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EXTERIOR BOUNDARY VALUE PROBLEMS
FOR ELLIPTIC EQUATIONS

J. SARANEN and K. J. WITSCH

1. Introduction

In some exterior domain QCR”", n=2, having a smooth boundary I'y:=9Q,
we consider a strongly elliptic operator
(1.1 A= 3 (=D"9*(a,,0°)
0=lal, [f|=m
of order 2m, m=0. Our aim is to prove Fredholm theorems with explicitly stated
solvability conditions for the problem

Au =f,

(1.2) )
Biulr,=g;, j=0,..,m—1,

where the boundary operators
1.3) Bju:= IZ b;,0"u
|v|=m;

of order m;=2m—1 are supposed to cover the operator A4 and to be a normal
system on the boundary I'y. The coefficients are assumed to be smooth on the
closed domain @=QurI,. In addition to equations (1.2), we shall later impose
an additional condition for the behaviour of the solution at infinity. This is necessary
to guarantee that the boundary value problem is of Fredholm type. The conditions
of solvability will be stated explicitly by means of an appropriate adjoint boundary
value problem.

Our results will cover e.g. potential equations as well as problems of the radia-
tion type.

In the case of bounded domains the solvability properties of the regular problem
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(1.2) in the Sobolev space H®*"(Q) for the data

m—1
(f; &os -+ » Em-1D ELA(Q) X ]Yo H ="~ (L)
j=

are well known. In particular, the associated operator u—(Au; By, ..., By_14)
is an indexed operator and the conditions of the solvability of (1.2) can be described
by an adjoint boundary value problem, Lions and Magenes [21], Theorem 5.3,
p- 164.

No corresponding general results are known for exterior domains. On the
other hand, there are numerous papers dealing with special problems of type (1.2)
in exterior domains. To obtain a reasonable theory, the behaviour of the solutions
at infinity has to be taken into account. We mention the main types of problems
which have interest from a purely mathematical point of view as well as due to
their applications in mathematical physics.

An important class of earlier papers considers problems where a “‘radiation
condition” must be satisfied. The simplest example is the reduced wave equation
where A=A-+k2, k=0. This operator and its second order generalizations have
been studied by Eidus [7], Jager [13], Saito [30], Wilcox [42] and Witsch [43] among
others. For earlier references, see the literature in these articles. These papers,
apart from [42] and [43], deal with the Dirichlet boundary condition where the
corresponding boundary value problem is uniquely solvable.

In [43] an oblique type boundary condition is considered. A Fredholm alternative
is proved with explicitly stated solvability conditions.

Generalizations of the theory of the reduced wave equation, also called Helm-
holtz’s equation, to higher order equations were given by FinoZenok [9], Grusin [10],
Vainberg [35], [36] and Vogelsang [38], [39]. Apart from [36] only the whole space
problem or the exterior Dirichlet problem is discussed. In [36], Vainberg considers
general regular boundary value problems and proves a Fredholm type result. How-
ever, the orthogonality conditions are not described.

The potential equation has also been solved in the whole space or in exterior
domains, Courant and Hilbert [4], Kudrjavcev [16], Meyers and Serrin [22], Neittaan-
maki [23] (fourth order), Saranen [33], Witsch [43]. For a comprehensive treatment
including nonlinear problems with the Dirichlet boundary condition we refer to
Edmunds and Evans [6]. In dealing with problems of this type, one uses function
spaces which, roughly speaking, require that the functions fall to zero sufficiently
rapidly at infinity. The results concerning the potential equation (Poisson equation)
can be extended to other static problems, as we shall see in Section 4 of the present
paper.

Whole space and exterior problems for polyharmonic equations and for more
general related equations were considered by Paneyah [24], Saranen [32], Vekua[37]
and Witsch [45]. They have defined the solution by a suitable decomposition method
which reduces the problem to a system of lower order equations. In the exterior
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case the boundary conditions were of the Dirichlet- or Riquier-type, which in the
polyharmonic case A=A4" prescribes u, 4u, ..., A™=Yy at the boundary (cf. [37],
p. 347). The plate equation, which represents a fourth order equation and describes
real physical phenomena, partly falls into this group. Related exterior problems
have been studied by Leis [18], [19], Neittaanmiki [23], Polis [27], Saranen [31],
Wickel [40], [41] and Witsch [44].

Here we give a unified approach to the general exterior boundary value problem
(1.2) under the assumption that the corresponding Dirichlet problem can be solved
for an exterior subdomain of Q. We use the alternating method, which goes
back to Schwarz and was employed by Leis [17] and Witsch [43] in the case of
exterior problems. It is worth observing that in contrast to these works no unique
continuation property is needed in our modification of the alternating method.
The importance of this lies in the fact that the unique continuation is not valid for
all elliptic equations; for counter-examples see Pli§ [25], [26] and for the cases where
this property has been verified see e.g. Calder6n [3] and Protter [28].

The solution is built up from solutions of an exterior Dirichlet problem and
a boundary value problem in a bounded domain, imposing the boundary conditions
(1.2) on its boundary component I',. The fact that the unique continuation prop-
erty can be avoided is essentially due to an effective use of Fredholm inverses
of the linear operators describing the auxiliary boundary problems.

According to our key result, Theorem 3.6, problem (1.2) has a finite index
which is exactly the sum of the indices of the auxiliary problems mentioned above.
Furthermore, we are able to give the orthogonality conditions for the solvability
by means of an adjoint exterior boundary value problem.

In the remaining sections we shall apply Theorem 3.6 to various types of
problems. In Section 4, potential type problems are discussed. These are the prob-
lems of the form (1.2) where the coefficients of the elliptic operator 4, not belong-
ing to the principal part, fall to zero sufficiently rapidly at infinity.

In Section 5 we achieve a Fredholm theorem for general elliptic radiation
problems. Thereby we apply the results of Vogelsang [38], [39], derived for exterior
Dirichlet problems. Thus, our Fredholm theorem for the radiation problems in
this section is achieved essentially for the class of operators considered by Vogelsang.

For x - <o, the operators discussed in Section 5 have to tend to a limit operator
A..(9) with constant coefficients. A crucial assumption on this limit operator is
that the zeros of A..(¢) are simple. This condition is violated in the case of prod-
ucts of Helmholtz operators, which we treat in the last section.
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2. Preliminaries

2.1. Notation. If A is a subset of the Euclidean space R", then A and 94
denote the closure and the boundary of 4 in the topology of R”. If for two subsets
A and B holds AcB and if A is compact, we write 4ccB.

We use the standard Sobolev spaces H*(Q), s=0 for functions in  and the
boundary spaces H*(I'), s€R. For the definition of these spaces, see Lions and
Magenes [21], p. 34, p. 40. Thus we have LA(Q)=H%Q) and LXI)=HI). In
the spaces H®(Q) and H°(I') we use the norms | :[,o and | .|, . When
appropriate, the norm of the space X is also denoted by |[|-[(X). The spaces
I%(Q) and LXI') are endowed with the usual L? inner products (u[v), o and
(ulv)o, r» respectively. The last notation is also employed for the sesquilinear duality
pairing for the pair H*(I'), H ~*(I')=(H*(T ))’, extending the LX) inner product.

2.2. Regular boundary value problems. We recall the contents of the essential
notations in connection with regular boundary value problems. This notion is
usually employed for boundary value problems in bounded domains. Here the
same term also is used for exterior problems when the corresponding conditions
without any “boundary condition at infinity” are satisfied.

Let

(21) A2m(x9 6) = | I—%]— aaB(x) £a+ﬁ’ x€ Qa éER”

be the characteristic form of the differential operator

22) A= 3 (D)

0=|af,[B]=m
We assume that the coefficients a,; are smooth in @, a,,6C=(&2). The operator
A is assumed to be properly as well as strongly elliptic in Q. The proper ellipticity
of A means that for any fixed x€Q and linear independent vectors &, n€R" the
polynomial A, (x, E+1n7) in 7 has exactly m roots with positive and m roots
with negative imaginary parts. By the strong ellipticity in @ we assume that for
any R=0
(2.3) Re Ao (X, &) = ao(R)[E™, (x, OEQ(R)XRY,

where ay(R)>0 and Q(R):={x€Q: |x|]<R} (cf. [21], p. 110—111).
Furthermore, we suppose that there are given boundary operators Bj,

j=0,...,m—1 of order m;=2m—1 such that

2.4) B;= 3 b9

[v[=m;

and that the coefficients b;, are smooth, b;,€C=(I).
For the following definitions see [21] p. 112—114.
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Definition 2.1. A system {D;};_, of boundary operators
Dj:: | ék dj‘,(x)av

is normal on I, if ’

(i) k;=k; for i#j,

(ii) 2[v1=kjdjv(x)5v¢0 for all ¢>0 such that ¢ is a normal vector of I, at
the point x€l'y.

The system is a Dirichlet system of order k if it is normal on I', and if the
orders k; of D; form a permutation of the numbers 0, 1, ..., k.

Definition 2.2. The system {B,}j—y covers the operator 4 on I if for
all x€I, and E€R", €0, such that ¢ is tangential to I', at x, and for all
neR™, n=0, such that n is normal to I'y at x, the complex polynomials of 7,
Z|v1=mjij(x) (E+7)', j=0, ..., m—1 are linearly independent modulo the
polynomial JI,(t—tf(x, & n)), where t/(x, &, n) are the roots of the polynomial

Apu(x, E+7117) in T with positive imaginary part.
Finally, we recall the definition of a regular boundary value problem

Au =f, inQ,

(2.5) .
Biulr, =g, j=0,..,m—1.

Let us first remark that regular boundary value problems (2.5) have been studied
completely in bounded domains. The term ‘“‘regular” does not require that the
operator A be strongly elliptic as supposed by us for exterior domains. For the
regularity of (2.5) it is enough that the operator A is properly elliptic. We shall
point out where our stronger assumption comes into use.

Definition 2.3. Let 4 be a properly elliptic operator of order 2m in @
with smooth coefficients in @ and let {B;}7-J be a system of boundary operators
B; with smooth coefficients in I'y and of order m;=2m—1. Then the boundary
value problem (2.5) is regular if {B;}7-¢ is a normal system covering the operator
A on I,.

For shortness we also say that the problem (A4; {B,}7=y) is regular.

2.3. Solvability in bounded domains. In treating the exterior boundary value
problem we shall make use of the solvability properties of regular problems in
smooth bounded domains.

The exact statement of problem (2.5) in the space H*"(Q) is given as follows.
With the problem (4, {B;}j=)) we associate an operator #:H(Q)—~L* Q)X
]]j"';o1 HEm=mi =R (C )= L(Q)X X, such that
(2.6) Pu = (Au; By, ..., B,,_u) =:(Au; Bu),
where B;ju€ H*"~"i=Y*I'y) is defined as a trace. Now, given the data (f:g):=
(5 Qo -+» Gm—1)ELH(R)X X,, the function u€H®(Q) is a solution of (2.5) if
and only if we have Pu=(f; g).
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The essential tools in describing the solvability of problem (2.5) are Green’s
formula and an appropriate adjoint problem. Let A* be the formal adjoint of 4
27 A*= ¥ (=1)F9*(a,0"

0=|a|, |Bl=m

and let C={C,}r=; be a system of boundary operators C; with smooth coef-
ficients and of order pu;=2m—1 such that {C;}7=¢ is adjoint to {B;}7=; in the
sense of [21], p. 121. This means that there exist two families S={S;}7-3 and
T={T;}7=y of boundary operators S; and T; with smooth coefficients and of
order 2m—1—p; and 2m—1—my;, respectively, such that the systems {B;S}

and {C; T} are Dirichlet systems of order 2m, and that we have Green’s formula

258) (Aulo)o.0— (Ul A" )0, 0 = ; (B350, ro—(S;u|CyY0.r7)

for all u, ve H*™(Q), cf. [21], p. 114—115 with different notation.

The adjoint problem
A*u  =f,

Cjulrozg}', J=0, ey m—l,
is given by the operator 2*: H*"(Q)—~L*(Q)X X, such that
(2.10) P*u = (A*u; Cou, ..., Cppqtt).

(2.9)

The adjoint boundary value problem is not uniquely defined. However, any adjoint
problem makes it possible to describe the solvability conditions of boundary value
problem (2.5). If, in particular, Bu=yu=(d/on)’ u| r,» then C; can be chosen
as C;=y;. We recall that the linear operator 7' :X-Y, with normed spaces
X and Y, is an indexed operator if its kernel N(T) is finite dimensional and if
its range R(T) is closed and has a finite codimension. The index %(T) is given by

(2.11) x(T) = dim N(T)—codim R(T).

The solvability of regular problems in the space H*"() is settled by the following
result ([21] p. 164).

Theorem 2.4. Let #=(A4; By, ..., B,,_1): H*™(Q)~L¥Q)X X, describe a regu-
lar boundary problem in the smooth bounded domain Q and let 2*=(A*; C,...,C,,_1)
describe an adjoint. Then P is a continuous indexed operator and for the range R(P)
the following characterization is true: the data (f; g, ---» 8n-1)ELH(R)X X, belong
to R(P) if and only if

m—1
(2.12) (flv)o,n"Jé; (giIT;v)o,r, =0
for all vEN(P*). Thus we hqve codim R(#)=dim N(2%),
(2.13) #(?)=dim N(#)—dim N(2%).
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Note that 2*: H*™(Q)~LXQ)X X, is also a continuous indexed operator and that
P is an adjoint of P* in the previous sense.

2.4. Exterior problem, assumptions. Let now € be an exterior domain with
the smooth boundary I'y. We consider the regular boundary value problem (2.5).
We shall define this problem and describe its solvability in a similar general frame
as was presented in the previous section for bounded domains. However, the be-
haviour at infinity must be taken into account.

Let us abbreviate

H;, (Q) = {uc H*(Q)| supp u bounded},
Hiyo(Q) = {u€ Hyy (Q]oue HS(Q), ¢€D(R"),
H§ 100 (2) = {u€ Hi\o (Q)oue H§ (Q), @€ J(R™)}.

Here supp u is the support of the function u and, for any open set J—R?”, (D)

denotes the space of infinitely differentiable functions ¢ with supppcc @ (the

“testfunctions of @7). Furthermore, HJ(@) is the closure of 2(J) in HYSD).
We define problem (2.5) by means of the operator

(2.14) P I(@) ~K@X [] H™m=12(I) = K@ XX,
i=0

where 2 is defined by (2.6) and where J(Q) and K(Q) are given linear function
spaces. The exterior problem (2.5) is now stated as the equation

(2.15) Pu=(f; g).

In order to describe the solvability of (2.15), we introduce the adjoint #* of 2
such that

(2.16) P THQ)-K(Q)X X,
and that
(2.17) P*u = (A*u; Cu) := (A*u; Cou, ..., Cpoqtd),

where the system {C,}=¢ is adjoint to {B,}"=¢. The spaces J ™)(Q) and K(Q)
(J¥)(Q) denotes either J(Q) or J *(Q)) are required to satisfy certain conditions
which are given by the following assumptions (A1)—(A6).

First, we assume that

(Al) () HiG (@I (Q)c Hin (D),

(i) K(Q)cL¥Q); either K(Q) is normed and the inclusion is continuous,
or K(Q)=H),(Q) equipped with the locally convex topology of HY (Q).

(iii) Au€K(Q), A"vEK(Q) if ueJ(Q), vEJ*(Q).

In particular, assumption (Al) guarantees that the values 4 u and A*v as
well as the traces Bu and C;v are well defined.

An essential feature of the spaces J™)(Q) is that they characterize the behaviour
of their elements at infinity. This is the property included in the next assumption.
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(A2) For any @€2(R") holds
(2.18) J*(Q) = {uc H(Q)|(1—@)uc J*(Q)}.

The spaces J™(Q) and K(Q) are assumed to be ““dual” in the sense that we have
(A3) ufe L(Q) if ueJ®(Q), fEK(Q).
In the sequel, if ufc L'(Q), we write
(] fo,0:= fuf
Q
Furthermore, we suppose

(A4) For every u€J(Q),veJ*(Q), both vanishing in a neighbourhood of T,

(2.19) (Aulv)o, 0 = (4| 4%}, 0
is valid.

By definition of the adjoint A*, formula (2.19) is true for all testfunctions
in Q. Loosely speaking, hypothesis (A4) means that A* is also adjoint to 4 with
respect to the conditions at infinity included in the requirements u€J (), v€J*(Q).

It is worth observing that conditions (A4), (A2) imply the general Green
identity

(2.20) (Aulv)o,n‘“(ulA*U)o,n = Zl(<BjulTjU>0,Fo_<Sjulcjv>0, ro)
for all u€J(Q) and veJ*(Q).

Our last assumptions concern the auxiliary exterior Dirichlet problem. For
every smooth exterior subdomain @, Q, we first define

(2.21) J*(Q) = {ulnl |uc J* (Q)}’
(2.22) K(@) = {ulg, |u€K(Q)}-

The exterior Dirichlet problem and its adjoint are defined by means of the
operators

m—

1
(2.23) P2 J(Q) — K(Q)X [ H™ =2l =: K(Q) X X,
j=0

(2.24) Pi T (Q) ~ K(Q) X X1,

I,=09Q,. These operators are given by

(2.25) Poui= (Au; Yoy ..., Yy—rtd) =: (Au: yu),
(2.26) Piu= (A*u; yoldy -5 Ym—1¥) =: (A*u; yu).

Above, 7y, is the trace operator yu=(/dn)'u|r , where the normal vector n is
always chosen in the exterior domain.

We assume that the Dirichlet problem has certain solvability poroperties. How-
ever, we do not require that the explicit conditions given by adjoints be known.
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This will be proved as a special case in Theorem 3.6. Furthermore, we assume the
knowledge of the auxiliary problem only for one exterior subdomain @, of Q such
that Q,c Q.

In the following we shall use the term weakly indexed for linear operators T.
By this we mean that the kernel of T is finite dimensional, and that the range of
T has a finite codimension. The completeness of R(T) will be replaced by condi-
tion (A6).

Our next assumption reads:

(A5) For a smooth exterior subdomain @,CQ the operators #; and 25 are
weakly indexed operators such that

(2.27) %(2,) = dim N(2,)—codim R(#,) = codim R(#})—dim N (@) = —»(#)).

According to (AS5) there are operators .?71“ L K(Q)X X, ~J(Q,) and (QA’}‘) 1 K(Q)X
X, ~J*(2,) with the properties

(2.28) PP =0y, PP =I-P,
(2.29) PHPD =0y, (PHPE=1-P,,

where Q, and Q, are projections onto the range R(Z;) and R(ZY), respectively,
and where P, and P, are projections onto the kernels N (#,) and N(2}), respec-
tively. Because of (2.28, 2.29), we shall use the term * ‘pseudoinverse” for these
operators (cf. Jorgens [14]).

We assume that from the (possibly many) choices of the pseudoinverses

?/A’; ! and (91*) ! at least one is continuous as a mapping from K(Q)XX; into
He(©Q,) and is such that Q, and O, are continuous.
Thus, by denoting Q,(R)={x€Q,| |x|<R}, we require

(A6) There are pseudoinverses .@f and (9’ )~ such that

(2.30) 1252 (f; @)llam, 20y = ¢ R (111 (K(Q0)+ 1 gl (X)),
(2.3 1D @llam, oy = ¢RI (K@) +] gl(x),

in the case where K(Q) is normed. If K(Q)=H vox(2), then (2.30) and (2.31)
are replaced by -

(2.30y 'I«q;fl(ﬁ g)“2m,91 ® = c(R, S) (”f”o+“g” (Xl))a

(2.31y @D Dllam, 2y = (R, S)(If o+ gll (X))

for all (f; g)€K(2,)XX, such that Q,nsupp f Q(S).
As an illustration we mention the case of the Poisson equation

(2.32) Au=f.
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There we may choose
K(©Q) = {feLX@)|(1+|x)feL* (D)},
JO(Q) = {u€ Ha (D)|Aue K(Q), Vue L*(Q)", (1+ [x]) 'ue L2 ()}

if the dimension of R" is greater than two.
For the Helmholtz equation (k=0)

(2.33) (A+k)u=f
we may employ the spaces

K(Q) = {feLX @I +|xDSe L@},

J(Q) = {uc H3.(Q)|(4+k?uc K(Q), —807 u—iku€ L*(Q)},

J*(Q) = {u€ HE.(D)|(4+ k»Huc K(Q), g—- u+ikue L2(Q)}.

In both of these examples holds N(2,)=N(21)={0}, R(#)= R(P})=K(Q,)XX;.
However, there are cases where these relations have not been proved, but the above
assumptions (A1)—(A6) are valid. For a more complete treatment we refer to the
applications given in Chapters 4—6.

3. Solvability conditions

In this section we prove a Fredholm type theorem for the exterior problem
(2.5) defined by equation (2.15). The solvability condition will be stated explicitly
by means of the adjoint 2*.

We choose the exterior subdomain ©,CQ with the smooth boundary I';=
909Q,c Q. Furthermore, let Q,CQ bea smooth bounded domain such that R"™\ @, cC
Q,UR™ Q). The domain €, is chosen such that with Q,:=Q,nQ, the Dirichlet
problem

Au = fEL2(Qy,), u€H (1),
3.1) JfeL? (€2 (2:2)

yulp, = g€ HIV(Ty), j=0,..,m=1, k=12,

,=(0RQ:)NQ;, is uniquely solvable. 1f €, has been fixed, such a choice of £,
is always possible. This follows from the strong ellipticity of 4 and from Poincare’s
inequality if the width of €, is chosen small enough.

We abbreviate X,= [/, H*"~7="*(I';) and define the mapping

3.2 Py H™(Q,) - L2(25) X XX X,
by
3.3) Pou = (Au; Bu; y*u)
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with y2u=(y0ul,—2, ey ym_lulrz). Let 972_ ! be a Fredholm inverse (continuous
pseudoinverse) of £, such that

(3.4) PPt =0y, PPy =I1-P,,

where Q, and P, are projections onto the range R(%,) and onto the kernel N(Z2,).
The following result is crucial in our modification of the alternating method.

Lemma 3.1. Let ucJ(Q) be a solution of equation (2.15). Then we have
(3.5) ulo, = P5*([flay; &5 v*u)+Po(ulg,),
(3.6) ulo, = P71 (fla 71+ Pi(ulg),

BN PP las 1P (flaws 85 70 +7 Po(ula) +72 Py (ulg) = y2u.

Conversely, if there are the functions (h; w; v)EXy X N(P)XN(P,) such that with
(f; 9)EK(Q)X X, the relations

(3.8) (flas: 83 WER(P),
(3.9) (Fla 1'25 (flass 83 B)+7'0)ER(PY,
(3.10) PPN flay 1P (flays 25 B)+710)+92w = h

are valid, then we have (f; 2)€ R(P) and a solution u of (2.15) can be given by

u={u2’ in  Q,,

(3.11) u, in Q,

where the functions

(.12) ty =25 (flay; g5 W)+,
(3.13) = P (flays v'u) +w
coincide in Q5.

Proof. Suppose that ucJ(Q) satisfies Pu=(f;g). Then we conclude
u[92€H2’"(QZ) and

(3.149) (fla.s g5 v2u) = (A(ulo,); B(ula,); y*(ula,))€R(ZP).
Similarly, uIQIGJ (2,) with
(3.15) (flays v'u) = (A(ulq); v (ulo,))ER(PY).

Using properties (3.4) and (2.28) of the pseudoinverses é’; ! and .@1‘ ! we can
write (3.14) and (3.15) equivalently as (3.5) and (3.6), respectively. When we take
a trace, (3.5) and (3.6) yield formula (3.7).

Let us assume conversely that we have (f; g)€K(£2)X X, such that for a triple
(h, w, V)EX, X N(P) X N(ZP,) equations (3.8)—(3.10) are valid.
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We show first that the functions u; and u, defined by (3.12) and (3.13) coincide
in Q. Define v;=w]p, and v, =tslg . Now, we obtain v, o€ H™(815)
together with

sz =fl!212’
(3.16) 120y = Y2y = Y P (flays &5 W) 4720 = h,
Vive = yluy,

and, by (3.10), together with

Avl :fi.ng’
(BA7)  y'vy =7y'us,
2or =y = (P flay (P (o 85 W) +710)+92w = h.

By the unique solvability of the Dirichlet problem (3.1) we obtain from (3.16), (3.17)
the assertion v;=v,.

Since the functions u, and u, coincidein Q,,, the function u given by (3.11)
is well defined. We verify that ucJ(Q). Let ¢€Z(R") be a testfunction such that
&x)=1 in an open set containing R™\ @, and such that the support of ¢ is included
in QUR™\ Q).

Defining
2 E) Q )
and
1— 1 ’ Ql,
(3.19) ﬁl(x)z{g £(x)) 1 (x) ;cgg\gl

we have the representation

(3.20) u= ﬁl ‘I_ ﬁ: .
Since fu, € H™ (Q,)cJ(Q,), one concludes
g, = U1— Eu, €T (),

which by (2.18), (2.21) yields

(3.21) hE J ().
Furthermore,
3.22) hEH (Q) C J(Q).

By (3.20)—(3.22) we have u€J(Q). From the construction it follows that
Au=f, Bu=g

and therefore Zu=(f; g). This ends the proof.
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We define the linear operators L;, j=0,1,2, letting

(3.23) Lo(f3 @)= ¥ 27 (flay: 725 (flay; 2: 0).
(3.29) Li(f38) = (I=0)(fla;: 7' 25 (flay: 2; 0)),
(3.25) Ly(f;5 8) = (I—=05)(flays g; 0).

Accordingly, these operators map as follows: Ly: K(Q)X X,~X,, L,: K(Q)X Xy~ Y,
and L,: K(Q)XX,~Y,. Here Y, and Y, are the finite dimensional spaces ¥,=
=I—0)(K(2,)XX;) and Y,=(— 0:)(LH(25) X Xy X Xy). In particular, dim Y, =
codim R(P;), dim Y,=codim R(P,).

Conditions (3.8)—(3.10) are equivalent to the system

(3.26) Ly (f; 8) = (Q.—1)(0; 0; h),
(3.27) Ly(f 8) = (@1 — D) (0: y* 251(0; 0; b)) +(Q,— 1) (0; y'v),
(3:28)  Ly(f; g) = h—y2 27 1(0; 92 25(0; 0; h))—y2 P71 (0; o) — 2 w.

Let us introduce the operators

Ayt Xy ~ X,

(3.29) R R
Arh = h—y2 27105 91 251(0; 0; h));
Ay N(Z) X N(P,) — X,
(3.30) R
As(w, v) = —y2271(0; yro) —y2w;
Azt Xy > Y1 XY,
(3.31) R
Ash = ((Q1—1)(0; y' 251(0; 0; h)), (Q,—1)(0; 0; h));
Ay: N(PYXN(Py) ~ Y, XY,,
(332) 4 ( 1) ( 2) 1 2

Ay(w, v) = (@1~ 1) (0; y*v), 0).
Equations (3.26)—(3.28) are equivalent to

Ly(f; 8 = Ath+Ay(w, v),

(Ll (fs 2), L, fs g)) = Azh+A4(w, v).

Finally, we introduce the linear operator A: XyX(N(2)X N(2,))—~X,X (Y1 X Ys)
by the matrix representation

(3.34) A= [A1 Az).

A3 A4
We have

(3.33)

Lemma 3.2. The kernels N(?) and N(A) are isomorphic.
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Proof. Let (h, (w, v)) be an element of N (A). Since equations (3.33) or equi-
valently (3.8)—(3.10) are valid with (f; 2)=(0; 0), we may, by Lemma 3.1, define
the function u:=T(h, (w, v))€J(2) by the requirements

(3.35) ulg, = P72(0; 0; )+,
(3.36) ulg, = P05 v (ulg,) +w.

By Lemma 3.1 u€N(#). The mapping T : N(A4)—~N(2) is linear, too.
Suppose that u=0. Then we conclude from (3.36) that

(3.37) w = ulg,—P71(0; 7 (ulay) = 0.
By equation (3.10) then
(3.38) = 2 P05 9 (ulgy) + 72w =0

and (3.35), (3.38) yield v=0. Consequently, the mapping 7T is injective. But it is
also surjective since by the first part of Lemma 3.1 we obtain

U= T(y2u> (Pl(u|91 ’ P2(“]Qz)))
if u€N(#). This completes the proof.

In order to prove the Fredholm alternative it is convenient to discuss the mapping
M:Z~Z, Z =X X(N(P)XN(P))X(Y1XY,), where M is given by the matrix

A, Ay 0
M=|0 0 0.
A; A4 O
We need the following lemma

Lemma 3.3. The mapping h—»yzﬁfl(o; P P7Y0; 0; h)), X,—~X, is compact.

Proof. The mapping w—7* 27Y0; w), X;—~X, is continuous by the continuity
of y2: H2"(2,)~X, and by assumption (A6), which states that the pseudoinverse
Pl K(Q)XX,~H2(Q,) is continuous.

Accordingly, it is enough to show that the mapping h—»ylé’{ 1(0;0;h) is
a compact operator X,—X;. This property is independent of the choice of the

Fredholm inverse 25 since two Fredholm inverses differ only by a finite dimensional
continuous operator.

We choose the Fredholm inverse é’; ! in the following way. The range R(%,)
can be characterized as (Theorem 2.4):

(3.39) (f; g; WER(P,) if and only if (f; g3 hELYQ) XX X Xp =1 Z,
such that
(f[v)o,ﬂz—':;_:«gjlij>0,I'o+<h.i]ﬁjv>0,T2) =0
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for every vEN(Z5). Here 2 denotes the adjoint operator Z5u=(A*u; Cu; y%u)

and the operators T, f; are chosen such that (Cy, ...,C,_1; Ty, ..., T,,_1) and

(Yos «++> Ym-15 Bos -++s Bm—1) are Dirichlet systems of order 2m on I, and on T,.
According to (3.39) we may use the direct decomposition

(3.40) Zy = R(Z)DY,,
where
(3.41) Y, = {(v; —Cuv; —Bv)|vE N(&5)}

with S=(Bg, ..., Bu—1)-
Take (0; 0; h)eZ, and write w=?/°’2“ '(0; 0; h). Then we obtain by (3.4)
(3.42) Pow = 0:(0;0; ) =:(f} &; h).
Since the kernel N(£*) contains only smooth functions in £,, we conclude
JEC=(8y), g€C=(Iy) and
17150, = cOIRI(X),

(3.43) 18ll<,r, = c (@ hll (X2),
IAlI(X) = cllhll (X).
From the interior regularity results for elliptic operators it follows by (3.42) that
WEH™ Q) with
(3.44) Wlani1,5 = (U0, 5+ 1wl o)

for interior subdomains éccﬁcc Q;. By (3.43), (3.44) and by the continuity

of #;' we obtain
(3.45) Wl 1, & = cllh] (Xa).

From (3.45) it follows that h—»gA‘z_ 1(0;0;h): X, —»Hz'”(é) is compact, which yields
the assertion by the continuity of the trace y': H2"(Q,)—~X;.

In the sequel the space X, as well as the finite dimensional spaces N(Z,),
Y; and their products are considered as Hilbert spaces. The appearing adjoints

13

and orthogonality conditions are thus well defined.
We define L: K(Q)XX,~X,XY, XY, by

(3.46) L(f; 8) = (Lo(f; @) Li(f; 8)5 Lo(f: )

Furthermore, we write f;=codim R(%;), «;=dim N(%;) and for the index of 2;
(3.47) X '_"aj_ﬁj,

J=1,2. For 2 we use the notation x=oa—p, a=dim N(2), f=codim R(2).

Lemma 3.4. The following assertions are true.
(@) The operator M is of the form M =I—K, K compact.
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(b) The kernel N(2) is finite dimensional and we have
(3.48) = dim N(M)—f,—B..
(c) For the range R(P) we have
(3.49 R(P) = {(f; €K Q)X Xo|L(f; 8) L N(AN},
where the kernel N(A*) has the dimension
(3.50) dim N(A™) = a—3;—x,.

Proof. According to the previous lemma we have A,=I1—K;, where K; is
a compact operator. This implies assertion (a) as the spaces N(Z2,)XN(#,) and
Y, XY, are finite dimensional.

Assertion (b) is a consequence of the formula

N(WM) = N(A)X(Y;XY5)

together with Lemma 3.2 and the fact that the kernel N(M)=N(I—K) is finite
dimensional by the compactness of K.
By equation (3.33), the condition (f3 g)€R(#) can be written as

(3.51) (Lo(f; 8); 0: (L (f; @)s La(fs @)))ERM).
By the Fredholm properties of M =/—K, the requirement (3.51) is equivalent to
(3.52) (Lo(f; 85 05 (Ly(f3 s La(f: 2))) LN(M™),
where M*: Z—~Z is given by
AF 0 AF
(3.53) M =|A: 0 Arl.
0 00
Condition (3.52) reads
(3.54) (Lo(f; 8); (La(f: ), La(f 2))) L N(AY),
where the operator A*: X,X (Y1 X Y3) =Xy X(N(21)X N(2y)) is defined by
Af A*]
* __ 1 3
(3.55) A* = [A;‘ A )

We have N(M*)={(g1; &2} ga)l(&1s g3)EN(AY), 2EN(P)XN(P,)}, which by
(3.48) yields

dim N(4*) = dim N(M*)—(ay +a) = dim N(M)— (o +2) = &= %3~ %;.

Our aim is to express the solvability by using the adjoint problem defined by
means of #*=(A4*; C). We note first
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Lemma 3.5. Let ucJ(Q) with Pu=(f;g) be given. Then we have the ortho-
gonality relation

m—1

(3.56) (f10)o.0— 2; <gj|TjU>o,n, =0
j=
for every vEN(P*).
Proof. This follows from the general Green formula (2.20).

Finally, we get our main result for the solvability of the exterior boundary value
problem (2.15).

Theorem 3.6. Let QCR" be an exterior domain with a smooth boundary
I'y. Furthermore, let A be a strongly elliptic operator in Q and let {B;Yr=y be
a system of the boundary operators B; on Iy such that problem (2. 5) is regular.
If assumptions (A1)—(A6) are vall'd, then the operator 2:J(Q)—~K(Q)X
II- JLHE VYY), Pu=(Au; B, ..., B,,_u), which describes the exterior
problem (2.15), has the finite index x=1x,+x,, where x; is the index of the auxiliary
operator Z;.

Solvability conditions read: the data (f; g)cK(Q)X 117 GLHEM =M=
belong to the range R(ZP) if and only if equation (3.56) is valld for all vEN(P™).

Proof. We first show the inequality

(3.57) dim N(2*) = dim N(A4%).
Take a testfunction @€ 2(R"), =0 and consider the mapping R: N(#*)—N (A%
(3.58) Rv = II1L(¢v; 0),

where IT is the orthogonal projection of X,X(Y;X Y. ;) onto N(A*). Since the
space N(27) is finite dimensional (for the same reason as N (#)), we may choose
the support ¢ so large that for all v€ N(2*) holds

[olvr=0

if and only if v=0. But then the mapping R is injective since from Rv=0 it
follows that ITL(gv;0)=0, which means L(¢v; 0)éN (A%)*. Accordingly, by
Lemma 3.4 (c), there exists a solution # of the equation Pu=(¢v; 0). The neces-
sary solvability condition (3.56) then yields

(3.59) 0= (pv[o)o.a = [P
2

implying v=0.
Thus (3.57) is proved. Combining (3.57) and (3.50) we obtain

(3.60) dim N(2*) = dim N(4*) = dim N(P)—x; —x,.
Changing the roles of # and 2* one concludes
(3.61) dim N(2) = dim N(P*)+3,+x,.
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Inequalities (3.60) and (3.61) imply

(3.62) dim N(2)—dim N(P*) = % +x,.

It remains to show that dim N(2*)=codim R(£), that is, that condition (3.56)
is also sufficient. Let (f; g)€K(2)X X, such that (3.56) holds, be given. Comparing
formulae (3.50) and (3.62) we observe that dim N(2*)=dim N (A*). Accordingly,
the mapping R also is bijective. Hence we find an element vEN(2*) such that
(3.63) OL(f—o¢v;2) =0.

But Lemma 3.5 and characterization (3.49) then yield

m—1
(3.64) (f—v]v)e,0— 2; (g;|T;v)o.r, = 0.
i=
By condition (3.56) and formula (3.64)

(pv[v),0 = 0,

which implies @v=0. But (3.63) then implies I1L(f;g)=0, which according
to Lemma 3.4 means that (f; g)€R(Z).

4. Potential type equations

In this section we apply Theorem 3.6 to the case where the coefficients a,,
of the operator
4.1) A= 3 (=D (a,,0%

0=lal,[p]=m
not belonging to the principal part |a|=|B|=m fall to zero sufficiently rapidly at
infinity. A typical example is the iterated Laplacian 4=4".

In order to discuss the general exterior boundary value problem we introduce
some appropriate weighted Sobolev spaces. The weights will be chosen such that
the Dirichlet sesquilinear form
4.2) B(u,v) = - %’B] (a,50Pu| 070}, o
associated with the operator A becomes, under certain assumptions on the co-
efficients, coercive for the Dirichlet problem. This will be achieved by estimating
the terms which do not belong to the principal part by means of the weighted Poincaré
inequalities of the type

4.3)

0*u :
(A +1x))* In(e+]x])°
for 0=j=m—1 with the seminorm |-|, o such that

4.4 [ulm, @ = ‘042: 107 ull§, o-

= C|ulp2n,9
0,0

laf=J
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Estimates (4.3) are first proved in the space Z(). The parameters t and R
where t=0 and 0=0 or 1, will be dependent on m and ; as well as on the space
dimension n.

We begin by considering exterior domains @ such that the origin x=0 does
not belong to Q.

Lemma4.l. Let QCR", n=2 be an exterior domain such that x#0 for all
x€Q. The following three assertions are true.
(i) If ©€R, 10 and if n=2t, then we have for all u€P(Q) the estimate

Vu

I!tl

u

(4.5) E

=2]2r—n|"1

0,9

0,9

(i) Let x|=e forall x€Q. If 2t—n=0, we have

u Vu

4.6 —_— =2Q2t—n)|f———onnr
(*6) ERCIE P [y
for all uc 2(Q).

(iii) Let |x|=e for all x€Q. If n=2t, it holds that

u Vu

4.7 I ) |
7 BRI P 1

Sfor all u€ H(Q).
Proof. (i) A partial integration yields for every séR and 770 the identity

(4.8) } LB S e N +s(s+2r—n)|f= 2
' X0 T x Ix oo |[1xF 7 o, lx[|lo, 0
By choosing s=n—21t we obtain
| Vu u x Vu
4.9 §— = [l—ro .
“9) T S Wloe = [T oe
Since s=n—21t=0, we have by (4.9)
u | ‘ Vu u x Vu i Vu
4.10 = P +S——t— -+ =T =2 T =1 s
( ) X Io,sz Hx! ! Ix[* |x| 0,2 Ix[* " lo, 0 [x[""{}o,
which proves (4.5).
(ii) A similar calculation as above gives
4.11)
Vu u x ||? Vu 2
s — = ||~ —rmm—— +s(s+2t—
T TRF I Wlloe |00 ¥ [ T o
u 2
+25 (=
X[ (In |x )2}, 0
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Since 2t—n=0, the choice s=n—2t<0 yields

Vu u x Vu
4.12 — +s < -— = [T e o N
(412 [IxFInx] 77 [xFInx] xlllo,e — Il X7 0 |x[ flo,0
which implies the assertion as in (i).
(iii) If n=2t, we have for all u€ 2(£)
Vu u X Vu
4.13 | - = ===l
@19 I~ T Tl ~ [ .

which leads to estimate (4.7).

Estimates (4.5)—(4.7) are applied as follows. We introduce the weights ¢, ;.
j=0,1,...,m—1, which also depend on the dimension of the underlying space.
We define

x| ™+, n odd, or n even with n =2m+1,
414 g, ;x)={lx[Hn|x)7Y, n=2, 1=l=m,0=j=m -1,
x| ™+, n=2, 1=l=m, m—I<j<m.

In addition to these weights we use the weights p,, ; which behave as ¢, ; at
infinity but which have no singularity for |[x|=0 and are thus applicable to all
exterior domains.

We denote
(4.15)
1+ |x])—™+, n odd, or n even with n = 2m-+1,
P () =1 (L+]x)™™H(In(e+|x)™ n=2,1=l=m 0=j=m—I
1+ |x[)—™+, n=2L1=l=m m-I<j<m
Now, we introduce in 2(€) the norm ||| -|||,, o containing a contribution of all

derivatives up to order m.

(416) = 2 3 Ipn 0l

J=0 |a|=]j
If Q is an exterior domain such that |x|=e for all x€Q, we also make use of the
norm

m

(4.17) Nullgo= 2 2 qm,0uls -

J=0|a]=j
The seminorm |- |, o isanormin (). In fact we can prove

Lemma4?2. Let QCR" be an exterior domain with Q=R". Then there
exists a constant ¢;=>0 such that

(418) cl—1 H|umm,p,9 = ‘u!m,ﬂ = IHuHIm,p,Q
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Sfor all u€2(Q). If, in addition,
cs=0 such that

(4.19) 5t ulllm,g,0 = [#lm,0 = [4l]lmq,0
for all ue 9(Q).

x|=e for all xc€Q, then there exists a constant

Proof. Since Q#R", we may without loss of generality assume |x|>e for
any x€£. Hence it suffices to prove the last assertion.

Let us first assume that » is odd or that »n is even together with n=2m+1.
Then we have, by using inequality (4.5) successively with t=m, m—1, ..., 1, the
estimates
Vu

|x[™ =

u
x|

(4.20)

HA

¢ = =clupq-

0,02

0,2

In the case n=2/, 1=I=m, we use m—/ times estimate (4.6) and one time (4.7)
as well as /—1 times (4.5). This yields the required assertion

(4.23)

u 0*u - 0*u
" N == —— | =¢ — =..=clul, o
0 ¥ .0 w2 T e = € e [ .2

We remark that as in inequalities (4.5)—(4.7) it is possible to give explicit bounds
for the constants ¢; and ¢, appearing in (4.18) and (4.19).
We abbreviate
D(2)={ucC=(Q)| supp u compact)

and define the weighted spaces

(4.24) Hm™(Q) = g(g)ill~liim,p,n,
(4.25) H(Q) = MHI-IH%,,,Q.
By Lemma 4.2 it follows that |-|, o and |- ||, , o are equivalent norms in the

space Hg (). The following result makes it possible to identify more directly
which functions belong to the spaces H(2) and Hj (Q).

Theorem 4.3. Let QCR" be an exterior domain. Then the following charac-
terizations for the spaces HoW(Q) and Hy. (Q) are true.
() Hy, ()= {uc Hg 1o ()] [lulll,, 5, 0=}
(i) If Q has the segment property, then

H(Q) = {u€ Higo ()] [[[ulllm, p, 0= ==}-
(iii) If the boundary I'=0Q is smooth, then
HE () = {uc HM(Q) | yjulr =0, j=0,1,...,m—1}.
Proof. We argue only the assertion (i). For the moment we define

ﬁ(;':v(g) = {uEH:)':loc(Q)| ”Iumm,p,ﬂ <°°}
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Then the inclusion HT,(2)c A" (Q) is clear. On the other hand let u€ " (Q)
be given. We take a fixed smoothing function ¢€Z(R) such that o(¢)=1, [t|<1
and ¢(¢)=0, |t|>2, and define the sequence 0 EDR") of the testfunctions ¢,
kEN, k=e° by
1, |x] < e,
(4.26) @ (x) = (ln In [xl) e
mink) Y=
This sequence satisfies the estimate
(4.27) 070 ()] = c(L+[x) ! In(e+x) 7
where the constant ¢ is uniform with respect to k.
If ucH"(Q), then we have ug,€Hg(Q). Furthermore, a straightforward
calculation using (4.27) yields with E(R)={x| [x|>R} the upper estimate

(4.28) = upil|lm, p.0 = u—u@lllm, p, £g) = c|l[wlllm, p, E - 0.

This proves the assertion.
The spaces K(Q), J(?) and J*(2) which are needed for the exact definition

of the exterior problem

Au =/,
(4.29) Bu =£j, ji=0,1,...,m
are chosen as follows. We take
(4.30) K(Q) = {feL*(Q)|(pm,0) ' fEL}(Q)},
where the space K() is endowed with the norm

1/ (K (@) = 1(Pm,0) " Mo, 0-
For J(Q) and J*(Q) we choose
(4.31) J(Q) = {uc H(Q)nHM(Q)| Auc K(Q)},
(4.32) J*(Q) = {uc HEm(Q)nH™(Q)| A uc K(Q)}.

Now we turn to the general assumptions of Section 2.4. The assumptions
(A1)—(A3) are clearly valid. Furthermore, let u€J () and veJ*(Q) such that
u and v vanish in a neighbourhood of I'y. Then we have

(4.33) (Aul@)o, 0 = B(u, ¢)
for all p€2(Q) and
(4.34) (A*v[)o,0 = B, v)

for all Y€P(Q). To employ the relations (4.33) and (4.34) for @€J*(Q), y€J(2)
we have to impose such conditions on the coefficients a,; that the sesquilinear
form B becomes continuous with respect of ¢ and Y in these spaces.
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We make the assumption that for all multi-indices «, g, |a/, |B]=m,
(Bl) iaaﬂ(x)l = cpm,lal (X) * Dum, Iﬂl(x)’ XEQ,

with a positive constant c.

If (B1) is valid, then the sesquilinear form B(.,.) is well defined and continuous
in HI(Q)XHI(Q).

Furthermore, if u€/(Q)nHy (Q), vEJ*(Q)NH!, (Q), there exist sequences

0 U €D(Q), y,~v in H(Q) and ¢,—~u in HI(Q). Accordingly, by (4.33) and
(4.34),

(4.35) (Aulv)og = lim (Aulyp,)y,q = lim B(u, ,) = B(u, v),
(4.36) (ulA470)o,0 = lim (¢,|4"0)o, o = lim B(p,, v) = B(u, v).

Thus, if condition (B1) is valid, then (A4) also holds.
For convenience, we finally assume that the sesquilinear form B(.,.) is strongly
coercive in Hg,(2,) for the exterior subdomain @Q,={x||x|>R,}. This means

(B2) There exists a constant ¢;=0 such that
(4.37) cullullih, p, 0, = Re B(u, u)

for all uc Hj: ().
This assumption is valid if for example the coefficients a,; with |x|+ |8]<2m
are “small enough” and if 4 is uniformly strongly elliptic in Q. If namely

(4.38) |35 (X)] = €D, 121 (%) P, 1) (X)

for all |af+|B|<2m, inequality (B2)is valid if 0=¢=e¢, when &=>0 is sufficiently
small. For this we write B=B,+B;, where

By(u,v) = 3 (a,30°ulo” o, 0,

fo <TB | =m
By (u, v) = , v+%’ \ (aaﬂ{)"ulﬁ“v)o,gl.

o) <2m
By (4.18) and (4.38) we have
(4.39) |By (u, w)| = celul?, o,.
Then the uniform strong ellipticity implies

. a ;

(4.40) Re B(u, u) = aolul}, o, —celul}, o, = 70 ulm, o,

if 0=e=c'qy/2.
We collect our conclusions concerning the general assumption of Section 2.4.

Lemma4.4. Let A be a strongly uniformly elliptic operator defined by (4.1)
such that the coefficients are smooth and that they satisfy the conditions (B1), (B2).
If the spaces K(Q), J(2),J*(Q) are defined by (4.30)—(4.32), then the assumptions
(A1)—(A6) are valid. Furthermore it holds that N(P,)=N(P})= {0}, R(#)=
R(P{)=K(Q)X X;.
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Proof. Tt remains to prove the conditions (A5) and (A6). Let u€¢ N(#,). Then

we have
0 = Re(Au|u)y, o, = Re B(u, u) = cl|||ul|[5, 5,2,

which implies #=0. In the same way N(2{)={0}.

Let on the other hand (f; 2)€K(€;)XX; be given. We construct the solution
w as follows. By Poincare’s inequality the form B(u, v) is strongly coercive in
HE(B(Ry, Ry)) if R,=R,+¢ and 6=0 is sufficiently small. Therefore the Dirichlet

problem
Av=f in B(Ry, Ry),

(4.41) o =g,
y*0 =0,

with I';={x||x|=R;} has a unique solution vEH™(B(Ry, Ry)) such that
(B=B(Ry, R,))

(4.42) 10llom, 5 = e(IL.f 10,5+l &l (X2)).
We choose a smoothing function ¢€Z(R") such that

1, Ix[ = R +9/3,
¢(x) ’{o, x| = R,+25/3

and define € H2"(,) as the zero continuation of v outside B(R,, R,). We have
(4.43) 182w, 2, = €1/ llo,5+ 1811 (XD)-

Furthermore, let we H(€2;) be a solution of the problem

(4.44) B(w, ¢) = (f|9)o,0,— B(@ ¢), @CHG, ().

It holds that weH¥™ (Q) with

(4.45) ;:t Z/O‘—Av’

Thus by defining u=w+7 we have found a function u€J(Q), Zu=(/: ). Ac-
cordingly we have R(Z;)=K(£;)XX;.
By regularity results for elliptic equations we conclude

(4.46) o, 0y Ry = ¢ (R (121K Q1)+ gl (XD +l ullo, 0y R +1)-
On the other hand (4.44) implies

(447) le‘ I lm,p,!?l = C(”f“ (K(Ql) + ”lﬁl i Im,p,!);))'
Relations (4.46), (4.47) and (4.43) yield
(4.43) 12T @)ooy ry = ¢ (R (I A1 (K(Q0)+ I gll (X)),

as required for (A6). The proof for (£{)~"is same.
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Let us formulate our main result of this section. By Lemma 4.4 we conclude
from Theorem 3.6

Theorem 4.5. Let A be a strongly elliptic operator given by (4.1) in a smooth
exterior domain Q. Furthermore, let assumptions (Bl) and (B2) be satisfied and
let the boundary operators {B j};f:ol be given such that (A; {B;}"=)) is a regular
problem. If the spaces K(Q),J(Q) and J*(Q) are defined by (4.30)—(4.32), then the
operator Pu=(Au; Byu, ..., B,,_u), P:J(2)~K(Q)XX, is an indexed operator
with the index x=x,, where x, is the index of the operator #, (Section 3 ) referring
10 a boundary problem for a bounded domain. For the range R(P) holds the charac-
terization (f; g)€R(2P) if and only if (f; g)€K(Q)XX, such that

(4.49) (f1v)o,0— Zl <gj|Tj Wo.r, =0

for all ve N(P*).
Remark 4.6. The assumption (4.38) can be replaced e.g. by

(450) lazxﬁ (x)l = cQ (x)pm, |l (x)pm, 181 (X)

for all |a|4|B|<2m, where ¢ tends to zero at infinity.

5. Radiation problems

Here we consider problems which describe the radiation of the time-harmonic
waves physically. The typical second order example is the Helmholtz equation
(k=0)

2 =
50 (A+k¥u = £,

Bulr, =g
with the Sommerfeld type radiation condition

0 . 5
5.2 Friae iku€ L2(Q).

By condition (5.2) the wave is required to be outgoing. The incoming wave can be
fixed if we, instead of (5.2), employ the condition

(5.3) —(;?; u+iku€ L*(Q).

The theory of the exterior problem (5.1) and (5.2) (or (5.3)) is well-studied. The
first. arguments showing the uniqueness of solutions with Dirichlet or Neumann
boundary conditions were based on Rellich’s growth estimate, Rellich [29].

. . —1 * 2 -
(5.9 h}zllng j luPdx =0

Ry =|x|=R
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for solutions uz0 of the equation (4+k*u=0, |x|=R,. In the case of the more
general second order equation

(5.5 '21 0;(a;;0;u)+ Z’Iajé)ju+(k2+ao)u =f
i,j= i=

Rellich-type growth estimates were proved by Jager [13] and Kato[15]. For extensions

of Rellich’s results for higher order operators see Agmon and Hérmander [2] and

Hormander [12].

Existence results were first achieved by Eidus [7], where the principle of the
limiting absorption for exterior radiation problems was introduced. These existence
results were later improved by Jager [13] and by Saito [30].

The articles mentioned above deal with the Dirichlet- or the Neumann type
boundary condition or the whole space problem. Other boundary conditions have
been studied by Levine [20], where a uniqueness result which also covers the third
boundary value problem was proved. Furthermore, Danilova [5] treated an oblique
problem for the damped Helmholtz equation. Finally, Witsch [43] proved a Fred-
holm theorem for general non-tangential second order oblique problems.

The case of the higher order equations, which we, differently from (1.2), write
here as (A=0)

(A=Du=f,
(5.6) =1 )
Bjulr, =g, j=0,...m—1,
with
(5.7 Au= > (=DVFo*(a,z0°u),

o=lal, [Bl=m

has been elaborated by Eidus [8], FinoZenok [9], Grusin [10] and Vainberg [35], [36]
as well as by Vogelsang [38], [39]. In particular, Vainberg derives in [36] a Fredholm
type theorem for general radiation problems with regular boundary conditions.
However, the orthogonality conditions were not described. In this section we shall
see that Theorem 3.6 also applies to radiation problems of the order 2m and yields
a Fredholm result with explicit solvability conditions. By assumptions (A1)—(A6)
we presuppose some knowledge of the auxiliary Dirichlet problem. Thus, to employ
Theorem 3.6 for a great class of elliptic radiation problems, we use the results of
Vogelsang [38], [39].

We have to recall some notations and assumptions of [39]. For every positive
parameter 6 we use the weight functions

(5.8 g(x) = (1+[x))7°
(5.9) p(x) = (1+|x)~277,
(5.10) 0(x) = (1 +]x])*
We define

(5.11) CE(Q) = {ucCH(D)| sup [0"u(x)] <<=}
|a| =k, x€Q
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For any weight function #(x)>0 we employ the norm

(5.12) lullg,r0 = ( 12A 0% |3, o)1
la| =k
and we abbreviate
(5.13) CE(Q) = {ue CL(Q)| | ully,, 0 < =}.

The space H{(Q) is defined as the closure of Ck (Q) with respect to the norm
I -llk,.,o and the space H§,(Q) describing the homogeneous Dirichlet boundary

conditions is the closure of 2(Q) in HYQ).
The following assumptions shall be employed:

(CI1) The operator 4 obeys a,,cC=(Q), a,y=a,,6R and A is uniformly

strongly elliptic:
(5.14) D Ay (X)ETE = g lEPm (x, E)EQXR"

[a]=[Bl=m

for a constant a,=0.

(CI2) There exist constants a;,€R such that a},=dj,, a5, =0 and

(5.15) lap(x)—azg|=clx|7Y |07 a,5(x)|=clx|72 |t]=1.
We use the polynomial

(5.16) P = 3 agpilfl-lleth geRre,

jaf, [l =m
Let A =A"(%) be the surface of the real zeros

(5.17) N = {EERP* (&)~ = O).

(CI3) We assume that ./ is connected and that for any ncA"

(5.18) D, P*(n) #0, (D,,,,P*(M)i ;=1 s positive definite.
Furthermore, let us write
(5.19) D(n, &) = P (n+&)—D, P*(n) E—P*(n), (n, €N XR".

We assume that the requirement of a stronger ellipticity
(C14) D, O =c(Ef+1EP™)

Dy @ m—@(n, &) = c(EF+IEP™), (1, OEAN XR"

iS Valid. Here D§=V§, Dlél = lii—l(é . V(:).
The assumptions (CI1)—(CI4) are essentially those of [39].

, we

employ our general assumption on the smoothness of the coefficients. The condition

that the coefficients are real does not appear in [39].

We remark that by aj;=a;, we may without any loss of generality suppose

that ay,=0 if |x|+[B] is odd.
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The radiation problem is defined by using the notion of the characteristic
function s€C=(R™ {0}) (cf. Hormander [11], Schulenberger—Wilcox [34]) given by

(5.20) s(x) =0(X)-x, £=|x|"1x,

where ¢: S"'—A"(4), S""'={x€R"| [x|=1}, is the inverse of the Gauss mapping
satisfying x-o6(£)=0 and

(5.21) £ = %(R)DeP* (0 (%)),

where (xX)=0.
The radiation condition now appears in the form

(5.22) ¥ (e~Su)e LA(E(Ry), 1= lal =m,

with E(R,)={x€R"| |x|>=R,}, where R,=0 is any number such that E(R,)C Q.
The condition (5.22) is “outgoing”. The ““incoming” condition reads

(5.23) O (e"u)eLA(E(Ry)), 1= |a| =m.
We define the spaces J(Q),/*(2) and K(Q) by setting
(5.24) K(Q) = Li(Q),

(525 J(Q) = {uc H2"(Q)|9*(e~"w)e LA(E(Ry)), 1= lal =m, (A—ueK(@)},

)

(5260 J*(Q) = {uc H"(@)|9*(e"u)e LA(E(Ry)), 1 =lal=m, (4—7)ucK@}.

Now, the operators 2:J(Q)—~K(Q)xX, and 2%:J*Q)—~K(Q)X X, are given
by (A4"=4)

(5.27) Pu = (Au—iu; By, ..., B,,_ u),

(5.28) P*u = (Au—iu; Cyu, ..., Cp_1u).

We shall apply Theorem 3.6 in the case where for the Dirichlet problem the following
spectral result is valid.
(CII) For the exterior domain €, Q the problem

(A—-Nu=0, ucJ(,),

(5:29)
yiulp, =0, j=0,..,m—1,

has only the trivial solution u=0.

We refer to Vogelsang [38] for a discussion of the cases where this assumption
is valid. Note that since the coefficients of A4 are real, it holds that the condition
ueJ(Q,) is equivalent to #i€J*(€;). Therefore, if (CII) is valid, then the adjoint
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problem
a _ *
(5.30) A-ANu=0, ucJ*(Q,),
U, =0, j=0,..,m—1,

only has the trivial solution.

Furthermore note that for u€ H}'(£,) the condition yju§r1=0, Jj=0,...,m—1
is equivalent to the requirement u€ Hy, (£2;) and thus the results of [38] can be adapted.

We are able to state

Lemma 5.1. Let the conditions (CI) and (CI1) be satisfied. If for the parameter
0 holds 0<6=1/4, then the assumptions (A1)—(A3), (A5) and (A6) are valid.

Proof. The validity of (Al) and (A2) is a direct consequence of the definitions
(5.24)—(5.26). For (A3) we note that if u€J™®(Q) and fcK(Q), 0<5=1/4, then
we have

Jlufldx = [+ D201l + 202 fldx = lulo, ol o0 < .
2 2
The condition (CII) is essentially used to guarantee that N(Z)=N(%})={0}
and that R(2))=R(Zf)=K(Q;)xX,. The first of these assertions follows by [39],

Satz 1. The latter is a consequence of [39], Satz 4. Furthermore, we obtain by the
same result (cf. proof of Lemma 4.4)

(5.31) 2 o™ wlo,q, £ roy + 1 tllom, p. 0, = ¢ (R (111 (K(20)+ | gll (X))

1=la|=m

for yu=(f;g) and
(5.32) 2 (€ )llo,q, £ Ry 1 ¥ll2m, p, 2, = ¢ (Ro) (LFI(K(Q0) +] ll (X))

1=la|=m

for 2fu=(f:g).
These estimates imply that (A5) and (A6) are valid.

The verification of (A4) requires the following:

Lemma 5.2. If ucJ(Q), veJ*(Q) are given such that they vanish in a neigh-
bourhood of the boundary 0%, then we have

(5.33) ((A=Dulv)y g = (u[(A—2)v)y, 0.
Proof. Choose ycZ(R), y=0, such that y(¢)=1, t€[0, 1] and define
Ve = ¥(R75(x), R > 0.
Then we have by Green’s formula
((4=Dulp)o,o—(ul(d—A)v)o,0 = Jim {(Aulygo)o, 0= Wru| 40)q, 0}
= fim 3 (a0 ul e 0)oa— (s )] 9 0)o,0} = lim Iy

Re><o fa], [g]=m

We apply Leibniz’s rule to 0*(Yzv), 0*(Ygu), and split the resulting sum into
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terms, where Y is differentiated zero, one or more than one time. This yields

(5.39) I = ] %’5 {(aazﬂWRaﬁuwav)&Sl_(aaﬁlthaaulapv)o,Q}
+ : 1217 . 1“j{(aaﬁ(3J¢R)3ﬂu|3“~efv)0,9“(aaﬁ((()j'pk)aa'ef“wﬂv)o,n}
i, |Bl=m j=
‘*" B Zs’ [:){(“aﬂ(ay‘//R)aﬂul;’a—yv)O,Q—(aaﬂ(((ylnbk)(()a—yu!aﬂ U)n,n}-

ir[=2

Since a,;=day,. the first sum vanishes identically. For the derivatives of Y,

(5.39) (O"YR) (¥)] = RV = clx|7H,
where ¢ is a constant independent of R. For (5.35) we have used the property
(5.36) 1(0°5) ()] = clx| T+

of the characteristic function.

Let o,=max {o(#)-%| x¢S5"71}. Then the function Y is identically one in
the ball B(67'R)={x| |x|]<oi'R}. Thus, by (5.35). any term in the third sum in
(5.34) can be estimated by

(5.37) c [ xI710% ul 1970] dx.

la],|Bl=m lxl>af1 R

Since [9ul, |0°v| belong to L3(Q), the integrals in (5.37) tend to zero as R tends
to infinity.
It remains to show that the second term in (5.34) tends to zero. For this note that

(5.38) A r(x) = (3; Wk,
where
(5.39) Fr() = [RTY/(R71s(x))| = clx[

Furthermore, if o;>0, we get by Leibniz’s rule (e;=(8x)k=1)
(5.40) ru = 9*=20;(e* (e~u)) = 0=<i(i(9;8)u+e0; (e™su))
— i@ -utli 3 (u;ej)(3#+ejs)(8“—ef—”u)
0

<p=a-—e;
+ (X—‘ej ((r)u is)aa——u( —is ) _ .(3 )au—e, .
Oéugz—e. ﬂ € e u] =1 fs ’u‘l'lua,j;

where the term in the brackets has been abbreviated by i, ;. By means of (5.36)
we see from the definition of J(Q) that u, ;€LZ(E(R;)). In the same way one
realizes that

(5.41) Fo=—i(9; ) v+iv, ;, v, €LAERY)).
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Hence, we get from (5.38), (5.40) and (5.41)
0;¥r)0*=¢iv = i'/;RaaU'f"/;RUaj,
(0;¥R)0* v = — i‘pRaau—'pRua,j-

Insertion of these relations into the second term in (5.34) yields

(5.42) : 2’ {0 00 Pl <10, 0 1, (3, ) 01| 90 0), o}

lal,18l=m j=1

= Zn' o {(—i (aup U 0Puld” V)o, 0+ i(ayp Ur0u| 0 v)o, o}

lal,[Bl=m j=1

+ év o; {(a,p 0" Uy, Yo, 0+ (A, R, ,i10%0)o, 0}

e, 8]=m
Since 0<d=1/4, the last sum tends to zero as R tends to infinity. We split the
first sum on the right side of (5.42) into

S=S5,+S,,
where

Sy=1i é ((aa/x Aup) lZR 3ﬂu|3a U)o, fo il ((a:ﬂ —a,p) l/711 0* u[{)"v)

S, = il B 2'1 aj((a;kﬁ lZkamu!aﬂl’)o,ﬂ_(‘1;;9 l;Raﬁulaav)o,ﬂ)-
af, |fl=m j=

The term S; can be estimated as in (5.37) and tends to zero. Since ay=ag,, S,

can be written in the form

27 (bap 1/7113‘1“[3” U)o,szs

la], 18] =
where

n
b, = Z’Ii(ocj—ﬁj)a;“ﬂ =bp, = —b,.
i=
Since Y has compact support, integration by parts and application of Leibniz’s
rule gives

(5.43) Sy = 2 (':ER baﬂ(_l)lmaﬂﬂull’)o,g

lal, 18] =m

W

+ ( J(b 50Ul R) V), -

], |g]=m 0 v<ﬂ

In the second sum the derivatives #’~7 can be carried to the right side again, yield-
ing integrals which can be estimated by (5.37) and hence tend to zero.
Since ay=0 if |x|+|B] is odd, we have (—1)l“+lfl=1 or b,;=0. This
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gives the formulae

64 3 (b ua = | 3 Fabpd i Do)
(5.45) il %! (&Rbaﬁ(_ 1)Iﬁlaﬁ+aulv)0’9 = o = (tﬂkbaﬂa“u\({)ﬁv)o,g—l—o(l),

where o(1) denotes an expression similar to the last sum in (5.43). Combining
(5.43)—(5.45) we obtain S,=o(1). Thus the lemma is proved.
By Lemma 5.1 and Lemma 5.2 we conclude from Theorem 3.6.

Theorem 5.3. Let A be a uniformly strongly elliptic operator in the smooth
exterior domain Q such that the assumptions (Cl) and (CII) are satisfied. Then
the regular exterior boundary value problem (A=0, 0<0=1/4)

A—-Du=f ucHM™Q), [eL{(Q)
(5.46) Bjulr, = g€ Hm=m=12(Lg), j=0,1, ..., m—1,
(e Su)e L2(E(Ry)), 1=l =m,

has a finite index x=ux, (for notation see Section 3).
The solvability conditions for (5.46) read: for (f QELL(Q)X ]]]f":‘ol H2m=m=12([ )
there exists a solution if and only if

(5.47) " 11’)0,9_':% (g;\T;v)o,r, = 0,

holds for all v which are solutions of the homogeneous adjoint problem
(A—XNv =0, vEH™(Q),

(5.48) Cpl,=0, j=0,1,...,m—1,
()€ LE(E(Ry), 1=laf=m.

6. Polynomials of the Laplacian

As a final example we consider differential operators 4 of the type
A= P(L),

where L is a uniformly strongly elliptic partial differential operator of second order

Lu(x) = .21 9:(a;;(x)9;u(x))+a (xX)u(x),
i,j=

where a;;(x), a(x)€R and a;;=a;; and where P =P(t) is a normalized polynomial
with real coefficients of degree m in one variable. Hence A*=A. Since we shall
base our discussion of problem (2.15) on the results in [45], let us briefly recall the
assumptions on L and P and the results of this paper.
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For the coefficients of I we require
—0 acs¥ (R,
where 6;; is Kronecker’s symbol, and where #(Q) denotes Schwartz’s space

& (Q) ={pcC=(Q) Il!im Ix[*@(x) =0 for any keN}

aij—0ij,

of rapidly vanishing smooth functions.

The polynomial P does neither vanish at ¢ =0 (cf. [32] to avoid this assumption)
nor at any ¢ such that (L—¢)u=0 has a nontrivial solution in L%*(R™. The latter
seems not to be a severe restriction for one can change the coefficients in some
bounded region to avoid this assumption. The zeros of P are denoted by —k3,
¢=1,...,q, where Imk,=0, k,0, k2>k? for o=t. By r, we mean the order
of —k?. asazero of P. Hence

P(1) = ]jl (t+K2ye.

The results of [45, Ch. 2] are collected in the following lemma. For its formu-
lation we denote by Q some exterior domain, by A the first order operator

A= 2 x,~3,~,
i=1
and by 97(9) the space

.s?’(g)={(pecw(9)\[1|im x| %@ (x) =0 for some keN}.
We have ‘

Lemma 6.1. Any solution uc .5;’(52) of the equation

P(Lu = fes(Q)
can be decomposed as

-

1
n
v
A Uy, ys
0

q
u=
n=1

where u, , (u=1, ...,q; v=0, ..., r,—1) belong to 9?’(52) and solve
(L+kDu,,, = fu, .5 (Q).
The functions u, , and f, , can be calculated by application of certain systems of
differential operators to the pair (u,f). The decomposition of u is unique in the
following sense: If u, ,, v, € 5‘;(9) satisfy
(L+kpu,, €% (Q); (L+k})v, €5 (Q)

and
-1

q q Tu
v — v
Z A u;t,v_ 2 Z A4 vu,v’

=0

=
Il
-
<
1l
)
=
1
-
-
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then
U,y — €L (Q).

We are interested in solving the problem (1.2) with 4=P(L) for fEH? (D).

Hence we choose

K(Q) = H)\ (D)
Since the components u, , satisfy reduced wave equations, asymptotic conditions
for u can be formulated by imposing radiation conditions on u, ,.

For the definition of J(&), J*(2) we denote by 5=(8y, ..., 8,) a g-vector of
real units, s;¢{—1, +1} and put s*=—s. Then the space J™*(Q) is defined
as the space of all functions u€H5e(82) which for some sufficiently large S=0
satisfy

6.1) supp P(L)ucQ(S).
g Tu-1
6.2) Ul g = 2 Auy, s
p=1 v=0

where for the component

(6.3) (L+k2)u, € L (ON\L(S)),
(6.4) Du, ,—isPk,u,, € LA(QN\Q(S)),
with

D:= va x;|x| 7t a;;(x)9;.
1,721

Note that the radiation condition (6.4)® yields p, ,€H 2(9\5(_5)) it
Im k,>0, Jager [13].

The decomposition of u suggests that we may admit more general conditions
at infinity: given g, (6.4)® gives the same kind of radiation condition for any
v=0, ...,r,—1. Only in this case is the validity of Green’s identity (2.19) proved
in [45, Theorem 3.3].

Lemma 6.2. Let s€{—1, 1} be fixed. Then we have

(i) For any feS(R") there exists a unique solution ucFR)" of P(Lu=f.
satisfying (6.2)—(6.4). There exists a positive integer | and a positive real number
p independent of u and f, such that for any R=0 the solution u can be estimated by
(6.5) |4l om, B Ry = €ll(1+ %122 fllrn s
where B(R)={x| |x|<R} and where the constant c¢=c(R) is independent of u and f.

(ii) For any exterior domain 2, the spaces

H(Q) = {ue J(@QNHi 1o (Q)|P(L)u = O}
respectively
NH(Q) = {ueT* QN H{1e ()P (L)u = 0}

are of the same finite dimension d.
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(iii) For fe#(Q):={flq |fES(R")} the Dirichlet problem

(6.6) u€ J(QNHGoo (2), P(L)u = f
is solvable if and only if
(6.7) (f1v)o.a =0, for all ucN*(Q).

Lemma 6.2 does not fit in the framework of the theory established in Chapters 2
and 3. For example (6.6) should be solved for f€K(Q) and also inhomogeneous
boundary conditions should be considered. To take this into account we suppose
that Q has a smooth boundary I' and prove the following estimate:

Lemma 6.3. Let for some S=>sup {|x| |x€I'} the function ucJ(Q) satisfy
(6.8) supp P(L)uc Q(S).

Then for any R=>0 there exists a constant c, depending on R and on S, but not
on u, such that

m-—1
(6.9) ltllom, 0cry = c(IP(L)ullo, o5y + Z(; 170l 2 - j—1y2, 7+l ””o,n(s+1))-
7=

Proof: Let us consider a testfunction y€2(R" such that y=1 in B(S+1/3)
and that supp y = B(S+2/3). Writing

= qu, uy=>1-ypu
and continuing u, by zero, we get from Lemma 6.2 (i)
(6.10) Il 2]l om, 2r)
= |y om, B(R) = C[[(1+ |x|2)PP(L)usl 1, gn = c|lull;4 2m—1, B(S+2/3)\B(S +1,3)

and further from the well-known a priori estimate ([21], p. 149)

(6.11) 1]l2m, 2Ry = Nl tt1]l2m, 25+ 1
m—1
= c(IP(Lyuyllo, acs + 1)+ ,Z; 1 0tllam = j =172, r + a0, s +1))
ji=
m—1
= c(||P(L)u||0’9(S)+ Z; ”7]“”2m—j—1/2,r+”u”o,ﬂ(S+1)+”u”2m—1,B(S+2/3)\B(S+1/3))~
j=

Using interior a priori estimates, ”u”2m—1.B(S+2/3)\B(S+1/3) and el 4 o, B(S+2/3)\B(S+1/3)
can be estimated by [ull) ps; 1 ps)» Multiplied by a constant. Now, combining
(6.10) and (6.11) we get the assertion.

From Lemma 6.2 and Lemma 6.3 we conclude

Theorem 6.4. For fcK(Q) and (g, ..., §u-1)EH™I~YXI), there exists
a solution ucJ(Q) of the problem

(6.12) PLu=f in Q
(6.13) yiu=g;,j=0,..,m—1,
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if and only if for any veEN*(Q)
m—1

(6.14) ' (f10)o,0— Z:) (gilT;v)o,r = 0.
=

Here {yo, ..., Ym-1> Tos ... Tpy_1} is a Dirichlet system of order 2m on I such
that Green’s formula (2.8) holds with B;=v;, C;=y;.

Proof. We first consider the case g;=0, j=0,...,m—1. If fEK(Q) satisfies
(f]v)o,0 =0 for all veN ™ (Q),

we can choose a sequence f,€2(Q) which tends to f in L* Q) and has the prop-
erties
supp £, 2(S),

(L)oo =0 for all vEN™(Q),

where S is some sufficiently large radius.
By Lemma 6.2 there exists a solution u,£J(Q) of P(L)u,=f,, yu,=0 for
any n€N. Moreover, u, can be chosen in such a way that

(6.15) (u,|yh)e, o = 0 for all he N(Q).
Here y€2(Q) denotes a fixed function with the property

Yh=0, if heAN(Q), h=0.
Under the assumption
sup [ uyllo, 0(s+1) <
Lemma 6.3 and Rellich’s compactness theorem guarantee the existence of a sub-
sequence u,, converging in L¥Q(S+1)) and hence in H}™(Q) to an element
u€ Hie(Q). Clearly, u satisfies (6.12) and (6.13) with g;=0, as well as

loc

(6.16) (ulyh)e o =0 for all he N(€).

Also, u isin J(Q): With y and u, as in the proof of Lemma 6.3, f:= P(L)u,
belongs to S (R") and by Lemma 6.2 (i) there exists a unique solution #<€J(R") of
P(L)i = f.

Putting .
Uy i= (l'_X)un’a fn’ = P(L)Ul’l

and continuing these functions by zero, we see from interior regularity resuits, that
Tim (14 %2 (F=f) e = 0.

Hence, by (6.5), v, tends to @ in Hjm(Q). But then u,=#€J(R"); thus ucJ(Q).
It remains to lead the assumption

lim || un“0,9(5+1) =o°
n—+oco
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to a contradiction. For this we consider the normalized sequence

W, = [[tyllo, 0541y Uy

2m

As above we can conclude that a subsequence w,, converges in H"(Q) to a solu-
tion weJ(Q) of P(Lyw=0,y,w=0, which satisfies (6.16). By the choice of ¥ this
implies w=0, which contradicts the normalization of w,,.
Let us now consider problem (6.12; 6.13) with nonzero g;. It is possible to
construct a function we H2" (Q) satisfying
yw=gp, j=0,...,m—1,

(6.17)
supp wnsupp ¥ = 0.

Green’s identity gives for v€ A4 *(Q)

m—1
(P(L)WIU)O,Q = Z; (&;|T;v)o,r-
i=
Hence, if (6.14) is valid, we have
(f=P(L)w|v)y,o =0 for all veEA/*(Q).
By the first part of the proof there is a solution #€J(Q) of P(L)i=f—P(L)w,
y;#=0. Moreover, the function # satisfies (6.16). Then the function
U= d+w
solves (6.12; 6.13) and, in addition, by (6.17), satisfies (6.16).
Since condition (6.14) is also necessary for the solvability, Theorem 6.4 is
proved.

From the proof of Theorem 6.4 one easily deduces a pseudoinverse for problem
(6.12; 6.13)

m—1

PUK(Q)X [T H™i=12(T) - J(Q)

which is continuous as a mapping from H3,, (@)X [t H*™=/=Y*T) into HZ"(D).
For this we choose a nonnegative testfunction ¢€2(Q) such that the mapping
NH(Q)~K(Q), v-@v is injective. Denoting by v, ...,v, a basis of A *(Q)
for which

((Dvi}l’j)(),ﬂ = 5,‘_,"
the mapping

m—1 m—1
Q: KX [[ H™I=1(I) ~ K(Q)X [] H*™~Y(I),
Jj=0 Jj=1

of;8) = (f—igdi ((flvi)o,ﬂ_;Z:<gj1iji>0,r)(pvi; g

is a continuous projection of K(Q)X JJ" ' H*~J=Y¥TI) onto the range of the
1 j=0
mapping 2:J(Q)~K(Q)X [[[)' H*"~I=%T), where

(6.18) Pu = (P(L)u; youlr, veos Vm—1t]r)-
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A pseudoinverse of £ is given by assigning to any (f5 Zo» ---» §m-1) the unique
solution u€J(L2) of X
PLu=f, yu=g; j=0,...m—1,

with the property (6.16). Here ([ gos---s &n-1)=Q(f, &o> -+ &m-1)-
We have to show the continuity of £~1. Since Q is continuous, 27! is
continuous if

m—1
(6.19) | 4l] 2w, 2Ry = C(“P(L)u||0,g(S)+ ZO H'}’juuzm—j—l/z,r)
iz

holds for any u€J () with the properties (6.16—6.18). Estimate (6.19) has to be
shown for any R, S, and the constant c¢=c(R, ) may not depend on u. If (6.15)
were wrong, there would exist numbers R, S=>0 and a sequence u;€J (Q) such that

Il om, 2cr) = 15

(6.20) i m—1
,}Ln;lo ("P(L)uk”o,n(srf‘ 2;) ”)’juknzm—j—l/z,r) =0
J=

and that (6.15) are valid. Without loss of generality, we may suppose that R=S5+- 1.
Then by Lemma 6.3 and Rellich’s compactness theorem there exists a subsequence
u,., converging to some u in Hpe(@). As in the proof of Theorem 6.4, we can
conclude, that u belongs to 4°(Q) and hence vanishes by (6.16). This contra-
dicts (6.20).

We have shown that for any exterior domain € with smooth boundary the
Dirichlet operator, as defined by (6.18), is a weakly indexed operator with index
0 and admits a pseudoinverse #-1 which is continuous as a mapping from
K@Q)X]I ;”;01 H>-=J=-YXT) into Him(Q) and for which Q=P is a continuous
projection of K(€) onto the range of £. Since the adjoint Dirichlet problem is
a problem of the same kind, this is true for 2* too. Therefore all assumptions
(A1)—(A6) are valid in the case under discussion and one can conclude that
Theorem 3.6 is applicable for exterior boundary value problems with respect to
the operator A=P(L).

Remark. To solve problem (2.15), one could proceed as in the proof of
Theorem 6.4, using estimate (6.5) with y; replaced by B;. However, this would
yield neither the index of the problem nor the finiteness of the codimension of the
range.
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