'***
(A16 oAr)"

5. Convolution

In this section we apply the concepts developed in Sections 3 and 4 to construct

and study the convolution of generalized vector measures. Throughout, A is a C*-
algebra and Er and E2 are any Banach spaces.

Definition 5J. ffAisaC*-algebraof typeM'and iD: A*Et and Y: A*Ez
are generalizeduector measures such thqt itrSY is weakly compact, then the conuolu-
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tiort iDxY of @ ancl Y is defined by

(DxV : (AXV)o(m'lA').

Clearly @ x Y is a weakly compact operator from A into Er$Er. Furthermore,
it shares several properties of the convolution of ordinary regular Borel vector meas-

ures. In the following theorem we shall identify Er§s, with Erö ErandfaOAlåA
with E'§ @16Er)canonically, and assume that the corresponding convolutions exist.

Theorem 5.2. Let A be a C*-algebra of type M' and iD, Y and y generalized

uector meqsures on A. Then @xY is bilinear v,ith respect to @ and Y. Moreouer, if
the multiplication of A' is commutatiue, then iD xY:Y x Q, and if it is associatiue,

then @ x (Y x y):(iD x Y) * X.

Proof. The bilinearity follows straightly from the definition of @ x Y and the
bilinearity of @ x Y. Let the final spaces of @ and Y be Et and Er, respectively. If
the nrultiplication of l' is commutative, we have for each x(A, fQEi and g(EL

(iD xy (x), fg c) : (axr Qn,(x)), .f a s)

: (m'(x), O'(f)&Y'(d) : (x, Q'(flY'(d)

(x, V' (g)iD' (n7 : (m' (x), Y' (g) @ d' (J')>

since EiQE,,.r,,;.:*,; J:.:':ff: ;,,u*::?,,'* (D x v :v x@ with

respect to the identification of Er}Erwith frqgfr. The proof of the associativity

is analogous and will be omitted.
Our motivation was to unify and generalize lhe concept of the convolution of

ordinary regular Borel vector measures as well as that of noncommutative analogues
of vector measures. The following examples show how this goal has been achieved.

Example 5.3. Let X be a locally compact semigroup with a separately contin-
uous multiplication, and let Q: Co(X)tg, and V: Co(X)-Ez be weakly com-
pact operators corresponding to regular Borel vector measures 1t and i, respectively.

By Example 3.9 Coq) is a C*-algebra of type M' when Co(X)':M(X) is equipped

with the multiplication
Qt, v) + ltxtt (p, v<M(X)).

We denote the bounded linear extension of this multiplication to M(X)$M(X)bV
M.The transpose of M is an operator from M(X)'into (AZ146g M(X))'and for
each f€Cn(X) and p,ftM(X) we have

{ f f ts) ct pt(s) dv (t).<M'.f , p&v) : {f, M(pev)) - (f, pxv) -
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Further. the operator M has a bounded linear extension fr: M6XX)*M(X)
given by

I nfrtul : 
* I*/{u)ap(s, /) (-fe c,1x11.

The mapping (s, t)-/(st) is integrable by 112,p.4221.8y the definition of lf its
transpose M' restrictedto Co(X) is the mapping P: Co(X1*golyXX)" defined by

(P(r)G, t\ : f(st) (fcco6); s, rcx).

Let I: M(XXX)'*(M(X)8M(X))' be the transpose of the inclusion mapping
J: M(X)AM(X)*M(XxX). Since M:froJ, we have

M': Iofr'.
Because 1 is also the normal extension of the canonical mapping from C,(XXX)
into (U1X)61 M(X))'(see the discussion after Definition 4.3), the following diagram
commutes.

M'rco(x)/ M(xxx)' \(o sYr
/|\''c,(x)( | r )aOa'\1,/

''r'.t\r, nåu61,/'oxv
Now, the convolution of @ and Y as ordinary regular Borel vector measures is the
composed operator @nY oP. Since P:M'lCo(X), this ordinary convolution

agrees with (@XY)o(M'lCs(X;), the convolution of ö and P, when they are
interpreted as generalized vector measures.

Example 5.4. Let G be a locally compact group and C*(G) its group C*-
algebra. Let ö and Y be noncommutative analogues of vector measures, i.e., weakly
compact operators from C*(G) into Banach spaces Erand,Er, respectively. By [14,
p. 251the convolution of @ and Y can be defined to be the composed mapping
(O@Y)" opr,where p1: C*(G)*W *(GXG) is the restriction to C*(G) of the trans-

vr8

pose fit'of the operator fi: C*(GXG)'*C*(G)' given by

(n1u\1s1: z(s, s) (s(G, u(B(Gxc) : C*(GxG)').

This follows from the definition of pr,

f at', O df (s) : f n1s, t1ctp1(f)(s, t)
d o{.c

(h€cogxc), fe t'191 fl4, pp, 23--257, and the equations

(n@), f) : t u1t, s) d/(s) : I udp,(f) : (u, p/f)),
G GXC

where u(B(GXG1:g"1GXG)' and f€Lt(G). Clearly ft restricted toC*(G)'@r.
C*(G1':31G)6pB(G) is the linear mapping m corresponding to the multiplication
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on.B(G) (Example 3.10). If I: W*(GXG)*W*(G)@W*(G) is the transpose of the
inclusion mapping J: C*(G)'@pC*(G)'*C"(GXG)', we obtain, as in the previous
example, the following commutative diagram.

n,lc*(c) / W* (GxG) \ (@ s y),,/ I \'^C-(G)( | r )E,.&r,\1,/\{,/
z' lc*(c) \r1, q -@ W * (q/ * r*

So, the convolution of @ and Y as generalized vector measures agrees with their con-
volution in the sense of [1a]. Consequently, it also interacts with the Fourier trans-
form ^ of [20] according to the formula @xY)^:6xV (see F4, p.261).

In the previous examples the convolution can be defined yia A"@A" or via
(A@,A)" for some C*-norm a. This reflects the property that in both cases rn:
A'@ BA' * A' has an extension rk: (A@ 

"A)' 
* A' . However, in general it may happen

that m exists but rit does not. With this in mind it seems to be reasonable to construct
the convolution of generalized vector measures making use of the operator m:
A'@pA'*A'.

Finally, we shall consider the convolution of generalized vector rreasures when
the final space has a bilinear multiplication. We begin with the definition.

Definition 5.5. Let A be a C*-algebra oJ'type M' and B a Banach space of
type M". Denote by m, the operatorfrom A6A to B coresponding ro the multiplica-
tion of B. If A: A*B and Y: A*B are generalized uector meesures such that
@8Y is weakly compact, the operator moo(ilxY) is called the algebraualued con-

p,e

aolution of iD and V and denoted by O*Y.
So, @ f P is a weakly compact operator from A into B. The analogue of Theorem

5.2 follows immediately, and we assume again that the corresponding convolutions
exist.

Theorem 5.6. Let A be a C*-algebra of type M' and B a Banach space of type

M". Let iD, Y and X be generalized xector meosttres from A into B. Then iD *Y isbilin-
ear with respect to iD and V. Moreouer, if the multiplicotions of A' and B are commu-

tatiae, then A §Y:Y * iD, and if they are associatiue, then O11V §71:@ &V)§.X.
The algebra valued convolution induces a multiplication on several operator

spaces, for the case when A:C'r(G) see [14, Chapter 5]. Here we shall consider as

an example the space /d(Å,8) of compact operators from A into B. (An operator
iD; A*B is called compact if O(A) is relatively compact in A.)

Lemma 5.7. If iD: Ar*fi, and V: Ar*§, qre compact operators, then

iDxY is compact.
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Proof. By [10, p. a01] @8Y is compact if @ and Y are compact. Hence *n*
is compact so that by Schauder's theorem [5, p. 485] @nY)' is compact. Using the

commutative diagram in the proof of Theorem 4.1 we now deduce that iD'@uV'

is a compact operator and so is also its transpose OXY. The assertion follows now
straightly.

It is easy to see that lloxYll=ll@llllYlj so that lloxYll=ll@ll llVllllmll. tf
A' and B areBanach algebras of type Mu and M"with llmll=t and llmoll<|, re-
spectively, then tr(A,,B) equipped with the algebra valued convolution becomes a
Banach algebra. It is easy to see that in all the examples given in Section 3 we have

llmll=t.
lf A' or.B has the (Grothendieck) approximation propertv, then :{(A,B) is

isometrically isomorphic to,l'$n [16, p. 113], which therefore becomes a Banach
algebra. Moreover, if A' and,B are commutative, we can apply the theorem of
Gelbaum and Tomiyama [3, p.179],which states thatif A'$B is a Banach algebra,
then its spectrum is homeomorphic to o(A')Xo(B).

The o rem 5.8. Let A be a C *-algebra of type M' such that A' is a Banach algebra.
Let B be a Banach algebra of type M". If the operator norms of m and mu are less than
or equal to one, then .% (A, B) is a Banach algebra. Moreouer, if A' and B are commu-

tatiue and one of them hqs the approximation property, then o (/{(A, B)) is homeornor-
phic to o(A')Xo(B).

This theorem can be regarded as a -eeneralization of a result of P.S. Chow [,
p. 1181. He has proved that 6(tr(C0(c), C(x))) is homeomorphic to o(Co1C1')x
o(C 1X1), where G is a locally compact commutative group and K a compact space.
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