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EXTERIOR BOUNDARY YALUE PROBI,EMS
FOR ELLIPTIC EQUATIOI{S

J. SARANEN and K. J. WITSCH

1. Introduction

In some exterior domain fJ c R', fi>2, having
we consider a strongly elliptic operator

a smooth boundary l-6:- AQ,

(1.1) A:-

of order 2m, m=0. Our aim
solvability conditions for the

(t.2)

with explicitly stated

where the boundary operators

(1.3) Biu::,"ä.Ur"0"u

of order mi=2m-l are supposed to cover the operator A and to be a normal
system on the boundary ,l'0. The coeffi.cients are assumed to be smooth on the
closed domain a:Ovlo. In addition to equations (1.2), we shall later impose
an additional condition for the behaviour of the solution at infini§. This is necessary
to guarantee that the boundary value problem is of Fredholm type. The conditions
of solvability will be stated explicitly by means of an appropriate adjoint boundary
value problem.

Our results will cover e.g. potential equations as well as problems of the radia-
tion type.

In the case of bounded domains the solvability properties of the regular problem
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(1.2) in the Sobolev space Hz*(O) for the data

(f; go; ...,8*-t)€L'(o) x fi' H'---'-'l'(ro)
j-o

are well known. In particular, the associated operator v*(Au;8il1, "',8*'#)
is an indexed operator and the conditions of the solvability of (1.2) can be described

by an adjoint boundary value problem, Lions and Magenes [21], Theorem 5.3,

p.164.
No corresponding general results are known for exterior domains. On the

other hand, there are numerous papers dealing with special problems of type(1.2)

in exterior domains. To obtain a reasonable theory, the behaviour of the solutions

at infinity has to be taken into account. We mention the main types of problems

which have interest from a purely mathematical point of view as well as due to

their applications in mathematical physics.

An important class of earlier papers considers problems where a "radiation

condition" must be satisfied. The simplest example is the reduced wave equation

where A:/+kz, k>.0. This operator and its second order generalizations have

been studied by Eidus [7], Jäger [13], Saito [30], wilcox l42l and witsch [43] among

others. For earlier references, see the literature in these articles. These papers,

apart from l42l and [43], deal with the Dirichlet boundary condition where the

corresponding boundary value problem is uniquely solvable'

In t+:l an oblique type boundary condition is considered. A Fredholm alternative

is proved with explicitly stated solvability conditions'

Generalizations of the theory of the reduced wave equation, also called Helm-

holtz's equation, to higher order equations were given by FinoZenok [9], GruSin [10],

vainberg [35], [36] and Vogelsang [38], [39]. Apart from [36] only the whole space

proUlem or the exterior Dirichlet problem is discussed. In [36], Vainberg considers

ieneral regular boundary value problems and proves a Fredholm type result' How-

ever, the orthogonality conditions are not described'

The potential equation has also been solved in the whole space or in exterior

domains, Courant and Hilbert [4], Kudrjavcev [16], Meyers and Serrin [22], Neittaan-

mäki [23] (fourth order), Saranen [33], Witsch [43]. For a comprehensive treatment

including nonlinear problems with the Dirichlet boundary condition we refer to

Edmunds and Evans [6]. In dealing with problems of this type, one uses function

spaces which, roughly speaking, require ttrat the functions fall to zero sufficienfly

rapidly at infinity. The results concerning the potential equation (Poisson equation)

can be extended to other static problems, as we shall see in Section 4 of the present

paper.

Whole space and exterior problems for polyharmonic equations and for more

general related equations were considered by Paneyah [24], Saranen [32], Vekua[37]

and Witsch [45]. They have defined the solution by a suitable decomposition method

which reduces the problem to a system of lower order equations. In the exterior
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case the boundary conditions were of the Dirichlet- or Riquier-type, which in the

polyharmonic case A:a^ prescribes \t,/u,...,/--tu at the boundary (cf. [37],

p. 3al. The plate equation, which represents a fourth order equation and describes

ieal physical phenomena, partly falls into this group. Related exterior problems

have been studied by Leis [18], U9l, Neittaanmäki [23], Polis 127i, Sannen [31],

Wickel [40], [41] and Witsch [44].
Here we give a unified approach to the general exterior boundary value problem

(1.2) under the assumption that t}le corresponding Dirichlet problem can be solved

for an exterior subdomain of O. We use the alternating method, which goes

back to Schwarz and was employed by Leis [17] and Witsch [a3] in the case of

exterior problems. It is worth observing that in contrast to these works no unique

continuation property is needed in our modification of the alternating method.

The importan." of this lies in the fact that the unique continuation is not valid for

all ellipiic equations; for counter-examples see PliS 1251,126\ and for the cases where

this property has been verified see e.g. calderdn [3] and Protter [28].

The solution is built up from solutions of an exterior Dirichlet problem and

a boundary value problem in a bounded domain, imposing the boundary conditions

(1.2) on its boundary component ,l-0. The fact that the unique continuation prop-

erty can be avoided is essentially due to an effective use of Fredholm inverses

of the linear operators describing the auxiliary boundary problems.

According to our key result, Theorem 3.6, problem (1.2) has a finite index

which is exactly the sum of the indices of the auxiliary problems mentioned above.

Furthermore, we are able to give the orthogonality conditions for the solvability

by means of an adjoint exterior boundary value problem'

In the remaining sections we shall apply Theorem 3.6 to various types of

problems. In Section 4, potential type problems are discussed. These are the prob-

iems of the form (1.2) where the coefficients of the elliptic operator A, notbelong-

ing to the principal part, fall to zero sufficiently rapidly at infinity'

In Section 5 we achieve a Fredholm theorem for general elliptic radiation

problems. Thereby we apply the results of vogelsang [38], [39], derived for exterior

Dirichlet problems. Thus, our Fredholm theorem for the radiation problems in

this section is achieved essentially for the class ofoperators considered by Vogelsang'

For x* -, the operators discussed in Section 5 have to tend to a limit operator

l-(å) with constant coefficients. A crucial assumption on this limit operator is

rhat the zeros of A-(t) are simple. This condition is violated in the case of prod-

ucts of Helmholtz operators. which we treat in the last section'
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2. Preliminaries

2.I. Notation. lf A is a subset of the Euclidean space R', then Ä and 0A

denote the closure and the boundary of A in the topology of R'. If for two subsets

A and.B holds ÄcB and if ,a- is compact, we write AccB.
We use the standard Sobolev spaces H"(Q), s>0 for functions in O and the

boundary spaces H'(I), s(R. For the definition of these spaces, see Lions and

Magenes l2ll, p. 34, p. 40. Thus we have LZ(Q):Ho(A) and Z2(f):I/0(l-). In
the spaces H"(A) and II"(i-) we use the norms ll 'll",o and ll '11",.. When

appropriate, the norm of the space X is also denoted bV Il 'll(X). The spaces

Lz(Q) and Lz(f) are endowed with the usual 12 inner products (zlu)o,e and

(ulu)o,r, respectively. The last notation is also employed for the sesquilinear duality

pairing for the pair ,FI'(i-), ^F1-"(i-):(ä'(l-))', extending the Z'z(i-) inner product'

2.2. Regular boundary ualue problems. We recall the contents of the essential

notations in connection with regular boundary value problems. This notion is

usually employed for boundary value problems in bounded domains. Here the

same term also is used for exterior problems when the corresponding conditions

without any "boundary condition at infinity" are satisfied.

Let
(2.1)

be th

Ar*(x, () : Z a*B(x) (o*o , x€ Q, (€ R'
iol:lFl:,n

e characteristic form of the differential operator

(2.2) A_ z (- 1)t"t 0o (aopa\,
0= lal ,lfil=nt

We assume that the coefficients dop zta smooth in 8, aog€C-(O). The operator

I is assumed to be properly as well as strongly elliptic in CI. The proper ellipticity

of A means that for any fixed x(A and linear independent vectors (,4€R' the

polynomial Ar*(x, 1*r/» in z has exaciy ru roots with positive and rn roots

with negative imaginary parts. By the strong ellipticity in O we assume that for
any .R>- 0

(2.3) Re Ar*(x, C) z ao(A) l|l'^, (x, O€O(J?)XR',

where ao(Å)=O and O(R;:: {x€A: EI=A} (cf. [21], p. 110-ll1).
Furthermore, we suppose that there are given boundary operators Bt,

.i:0, ..., m-| of otder mr<2m- I such that

(2.4)

and that. the coefficients b in are smooth, b in€C-(fo).
For the following definitions see 1211 p. 112-114.

Bj:,2 biu(x)}''
lvl=mi
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Definition 2.1. A system {D}j:o of boundary operators

'tt: ,åo,dt"(x)a"
is normal on l-o if

(i) k#ki for itj,
(ii) Zftt:krdj,(x)(+o for all (+0 such that ( is a normal vector of l-o at

the point x(l-0.
The system is a Dirichlet system of order k if it is normal on l-o and if the

orders k, of Di formapermutationof thenumbers 0, 1,...,fr.

Definition 2.2. The system {Bi[.# covers the operator I on i-o if for
all x(j-o and (€Rn, (10, such that ( is tangential to l-o at x, and for all
rl(R",ryf1, such that 4 is normal to -I'o at x, the complex polynomials of t,
Zp1:^,biu(*)((+r41", j:0, "', ffi-l are linearly independent modulo the
polynomial fiirQ-r{(x, (,q)), where r,+(x, (,q) are the roots of the polynomial
Ar^(x, C+ra1 in u with positive imaginary part.

Finally, we recall the definition of a regular boundary value problem

Au -f, inQ,

Biulao : gj, ,l : 0, ...) m-1-.
(2.s)

(2.6)

Let us first remark that regular boundary value problems (2.5) have been studied
completely in bounded domains. The term "regular" does not require that the

operator ,4 be strongly elliptic as supposed by us for exterior domains. For the
regularity of (2.5) it is enough that the operator I is properly elliptic. We shall
point out where our stronger assumption comes into use.

Definition 2.3. Let A be a properly elliptic operator of order 2m in O

with smoothcoefficients in O and let {,8;}f:61 be a system of boundary operators
B, with smooth coefficients in J-o and of order mJ=2m- 1. Then the boundary
value problem (2.5) is regular if {Bj}f:J is a normal system covering the operator
A on fo.

For shortness we also say that the problem (,E; {nr}T:t) is regular.

2.3. Soluability in bounded domains. In treating the exterior boundary value

problem we shall make use of the solvability properties of regular problems in
smooth bounded domains.

The exact statement of problem (2.5) in the space H*(O) is given as follows.
With the problem (A, {B j\?:;) we associate an operator g: HM(Q)-LL(A)X
IIi;t H'*-^i-Ltz(f o)::L(o)xxo such that

9u :- (Au; Bou, ..., B*-Lu) -: (Au; Bu),

where Biu(rzn-nt-rlz(f6) is defined as a trace. Now, given the data (f : g)::
(f; go, ..., s*-t)(L2(Q)xXo, the function ueHz^(Q) is a solution of (2.5) if
and only if we have ?u:(f; d.
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The essential tools in describing the solvability of problem (2.5). are Green's

formula and an appropriate adjoint problem. Let A* be the formal adjoint of I
(2.7) A* : Z (- 1)l"l 0" @0,0§)

0=lal ,l|l€m

and let g : {C i\i:t be a system of boundary operators C7 with smooth coef-

ficients and of order pr=2rz-l such ttrat {Cr}f:J is adjoint to {B;}f-01 in the

sense of 1211, p. 121. This means that there exist two families S:{.Sr}f;l and

f :{fj}y:} of boundary operators ,S; and Tt with smooth coefficients and of
order 2m-!-1ti and 2m-l-mi, respectively, such that the systems {B; S}
and {C ;T} are Dirichlet systems of order 2m, and that we have Green's formula

(Aulr),, a - @lA*r)o, o _'2' (B; LtlT j?r)r, re - (S iul C; u)o, ro)
J:0

for all u,o€.Hz^(Q), cf.l2ll, p. 114-115 with different notation.
The adjoint problem

(2.g) 
A*u : 'f'
Cjulro: gi, i:0, ...,ffi-|,

is given by the operator @*: H2*1Q1*L2(Q)XX' such that

(2.10) 9*tt : (A*u; Cou, ..., C*-ru)'

The adjoint boundary value problem is not uniquely defined. However, any adjoint
problem makes it possible to describe the solvability conditions of boundary value

problem (2.5). If, in particular, Bru:yiu:(010n)i ul1o, then Ci can be chosen

as Ci:!i. We recall that the linear operator T:X*Y, with normed spaces

X and Y, is an indexed operator if its kernel N(7) is finite dimensional and if
its range ,R(7) is closed and has a finite codimension. The index z(7) is given by

(2.8)

(2.rr) %(T) - dim lf(r) -codim ,R (T).

The solvability of regular problems in the space H'^(Q) is settled by the following
result ([21] p. rc$.

Theorem 2.4. Let o:(A; Br, -.., B^-r): H2-1Q1*72(a)xxo desuibe aregu'
larboundaryprobleminthesmoothboundeddomain Q and let g*:(A*1C0,...,C*-r)
describeanadjoint. Then I isacontinuousindexedoperatorandfortherange R(9)
the following characterization is true: the data (f;9o,...,9^-;)(L'(P)XX0 belong

to R(9) if and only if
(2.L2)

for all u€N(g*). Thus

(2.13)

(f lr)o,a- (g;lTiu)o,ro : o
m-L

zj:0
we haue codim R@)-dim I{(g*),

%(g)- dim N (g)- dim N (g*).
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Note that g*: H2^(Q)-L2(Q)XX' is also a continuous indexetl operator and that
9 is an adjoint of g* in the preoious sense.

2.4. Exterior problem, assumptions. Let now o be an exterior domain with
the smooth boundary l-0. we consider the regular boundary value problem (2.5).
We shall define this problem and describe its solvability in a similar general frame
as was presented in the previous section for bounded domains. However, the be-
haviour at infinity must be taken into account.

Let us abbreviate

H,i"-(O) = {u(H"(Q)l srpp z bounded},

äå"(O) : {z€äf,"(O)lEueH" (e), Eeg(R\},
fl'", 

""(O) 
: {z€}fi" (O)lqu( Hå (A), E€g(W)}.

Here supp ru is the support of the function u and,, for any open set öcn", a(fr)
denotes the space of infinitely differentiable functions 9 with suppqccCI lthe
"testfunctions of O"). Furthermore, H;(A) is the closure of g(fr) in I1"(O).

We define problem (2.5) by means of the operator

(2.t4)
m*L

9: J(:O) * K(Q)X II l{2m*mi-rlr(fo) - K(e)XXr,
j:0

where 9 is defined by (2.6) and where .r(o) and K(o) are given linear function
spaces. The exterior problem (2.5) is now stated as the equation

(2.15) eu - (f; d.
In order to describe the solvability of (2.15), we introduce the adjoint g* of g
such that
(2.16) e*: J*(e)*K(O)xXo
and that
(2.17) g*u:: (,4*u; Cu) 1: (A*u; Cou, ..., C^_fl),

y-l:.t" ft" system {Cj}i:01 is adjoint to {,Br}f;l. The spaces J@(A) and K(O)
(/('r')(o) denotes either .r(O) or .r*(O)) are iequired to satisfy certain conditions
which are given by the following assumptions (AI)-(A6).

First, we assume that
(Al) (i) H!"r.($cJ<*t @)c H!{i($,
(ii) K(o)cl'z(o); either K(o) is normed and the inclusion is continuous,

or K(Q):H!".(O) equipped with the locally convex topology of ä$",(CI).
(iii) AueK(A), A*o(K(Q) if u€J(O), o€J*(e).
In particular, assumption (Al) guarantees that the values A u and A*a as

well as the traces Bru and Ciu are well defined.
An essential feature of the spaces ir(*)(O) is that they characteize the behaviour

of their elements at infinity. This is the property included in the next assumption.
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(2.18)

(A2) For any E€U(R") holds

J'r (Q) - {r€HW(O)l(l - E)uQl* (r2)}.

The spaces Jr(*)(O) and K(O) are assumed to be "dual" in the sense that we have

(A3) uI&l(Q) if u€J(*)(o), feK(o\
In the sequel, if u|(Lt(o), we write

Furthermore, we suppose

(A4) For every u€J (Q),

(2.19)

is valid.
By definition of the adjoint l*, formula (2.19) is true for all testfunctions

in O. Loosely speaking, hypothesis (A4) means that A* is also adjoint to ,4 with

respect to the conditions at infinity included in the requirements u€J(Q), vQJ*(A)'

It is worth observing that conditions (A4), (A2) imply the general Green

identity

(2.20) (Aul r)0, a - @lA*r)0, {t : 2t ((B iulT i u) 0,.16 - (s;r l c;r)', .0)
J:0

for all u€J(O) and u€./*(O).
Our last assumptions concern the auxiliary exterior Dirichlet problem' For

every smooth exterior subdomain QrcQ, we first define

(2.21) /*(Or): {ulo,lu(J*(A)},

(2.22) K(Q): {u1", lueK(O)\'

The exterior Dirichlet problem and its adjoint are defined by means of the

o,erators 
m--a

(2.23) 91: J(A) *K(OJXJ{' Hzm-i-ttz(fJ ::r((O')XX',

(2.24) 9{: J*(a) * K(Qr)XXr,

f t:DQr. 'These operators are given by

(2.25) 91ti: (Au; you, ...,T*-tu)::(Au: yru),

(2.26) 9!u:: (A*u; you, ..','l--tu)::(A*u; ytu)'

Above, 71 is the trace operatot yp:(010n)'ulr,, where the normal vector n is

always chosen in the exterior domain.

We assume that the Dirichlet problem has certain solvability poroperties. How-

ever, we do not require that the explicit conditions given by adjoints be known'

(ulf)o,e:: [ "fa

u(J*(O), both vanishing in a neighbourhood of fo,

(Aulr)g, dt : @lA*r)0,,,
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This will be proved as a special case in Theorem 3.6. Furthermore, we assume the
knowledge of the auxiliary problem only for one exterior subdomain o, of o such
that ArcQ.

In the following we shall use the term weakly indexed for linear operators 1.
By this we mean that the kernel of r is finite dimensional, and that the range of
7 has a finite codimension. The completeness of R(r) will be replaced by condi-
tion (A6).

Our next assumption reads:
(45) For a smooth exterior subdomain arce the operators g, and g{ are

weakly indexed operators such that

(2.27) x (9 r) : dim N (?r) - codim R (9r) : codim R(91) - dim N (gil : - x (9t).

According to (A5) there are operators 0;t: K(A)XXr-J(er) and, (0i1-r. 7g(OJX
X.-J*(Q) with the properties

11

(2.29)

(2.2e)

(2.30)

(2.3t)

910;1 - Qr, 0;r 9, - I- pr,

s{@t)-1 : Or, (i,t)-1 eI : r-Fr,

where Q. and Q, are projections onto the range R(gr) and R(g{),respectively,
andwhere P1 and F, are projections onto thekernels N(gr) and N(g{i,."rp""-
tively. Because of (2.28, 2.29), we shall use the term "pseudoinverse,, for these
operators (cf. Jörgens [14]).

we assume that from the (possibly many) choices of the pseudoinverses
0l and @il-, at least one is continuous as a mapping from K(OJXX, into
H?#@r) and is such that Q, and. Q, are continuous.

Thus, by denoting Or(Å):{x€Orl lrl=Å}, we require
(A6) There are pseudoinverses 0;' and (01y-r such that

llo;, (f;8)llr,,, or (R) = s(1?) (lllll (r(szr)) + ll sll (&)),

It@il-'(f; s)llr*,or(R) = s(ÅXllrtt (K(or))+ll sll(&)),

in the case where rK(O) is normed. If 1((O):ä9"*(O), then (2.30) and (2.31)
are replaced by

(2.30)' 116l(f;8)llz.,o,«nr = c(,R,s)(il,filr+llgll(&»,

(2.31)' ll@il-'U;s)llr,,o,rnr=c(R,sxll,fllr+llcll(ä)
for all (f ; $(K(A)XX, such that Ornsupp/c p(^S).

As an illustration we mention the case of the poisson equation

(2.32) Åu: /'.
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There we may choose

K(o) - {fe L'(a)[(l + lxl)/€ L'(a)),

7(*) (O) : {u(Hil"(O) lAu€K(O),Yu€L'(Q)^, (1 + ixl)-'u€.L'(0)}

if the dimension of Rn is greater than two.

For the Helmholtz equation (k=0)

(2.33)

\rye may emploY the spaces

(Å +k')u - f

K (o) : {fQ, (o)l(r + lxl) fe L'z (o)},

J (o') : {rz e äf"" (O) 
I 

( Å * kz) u ( K (nr, * u - i ku C Lz (Q)},

J * (Q) : {u( H f,, (Q)l(Å + kz) u < K (nt, * u i i k u e L2 (a)}'

In both of these examples holds N(91):N(9il:{0\ R(9):R(g{):y19Jxx''
However, there are cases where these relations have not been proved, but the above

assumptions (A1F(A6) are valid. For a more complete treatment we refer to the

applications given in Chapters 4-6.

3. SolvabilitY conditions

In this section we prove a Fredholm type theorem for the exterior problem

(2.5) defined by equation Q.ls). The solvability condition will be stated explicitly

by means of the adjoint 9*.
We choose the exterior subdomain QrcQ with the smooth boundary l-r:

IQrcQ. Furthermore ,let QrcO be a smooth bounded domain such that R'\Ot cc
OrrG\fZ).ThedomaingrischosensuchthatwithOrr::QrnfJrtheDirichlet
problem

Au - -f€L'(Qr,r), u€H2* (Qrr),

. Tiulru - g1€H2*-i-tlz(ro), J : 0, "') tlt- 1, k - l' 2'

f ,:(\Q)nQ., is uniquely solvable. If O, has been fixed, such a choice of Q'

irit*uyr-porribl". Thi. follows from the strong ellipticity of A and from Poincare's

inequality if the width of O., is chosen small enough'

We abbreviate Xr:IIi*'r1zn-i-rtz(f2) and define the mapping

9z: H%*(Or) -* Lt(Or) XX'XX,

Tzu - (Au; Bu; Yzu)

(3. 1)

(3.2)

by
(3.3)
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with yzu:(!oulr,,...,y^-rulr,). Let O;' be a Fredholm inverse (continuous
pseudoinverse) of 9, such that

(3.4) grhlt : gr, b;r g, : r* pz,

where Q, and P, are projections onto the range R(Ar) and onto the kernel N(gr).
The following result is crucial in our modification of the alternating method.

Lemma 3.1. Let u€J(O) be a solution of equation (2.15). Then we haae

(3.5) ula,: d;'(flr,; g; y2u)+Pr(ulo,1,

(3.6) ula,: bl'(.flo,; ylu)+P1(ula),

(3.7) y'(ht'(fla,; y' 0;'(fla,; s; yzu)+yt P,(ula)))+y2pt(ulo) : yru.

Conuersely, if there are the functions (h;w;o)(X2XN(g)XN(9r) such that with
U; ileK@1xxn the relations

(3.8) (fla,; s; h)€.R(sz),

(3.9) (J'lo,; y,0;Lu'la; s; h)+yru)(R(g),

(3.10) yr hl(fln,; yrhir(fla,; g; h)+yLo)+yzw : h

are aalid, then we haue (f ; g)(R(g) and a solution u of (2.15) can be giaen by

(3.1I) ,: {?." i: Q"-' lur. in Qr,

where the Junclion.s

(3.12) ur::0;L(fla,i gi h)*o,

(3.13) ur:: O;t(fla,; ?Luz)*w
coincide in Qrr.

Proof. Suppose that u€J(A) satisfies gu:(f; d, Then we conclude
ulo,(Hz-(Qr) and

(3.14) (f la,; s; yzu) : (,1(uls,); a@la); yr(uls))eR(g).

Similarly, ula,€J (Q) with

(3.15) (fla,; yru): (a(ula,); yt(ulo))€R(gr).

Using properties (3.4) and (2.28) of the pseudoinverses 0;, and, 0l we can
write (3.14) and (3.15) equivalently as (3.5) and (3.6), respectively. When we take
a trace, (3.5) and (3.6) yield formula (3.7).

Let us assume conversely ttrat we have (f ; sXrK(o)x& such that for a triple
(h, w, u)€X2X N (gr)X N (gz) equations (3.8)-(3. 10) are valid.

13
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We show first that the functions u, and a, defined by (3.12) and (3.13) coincide

in d)rr. Define or:urla,, and oz:uzla,,- Now, we obtain or,ar(Hh(Qn)
together with

Ao': 'flo'"'

(3.16) yztsz: yzuz: y'(b;'Uln,; g; h))+yzo : h,

Y7 u, : Yrttr,

and, by (3.10), together with

Aur:.florr,

(3.17) ylat -- y'uz,

y2tsr: yzttr: y'(g;'U'lr,; y'(0;'(flo,; g; h))*ytu))+y'w : h.

By the unique solvability of the Dirichlet problem (3.1) we obtain from (3.16), (3'17)

the assertion ot:luz.
Sincethefunctions u1 and u, coincidein d)rr, thefunction z givenby(3.11)

is well defined. We verify that u(J(Q). Let ((g(R') be a testfunction such that

((x) = 1 in an open set containing R'\O, and such that the support of ( is included

in O2u(R\O1).
Defining

(3.18) h(x):{å,'"o'' X[3(n,,
and

(3.1e) ii1(x\:{(t-((xDz'(x)' ;år\",,
we have the representation

(3.20) u: th*il2.

Since lurCHl!.(8r)cJ (Or), one concludes

ihta,: ur-Eu&J(Q)'

which by (2.18), (2.21) yields

(3.2t) il$J(o).
Furthermore,
(3.22) fiz€.H?!-(A) c J(o).

Bv (3.20){3.22) we have u€J(Q). From the construction it follows that

Au:f, Bu: g

and therefore gu:(f ) g). This ends the proof.
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We define the linear operators Li,.i:0, 1,2, letting

(3.23) LoU; d:: y, hl(.fln,; y,hi,(flo,; 8i 0)),

(3.24) L,(f;d:: Q-Q)(.fla,; t 0;t17lo,; g; 0)),

(3.2s) L,(f ; d:: Q-Q)U lo,i g;0).

Accordingly, these operators map as follows: Lo: K(Q)XX'-X2, L1: K(e)XXo-yl
and Lr: K(Q)XXI*I2. Here I, and y2 are the finite dimensional spaces Ir:
:(I-OL)(K(O)XX) and Yr:(I-e)(Lz@)xxoxxz). In particutar, dim Ir:
codim Ä(Pr), dim Yr:ss6im,R(Pr).

Conditions (3.8)-{3.10) are equivalent to the system

(3.26) L,(f; d : (Qz- I)(o;0; h),

(3.27) L,(f; d : (0r - 1) (0 ; y, &;, (0; o; h)) + (er-I) (0; yl u),

(3.2s) Lo(f; d : h-yz ht'(o;y' 0;'(0;0; h))-y, 0;'@;yru)-y,w-

Let us introduce the operators

(3 zs) :',:r:;:;, n2r,1o, y, o;,(o;o; h));

(3.30) 
a': N(9')xN(92) * x2'

tI2(w, u) : -y2911(O; yru)-yzw;

(3.31) 
A': X' - Y1xY2'

Ash : ((er- t) (o ; yL 0; 1 
@ ; o ; h)), (e,- r) (O ;0 ; å)) ;

(3.32) /n: N(9')xN(9') *Y1xY2'

An(w, u) : ((h- r)(0; 71a), 0).

Equations (3.26)-(3.28) are equivalent to

(3.33) LoU; d : tl'h* A'(w' tt)'

(r,U; d, L,(f; s\) : trh+An(v,, u).

Finally, we introduce the linear operator Ai XzX(N(gL)XU1Or11*XzX(y1Xyz)
by the matrix representation

(3.34) ,,t :(/.' A'\
" - lA, a)'

We have

Lernma 3.2. The kernels N(3) and N(A) are isomorphic.

15
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proof. Let (h,(w, r)) be an element of N(21). Since equations (3.33) or equi-

valently (S.gF(S.fO) are valid with (/; g):(0;0), we may, by Lemma 3'1' define

the function u::T(h,(w,o))eJ(o) by the requirements

(3.35) ulr,:0;'Q;0;h)+u,

(3.36) ula,:0;'(O;71(ale))+w'

By Lemma 3.L u€N(9). The mapping T : N( )-N(gP) is linear, too'

Suppose that u:0. Then we conclude from (3'36) that

We need the following lemma

Lemma3.3. The mapping h*y20/(O;y'h;'Q;O;h)), X2*X2 is compact'

Proof.Themappingw*yz0|(0;w),Xt*Xziscontinuousbythecontinuity
of y2: i731fl;*y, and by assumption (A6), which states that the pseudoinverse

hrl : K(a)xxt*H?# (At) is continuous'

Accordingly, it is enough to show that the mapping h*y'hi' (0;0; h) is

acompactoperatorXz*Xt.Thispropertyisindependentofthechoiceofthe
Fredholm in verse 0;' since two Fredholm inverses differ only by a finite dimensional

continuous oPerator.

We choose the Fredholm inverse 0;' in the following way. The range R(Ar)

can be charactetized as (Theorem2.4):

(3.39) (f; s; h)(R(sr) if and only if (f ; s; DeL'(Q2)xXsxX2 :: 22

such that

(f lr)0,o,- 2'(<r,lr,u>o,ro*(h1l|p)o'rJ : 0
j:0

(3.37) w: ulo,-0;'(0;Y'(zls2,)):0'

By equation (3.10) then

(3.38) h:!20t'(O;71(zls,))+?2w:0

and (3.35), (3.38) yield u:0. consequently, the mapping 1- is injective. But it is

also surjective since by the first part of Lemma 3'1 we obtain

u : T(yzu, (Pr(ulo), Pr(aln))

it ueN(g). This completes the proof.

In order to prove the Fredholm alternative it is convenient to discuss the mapping

M ; ZtZ, z::xrx(t'{(gl)xN(g))x(rrxrr), wbete M is given by the matrix

( ,t, tlz 0)

u:lo o ol.
[2, A4 o,
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for every oeN(g{\ Here 9{ denotes the adjoint operator g{u:(A*u;Cu;y2u)
and the operators Tt, §i are chosen such that (C0,..., C*-riTo,...,T^_r) and
(y0,..., l*_i fro,...,fi*_r) are Dirichlet systems of order 2m on Io and on .l'r.

According to (3.39) we may use the direct decomposition

(3.40) 22: R(02)@y2,
where

(3.41) Yr: {(u; -Co; -Bo)lo(N(gt))
with B:18o, ..., fi*-t).

Take (0; O;h)€2, and write *:0;'(O;0;å). Then we obtain by (3.a)

(3.42) 92w : Qr(0:0; h):: (f; E; rt).

Since the kernel N(g*) contains only smooth functions in Az. we conclude

]ec*(a),s€c-(t-o) and

ll "f ll", ", = c (s)ll hll(xr),

(3.43) ll§ll",r, = c(c)ll hll(X,),

11fril6) < cllhll(x,).

From the interior regularity results for elliptic operators it follows by (3.42) that
w€HM+|(å1 with
(3.44) llwll,.*,,; = c(lllllr,6+llrllo,o)

for interior subdomains äccÖ.-Qr. By (3.43), (3.44) and by the continuity
of &;' we obtain

(3.45) llwll,^*,,; = cllhll(X).

From (3.45) it follows that h-hi'(O; O; h): Xr*112*föl ir compact, which yields
the assertion by the continuity of the trace y1: Hfg(er)tyr.

In the sequel the space x2 as well as the finite dimensional spaces N(gr),
Yi and their products are considered as Hilbert spaces. The appearing adjoints
and orthogonality conditions are thus well defined.

We define L: K(A)XX'-XzXY1XY2 by

(3.46) L(f; d: (L,(f; d; L,(f; d; L,17. r11.

Furthermore, we write f;:codim R(9), d.i:dim N(g) and for the index of g,

(3.47) xi: ai-§i,
j:1,2. For g we use the notation x:a-§, s:dim N(g), fi:codimR(g).

Lemma 3.4. The .following qssertions are true.
(a) The operator M is of the form M:I-K, K compact.

t7
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(b) The kernel N(9) is rtnite dimensional and we haoe

(3.48) a: dim N(M)-frr-§r.

(c) For the range R(9) we haue

(3.4s) R(s) : {(f; deK@)xxlL(.1; c)r N("1*)},

where the kernel N(A*) has the dimension

(3.50) dim il(21*) : d-xr-xz'

Proof. According to the previous lemma we have År:l-K., where K, is

a compact operator. This implies assertion (a) as the spaces N(g)xN(nz) and

YrXYz are finite dimensional.

Assertion (b) is a consequence of the formula

N(M): N(/)x(rlxrJ

together with Lemma 3.2 and the fact that the kernel N(M1:7I711-K) is finite

dimensional by the compactness of K.

By equation (3.33), the condition (/; g)€tR(9) can be written as

(LoU; il; o; (L,,(I| d, Lr(l'; s)))€R(M).

By the Fredholm properties of M:l-K, the requirement (3'51) is equivalent to

(to(f; g); 0 ) (Lt(f; d, Lr(f: s))) L N(M*),

Z *Z is given by

M*

(3.5 1)

(3.52)

where M*:

(3.53) :[4 lll )
Condition (3.52) reads

(3.s4) (to (f; il) (L,(f; il, Lr(f; s))) r N("{*),

where the operator A*: xrx(YrXrz) ---xzx(I\r@L)xI{(gr)) is defined

(3.ss) A*:(1; i:)
We have N(M*): t(gr , gzl gs)l(gr, gs)€lf(/*), 8z(I'{(9r)XI'{(g)}'
(3.48) yields

dim lr(r1*) - dim N(M*)-(a, *a) - dim N(M)-(4, *a) - d.-%1

Our aim is to express the solvability by using the adjoint problem

means of 9*:(A*; C). We note first

by

which by

- X2.

defined by
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Lemma 3.5. Let uQ(a) with Qu:(f; il b" giuen. Thm we haue the ortho-
gonality relation

(-f lr)o,o- 
'2'(s;l 

Tiu)o,r,n : o
J:0

t9

(3.56)

.for euery uQN(g\.

Proof. This follows from the general Green formula (2.20).

Finally, we get our main result for the solvability of the exterior boundary value
problem (2.15).

Theorem 3.6. Let ocR" be an exterior domain with a smooth boundary
r0. Furthermore, let A be a strongly elliptic operator in g and ret {Br}!:} be
a system of the boundary operators B, on f o such that problem e.5) is regular.
If assumptions (Al)--(A6) are ualid, then the operator g:J(A)*K(a1y
IIi-_^'H'^-^t-'12(f o), gtu:(Au; Bou, ..., B--fl), which describes the exterior
problem (2.15), has the finite index x:vtrrx2, where x, is the index of the auxiliary
operator 9i.

Soluability conditions read: the data (f ; g<K@)Xfi!-^Lpz--^t-1t2(lo)
belong to the range R(g) if and only if equation (3.56) is oalii for all ueN(g*).

Proof. We first show the inequality

(3.57) dim N(9*) -- dim If(,{*).
Take a testfunction E€g(R'), E>O and consider the mapping R: N(g+)*N(Ä*)
(3. 58) Ru - IIL(Ev; 0),

where rr is the orthogonal projection of xzx(yrxrr) onto N(A*). Since the
space N(9+) is finite dimensional (for the same reason as N(g)), we may choose
the support E so large that for all u(N(g*) holds

I vlul' : o

if and only if o:0. But then the mapping R is injective since from Åo:0 it
follows that IIL(E,;0):0, which means L(rpu;0)€N(/*)a. Accordingly, by
Lemma 3.4 (c), there exists a solution u of the equation gu:(Eul0). The neces-
sary solvability condition (3.56) then yields

(3.59) O:(Eulo)o,s: [,olul,
I

implying o:0.
Thus (3.57) is proved. Combining (3.57) and (3.50) we obtain

(3.60) dim N(9*) = dim N(A*): dim N(e)-xr-x2.
Changing the roles of I and g* one concludes

(3.61) dim N(9) < dim N(e*)+xr+xr.
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Inequalities (3.60) and (3.61) imply

t3.62) dim l{(g)-dirn N(g*) : %t*xz.

It remains to show that dim N(9*):ss6im R(9), that is, that condition (3'561

is also sufficient. Let (f ; g)€iK(O)XXo, such that (3.56) holds, be given. Comparing

formulae (3.50) and (3.62) we observe that dim N(9+):6in' N(l*)' Accordingly'

the mapping R also is bijective. Hence we find an element o(N(9*) such that

(3.63) IIL(f-Eo; g) : 0'

But Lemma 3.5 and charactetization (3.49) then yield

(3.64)
ttt-L

(f- eulu)o,a- 2 (g;l Tir)o,r-o : 0.
j:0

By condition (3.56) and formula (3.64)

(qulo)s,s: o,

which implies <pu:o. But (3.63) then implies IIL(f;g):0, which according

to Lemma 3.4 means that (f; il<R(g).

4. Potential tyPe equations

In this section we apply Theorem 3.6 to the case where the coefficients a,,

of the operator
(4.1) 

': o=,*zrrur=.(-1)l'lE(a,poa)

not belonging to the principal part |a|:10l:* fall to zero sufficiently rapidly at

infinity. A typical example is the iterated Laplacian A:Å-.
In order to discuss the general exterior boundary value problem we introduce

some appropriate weighted Sobolev spaces. The weights will be chosen such that

the Dirichlet sesquilinear form

(4.2) B (u, u) : 
oaät,r=,n(oop 

aP ul o. u)0, -')

associated with the operator I becomes, under certain assumptions on the co-

efficients, coercive for the Dirichlet problem. This will be achieved by estimating

the terms which do not belong to the principal part by means of the weighted Poincar6

inequalities of the type

(4.3) , ll ,. , ,,-P, .-- ll'g

t?t: i ll 0* lxl)',ln (r+ [li6-ll.,, = clut'^' n

for 0<j<m-1 with the seminorm l'1.,o such that

(4.4) lul!-,n: 
,2,__llå.ulli,o.
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Estimates (4.3) are first proved in the space g(e). The parameters r and ö,
where r>0 and ä:0 orl,willbedependenton nr and.i aswellasonthespace
dimension n.

we begin by considering exterior domains o such that the origin x:0 does
not belong to 0.

Lemma 4.1. Let OcR", n>2 be an exterior domain such that xlo for all
x(8. The following three assertions are true.

(i) If r(R, r*O and if n*2r, then we haue for all ueg(A) the estimate

(45) 
ll+11,"=2t2,-nt-,ll#1[,

(ii) Let 1*l=e fo, all x€Q. If 2r-n=0, we haue

(4.6)

for all u€0(A).
lll**11. " = z(2r - n)-Lllr#Erll,, 

"
(iii) I-et Jxi=e for all r€ o. If n-2r, it holds that

(4.7)

(4.9)

./or all u(9(A).

Proo/'. (i) A partial integration yields for every s(R and r*o the identity

Ry choosing s: n -2r we obtain

(4.e)

Since s:n-2r*0, we have by (4.9)

llrll =llyu u rll(4.10) i'i 
hl*l, llo,,: ll#*' l*1" lrl llo,,,

which proves (4.5).

(ii) A similar calculation as above gives

(4.11)

ll,fu *' ffi åll, " 
- ll'#Erli' . *, u *,' -,, llr#krll. "

*2sllmll; 
"
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Since 2r -n=0, the choice s:n-2r < 0 yields

lxl'-'ln lxl

which implies the assertion as in (i).
(iii) If n:Zr, we have for all u€O(O)

(4.t2)

(4.13)

+,ffiå11,,,=11ffi11,,,,

which leads to estimate (4.7).

Estimates (4.5)-(4.7) are applied as follows. we introduce the weights 4^,i,
j:0, 1,...,m-1, which also depend on the dimension of the underlying space.

We define
n even with n > Zru+ 1,

=l€ffi,0=j=rn-1,

P*, i which behave as cln,, i at

and are thus applicable to all

Yu

I i I ,l ll!*, o,o r:

is an exterior domain such that

I trt 
-m*i , n odd, or

Il'l-**i' n-2l' 1

In addition to these weights we use the weights

infinity but which have no singularity for lxl-O
exterior domains.

We denote

(4.15)

I tt + lxl) -* *', ,x odd,

p*, j(x) - I tt * lxl)-'+i(ln (e* lrl))-', n - 21,

[(t+irl)-'*i, n -21,

Now, we introduce in 9(O) the norm ill ' lll*,p,o
derivatives up to order nt.

or n even

1"<l=m,
1=l5TYl,

containing

with n>2m+1,
0<j=nt-1,
m-!=j-/nt.

a contribution of all

(4.16)

rfo
norm

(4.L7)

ä z llp*,iä"ullä,r.
j:o lal: j

i"rl=e for all x(Q,

Thesemmorm l.l*,o is

Lemma 4.2. Let
exists a constant cr>0

(4.18)

tn

i I lul llk,n,d) : 2 Z ll q*, i\oull3,,, .

.r:o lol -r

a norm in g(0\ In fact we can Prove

(2cR" be on exterior domain with A*R"
such that

cll lllrl ll*,r,p = lul*,e 3 lllulll,,,p"s

we also make use of the

Then there
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Jbr all u(9(A). If, in addition, l*l=" fo, all x(Q, then there exists a constarxt
cz>O such that

(4.19) c;r lllulll^,r,o = lul_,a = lllulll^,r,a
lbr all u(9(A).

Proof. Since A*Ro, we may without loss of generality assume lxl=e for
any x( O. Hence it suffices to prove the last assertion.

Let us first assume that n is odd or that re is even together with n>2m*1.
Then we have, by using inequality (4.5) successively with r:m, m-1,...,1, the
estimates

(4.20) ll#11,"=,ll#-l[o= =ctut^.a

In the case n:21, l=l=m, we use m-l times estimate (4.6) and one time (4.7)
as well as /- I times (4.5). This yields the required assertion

(4.23)

llr*ll,,, = =',,L-,lluffill, o=',,:å,., ll#ll,,o= = ctut*,a

(4.21)

(4.2s)

We remark that as in inequalities (a.s)-(a.f it is possible to give explicit bounds
for the constants c1 and c2 appearing in (4.18) and (4.19).

We abbreviat e

9@)-{uCC*(CI)l srpp u compact}

and define the weighted spaces

H#(O) :W)tl l' I i'io" n' n,

H{il(O) - 9(O) lll'lll',,,'P'"- 
.

By Lemma 4.2 it follows that I' 1,,r2 and lll. lll,,r,o are equivalent norms in the
space äfii(O). The following result makes it possible to identify more directly
which functions belong to the spaces Hf@) and H{*(Q).

Theorem 4.3. Let QcR' be an exterior domain. Then the following charac-
terizations for the spaces HT,@) and Hi*(A) are true.

(i) Htr-(o): {u€H[,r*(Q)l I llrzl ll.,r,r,= -].
(ii) IJ' Q has the segment property,, then

I

H#(a) : {u( Hfr.(A)l | | lzl I 1.,,, o= -;.
(iii) If the boundary f :0Q is smooth, then

H{:"@): {u(HS(A)l yiulr:0, i : 0, 1, ..., m-l}.
Proof. We argue only the assertion (i). For the moment we define

frn (o) : {u(H't,,".(o)l lllrlll*,o,e <.o}.
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(4.31)

(4.32)

(4.2e)

are chosen

(4.30)

where the
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Then the inclusion Hi*@)cf,fr(O) is clear. On the other hand let u(rt&@)
be given. we take a fixed smoothing function E(g(R) such that E(t):I, lrl=t
and g1l1:g,ltl=Z, and deflne the sequence Ax(9(R") of the testfunctions rp*,

kQN, k>e" by

I t, lxl < en,

qx@):tr[#) , t,t ze"

This sequence satisfies the estimate

(4.27) l0'Eo@)l= c(1*lxl)-l'lln(e+lxl)-l,

where the constant c is uniform with respect to k.

lf u<frh(Oy then we have uqgHff(Q). Furthermore, a straightforward

calculation using (4.27) yields with .E(A):{xl lxl=,R} the upper estimate

(4.28) lll"*uEolll-,0,a: lllu-ue*lll*,p,n<*t = ,lllru lll,,r,rru: * 0'

This proves the assertion.

The spaces K(Q),J(O) and J*(o) which are needed for the exact definition

of the exterior problem

Au : J',

Bju: gj, i - 0, 1")...)t'tt

as follows. We take

rK(O) - {Jer'(o) l(p*,0) -1 J€ L',(o)},

space K(O) is endowed with the norm

lll'll (lr(o)) - ll (p*,0)-1l|lo,o.

For J(O) and J*(q we choose

r(Q) - {u€Hru(O) nH:;(o)lAu€K(o)},

,r* (o) - {u( H?#(O) 
^H#(()) lA* u€K(o)\.

Now we turn to the general assumptions of Section 2.4. The assumptions

(A1)-(A3) are clearly valid. Furthermore, let u!(a) and o(J*(Q) such that

u and u vanish in a neighbourhood of -l-0. Then we have

(AulE)g, dt: B(u, E)

(A*ull)o,o: W)
for all tt,<g(O). To employ the relations (4.33) and (4.34) for E(J*(Q),'!<J(O)
we have to impose such conditions on the coefficients aop that the sesquilinear

form B becomes continuous with respect of I and ry' in these spaces.

(4.33)

for all Eeg(O) and

(4.34)
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We make the assumption that for all multi-indices a, fr,lal, lfrl=m,
(81) la,p(x)l s cpm,p1(x).p_,1p{x), x(e,

with a positive constant c.

If(Bl)isvalid,thenthesesquilinearlbrm B(.,.) iswelldefinedandcontinuous
in Hi@)xHi@).

Furthermore, if u(J(Q)aH{*(Q), u(J*(Q)nH{_($, there exist sequences
q",{/,€.9(Q),{,*o in H{*(O) and qn*y in Hff*@). Accordingly,by(4.33)and

(Auir)oo - lilp (Aul /")o,e - lip B(u, {r,) : B(u, u),

fulA*r)o,e _ lim (E,lA*u)o,o - lim B(E", u) : B(u, u).

Thus, if condition (Bl) is valid, then (A4) also holds.
For convenience, we finally assume that the sesquilinear form B( .,.) is strongly

coercive in Ht*(Or) for the exterior subdomain Or:{xl lxl>År}. This means
(82) There exists a constant cr>O such that

(4.37)

(4.34),

(4.35)

(4.36)

c, I I I ulllk, p, ltt + Re B (u, u)

for all uCH{.(A).
This assumption is valid if for example the coeffi,cients ao, with lal+lfil=2nr

are "small enough" and if I is uniformly strongly elliptic in o. If namely

(4.38) lo,p(r)l5 epn,tat@)p^sp(x)

for all lal+lfil=2m, inequality (B2) is valid if 0=e=fo when eo=g is sufficiently
small. For this we write ,B:Bof.Br, where

Bo(u, u) : . . Z. (aor\Pulff o)o,n,,
ldi:lpl:,n

Br(u, o') :,o, 
*d, =r^(a 

nuoq ulo o)o,s,.

By (a.18) and (4.38) we have

(4.39) lBr(u, u)l = celul!^,s,.

Then the uniform strong ellipticity implies

(4.40) Re .B(a, u) > aolulf,,o,- celull,o, = ! l"l:*,o,
if 0=e=c-raol2"

We collect our conclusions concerning the general assumption of Section 2.4.

Lemma 4-4- Let A be a strongly unifurmly elliptic operator defined by @.1)
such that the cofficients are smooth and that they satisfy the conditions (Bl), (B2).
If the spaces K(o), J(o), J*(Q) are defined by @.3e-@.32), then the assumptions
(Al)-(A6) are ualicl. Furthermore it holds that N(er):y,11901):{0}, R(g):
R(?f):Y1Q.)x&.



Ap:-f in B(.Rr, Rr),

(4.41) T'o : g,

Yztl :0'

with I i: {xl lxl:A"i} has a unique solution o(H2^(B(RL, R)) such that

(r:tr1Rr, Rr;)

(4.42) llull,^,, = c(ll/ll6,s+llgll(ä).

We choose a smoothing function E(9(R") such that

[ 1, lxl < Rr +ä/3,
E\x):10, 

l"rl > RL+2613

and define öeH?r_(ar) as the zero continuation of u9 outside ,B(rRr,.Rr). We have

(4.43) llöllr^,a,= c(ll/llo,r+llgll(xJ).

Furthermore ,let w(Hfi(Ot) be a solution of the problem

(4.44) B(w, E) : (flE)o,a,- B(ö, E), E(H{i(Or).

It holds rhat wQH?k(O) with
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proof. lt remains to prove the conditions (A5) and (A6). Let u(N(?r). Then

we have
0: Re(,{zlz)0,n, : Re-B(u, u) = clllaill3,,r,",,

which implies z:0. In the same way N(?I):{O\.
Let on the other hand (/; il€K(A)XX, be given. We construct the solution

w as follows. By Poincare's inequality the form B(u,u) is strongly coercive in

Htr(B(&,.Rr» if Å :Ar*ä and ä=0 issufficientlysmall. Thereforethe Dirichlet

problem

(4.45) 
a'yY : f- Ai'

71w : 0.

Thus by defining u:w*i we have found a function u(J(Qr), 7fl:(fi g)' Ac-

cordingly we have R(9r):Y19r)X&.
By regularity results for elliptic equations we conclude

(4.46) llallr.,o,trr = c(R)(ll/rlll((rzJ+llgll(xJ+llull0,o,1**r,).

On the other hand (4.44) imPlies

(4.47) lllrlll,,,,r, = c(ll,fll(r(pJ+ lllalll,,p,oJ).

Relations (4.46), (4.47) and (4.43) yield

(4.4S) llsr'(f;8)ll,,,o,rnr=c(n)(ll/ll(r(oJ+llgll(&)),

as required for (A6). The proof for (g{)-r is same.
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Let us formulate our main result of this section. By Lemma 4.4 we conclude
from Theorem 3.6

Theorem 4.5. Let A be a strongly elliptic operator giuen by (4.1) in a smooth
exterior domain o. Furthermore, let assumptions (Bl) and (82) be satisfied arrcl
let the boundory operators tB.i)?:,J be gioen such that (A; {B/ty:il is a regular
problem. If the spaces K(q, J@) and J*(Q) are defined by @.3C|l--@.32), then the
operator gty:(Au; Bou, ..., B^-ru), 9: J(Q)*17(O)XX' is an indexed operator
with the index x:xz, where x, is the index of the operator g, ( section 3) referring
to a boundary problem for a bounded domain. For the range R(g) holcls the charac-
terization (f; d<R(g) i/' and only if (f ; g€K@)XXo such that

(4.4e) U'ldo,o- 
'"i (g;l Tiu)o,ro : o
.i:0

.for all u€ N (g*).
Remark 4.6. The assumption (4.38) can be replacecl e.g. by

(4.50) loop(x)l € cQ(x)pn,,t,r (x)p,n,Ifl1 (x)

for all io I + if I - 2m, where A tends to zero at infinity.

5. Radiation problems

Here we consider problems which describe the radiation of the time-harmonic
waves physically. The typical second order example is the Helmholtz equation
(fr=o)

(/+k')u:-f,
Bul,, : g

radiation condition

0
^ u- iku€ L2((2).
ör

By condition (5.2) the wave is required to be outgoing. The incoming wave can be
fixed if we, instead of (5.2), employ the condition

(5.3) $ "* iku(Lz(a).

The theory of the exterior problem (5.1) and (5.2) (or (5.3)) is weil-studied. The
first arguments showing the uniqueness of solutions with Dirichlet or Neumann
boundary conditions were based on Rellich's growth estimate, Rellich [29].

(5.1)

with the Sommerfeld type

(5.2)

(5.4) lrm inf A- 1 J' lrl, clx - 0
Ro 5l.rl=Å
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for solutions u*0 ofthe equation (Å+k2)u:0, lrl=Å0. In the case of the more

general second order equation

(5.5) i
J:1

,t

z
i, i:t

0,(o,tD p) * ai\iu+(k'*ao) u - J

q(x) - (1 + lxl) -'
p(x) - (1 *lxl)-uz-ä'

q (x) - (1 * lxi)r-,.

cf ( A) : {u€Co(CI)l,,,j;tnn lå'u(x)l - *}.

Rellich-type growth estimates were proved by Jäger [13] and Kato [15]. For extensions

of Rellich's results for higher order operators see Agmon and Hörmander [2] and

Hörmander [12].
Existence results were first achieved by Eidus [7], where the principle of the

limiting absorption for exterior radiation problems was introduced. These existence

results were later improved by Jäger [13] and by Saito [30].
The articles mentioned above deal with the Dirichlet- or the Neumann type

boundary condition or the whole space problem. Other boundary conditions have

been studied by Levine [20], where a uniqueness result which also covers the third

boundary value problem was proved. Furthermore, Danilova [5] treated an oblique

problem for the damped Helmholtz equation. Finally, Witsch [43] proved a Fred-

holm theorem for general non-tangential second order oblique problems.

The case of the higher order equations, whichwe, differently from (1.2), write

here as (2=0)

(5.6)

with
(5.7) Au - Z (- 1)t't t)* laofry§ u),

0= lal,l|l=nt

has been elaborated by Eidus [8], Finozenok [9], Gru§in [10] and vainberg [35], [36J

as well as by Vogelsang [38], [39]. In particular, Vainberg derives in [36] a Fredholm

type theorem for general radiation problems with regular boundary conditions.

However, the orthogonality conditions were not described. In this section we shall

see that Theorem 3.6 also applies to radiation problems of the order 2rr and yields

a Fredholm result with explicit solvability conditions. By assumptions (A1){46)
we presuppose some knowledge of the auxiliary Dirichlet problem. Thus, to employ

Theorem 3.6 for a great class of elliptic radiation problems, we use the results of

Vogelsang [38], [39].
We have to recall some notations and assumptions of [39]. For every positive

parameter ä we use the weight functions

(5.8)

(5.9)

(5.10)

We define

(5.1 1)
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For any wei_sht function /(x)>Q we employ the norm

(5.12) llull*.,,a: (,?,=olltl'ull3,o)t/z

and we abbreviate

(s.13) Cf.(O) : {u(Cf (A)l llzl[,,,o = -].
The space Hf@) is defined as the closure of Cf.(O) with respect to the norm
ll .llr,,,o and the space H[,(Q) describing the homogeneous Dirichlet boundary
conditions is the closure of 9(9) in H!(O).

The following assumptions shall be employed:
(CI1) The operator I obeys a,r(C-(Ay. aou:aopeR and A is uniformly

strongly elliptic:

(5.14) Z anp(x)(,*P = 
qol(lzn', (x, OeOxR,

lal:1Pt:*

for a constant ao>Q.
(CI2) There exist constants a[€R such that alu:af,n, afo:0 and

(5.15) la,u@)-a[pl=clxl-r, l0"a.u@)l=clxl-z, Irl=t.
We use the polynornial

(5.16) Pr (t): 
l,l.A=^af,uitft-t,t 

ry+a, (€R,.

Let -4r : $(1") be the surface of the real zeros

(5.17) t: {(eR'lP*(0-r. : 0}.

(CI3) We assume that tf is connected and that for any 4(,.f
(5.18) DrP*(q) t 0, (D,t,,t.P"(ri)?,i=, is positive definite.

Furthermore, let us write

(5.19) oQt, 0 : P*(q*O-DrP*(q) (-P*Qi, Qt, 4)er('xn'.
We assume that the requirement of a stronger ellipticity

(CI4) o(q, €)=c(142+l\l'^)

| -tlD ht o (8, t» - a @, o = c ( 
l 
( l' + lll'\, (rt, 1) (,ff xn'

is valid. Here D*: V <, D tct: I( i 
-{( . Ve).

The assumptions (CIl)-(CI4) are essentially those of [39]. However, we
employ our general assumption on the smoothness of the coefficients. The condition
that the coeffi,cients are real does not appear in [39].

We remark that by a!r:a[, we may without any loss of generalis suppose
that a[u:o if 1al+lfl is odd.
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The radiation problem is defined by using the notion of the characteristic

function s€C-(R'\{O}) (cf. Hörmander [11], Schulenberger-Wilcox [34]) given by

(5.20) s(x): o(*)'x, 1: lxl-rx,

where o: S"-L*,tf(L),,s'-1 :{x(R'l lxl:l}, is the inverse of the Gauss mapping

satisfying x.o(.f)>0 and

(s.21) * : x(i)DeP.(o(;i))'

where z(.f,)>0.
The radiation condition now appears in the forrn

(5.22) 0'(e-t"u)<L1(r'(noD, 1 <'1al < nt,

with ä(,Ro):{x(R"l lxl=Ro}, where Ro>0 is any number such that ,E'(Ro)co.

The condition (5.22) is "outgoing". The "incoming" condition reads

(s.23)

We define the spaces J (Q), J*(Q) and K(O) by setting

K(o) - LT(o),(5.24)

(5.2s) J(Q) - {r(H?^(O)|0"(e-isu)€LT(r(nJ), I < lol

(5.26)/*(0)-{uQH3*(o)|0"(ei'u)eri(r(nJ),1<

9u - (Au- iu; Bou, ..., B,n-fl),

g*u - (Au-Au; Cou, ..., C*-ru).

= t'tl)

= l'l'l )

(A - ),)u€ K(o)),

(A - ),)u€ K(o)).

Now, rhe operators 9:J($*K1O1XX. and 3*:J*(Q)*((91yyo are given

by (A* - A)

(s.27)

(5.28)

We shall apply Theorem 3.6 in the case where for the Dirichlet problem the following

spectral result is valid.
(CID For the exterior domain QrcQ the problem

(A-))u :0, u(J(Qr),
(s,2e)

Tiull:0, i : O, ..., ffi-\,

has only the trivial solution z:0.
We refer to Vogelsang [38] for a discussion of the cases where this assumption

is valid. Note that since the coefficients of A are real, it holds that the condition

uQJ(Qr) is equivalent to uCJ*(Qr). Therefore, if (CII) is valid, then the adjoint
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problem

(5.30) (A-i)u: o' u(J*(o')'

liulyr:0, -/ :0, ..., m*1,
only has the trivial solution.

Furthermore note that for u(H[(Q1) the condition Tiuly,:O, j:0, ..., m-l
is equivalent to the requirement ueH{o(A) and thus the results oi1381can be adapted.

We are able to state

Lemma 5.1. Let the conditions (Cr) and (clr) be satisfied. If for the paranxeter
ö holds 0=ä< lf 4, then the assumptions (A1){A3), (A5) and (A6) are uarid.

Proof. The validity of (Al) and (A2) is a direct consequence of the definitions
(5.24)-(5.26). For (A3) we note thar 'f uq$)(e) and .f€K(O), 0=ä< tl4, then
we have

t l".f I a * = [ tt + lxl) -'r, -, lulfi t- lxl)t - 
6 lf ldx = ll ull o, o, all fll o, q, o - -.aa

The condition (CII) is essentially used to guarantee that N(gr):N(?il:{O}
and that R(rr):p1gtY):r((Or)XXr. The first of these assertions follows by [39],
satz I. The latter is a consequence of 139),satz 4. Furthermore, we obtain by the
same result (cf. proof of Lemma 4.4)

(5.31) - Z ll0,(e-ku)llo,n,r1p"1*llallz. ,p,a,€ c(Årxll"rll(r(or)+llgll(&))
t=lal=m

for ?ru:(f; g) and

(5.32) - å ilA,ki"u\llo,q,Eu6*llull*,r,o, = c(Ao)(il"fll(r(or»+ll gll(x,))
1=lal=Dr

for 9{u:(f ; g).

These estimates imply that (A5) and (A6) are valid.

The verification of (A4) requires the following:

Lemma 5.2. I/'u(J(Q),o(J+(Q) are giuen such that they uanish in a neigh-
bourhood of the boundary 0Q, then we haoe

(5.33) ((A-A)ulu)o,r: (ul(A-)")o)o,n.

Proo/'. Choose ,!eO1n\, ry'>Q, such Ihat rlt(t1:l, /([0, l] and define

/.(x) : r/(R-'s1x;), "R > o.

Then we have by Green's formula

((A - ),) ulu) o, a - (ul(A _ 1) r) o,, : ;11 {(A ul fu 
^ 

u) o, e 
_ Q! pul At:) o, e)

We apply Leibniz's rule to O(t^u\,0(*nu), and split the resulting sum into

31
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terms, where ry'* is differentiated zero, one or more than one time. This yields

(5.34) In: Z {@.pr!a}Pulb'u)o.o-(u,ptaTullqu)r,s\
lql'lAl=n

+ 2 § u1{@a@1r!*)0nul}"-"ir)o,o-(o,p(\i{)0"-+/0ao)o,o)
lal'lqlgil i:t

* 
r,.å, = 

* V=, 
(;){t' "' 

(0' t 
^) 

0 a ulr -' u) o' o - (a' p (flt $ *\ 0" - r ul*P u) o' n)'
tnt>o
ttt:t

Since a,p:apo, the first sum vanishes identically. For the derivatives of rL s.

(5.35) l(å'l^)(x)l - ,.p-lrl = clxl-ltl,

where c is a constant independent of R. For (5.35) we have used the property

(5.36) l(å's)(x)l 5 c!xl-l'l+r

of the characteristic function.
Let or:11ax {o(i).ilx(§'-t1. Then the function ry'^ is identically one in

the ball .B(orlÅ;:{xl lxl<o;lrR}. Thus, by (5.35). any term in the third sum in

(5.34) can be estimated bY

(s.37) c ) f lxl-2l0aulp'uldx.
lal,lpl=n t*lior_r n

Since låprzl, iå,ul belong to L!r(Q), the integrals in (5.37) tend to zero as A tends

to infinity.
It remains to show that the second term in (5.34) tends to zero. For this note that

(s.38) |iL*@): (å;s)fr*,

where

(5.3e) l'/R(x)l = ln-tr2'(n-'s(:r))l = clxl-''

Furthermore, if ui*O, we get by Leibniz's rule (e;:(är;)l:t)

(5.40) 6av-ff-et|i(d"(e-^z)):a"-"i(i(0is)u+ei"0,(e-i"u))

: i (0 i s) 0, - ",, * lr 
r - u4 _ ",(" ;",) 

(fl e + e., s) (flu - e r u u)

+ Z f -,,"1(0u ei"10'-t'1e-*r)] : i(0,s)0*-"iu'1 iun.i,
o=!=d-ei \ IL '

where the term in the brackets has been abbreviated by iun,,. By means of (5.36)

we see from the definition of "r(O) that un.i€L;(E(lRr»' In the same way one

realizes that

(5.41) 0"u : -i(0is)0"-";u*iu,,i, o,..i€Lf,(E(RJ)'
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(5.42),, Z ) ur{(aa(01{/R\DBulaa-eju)o,e-a,u(|i{)0,-*ul00i)o,o}
lel'lfll=n j:t

:,, ä ).ar{(-i(a,u{,*alul0'r)o,a* i(aor$ *0'u100 a)o,o}
ldl'l|l=- r:t - -'

* 
r, d =^ f,o' {to'o fi *flP ults o' i) o' a + (a a $ pu', il 0§') o, ol'

Since 0<ä=114, the last sum tends to zero as R tends to infinity. we split the
first sum on the right side of (5.42) into

where 'S 
: 

^s' *'s"

sr : i 
o,,å, =* åro, 

(roru * q,n) {/ R}P ulY. u)o, o - (@trr - a,o1 rfi 
^0' 

ulvo t)

t, :, 
r, d =- 

2 ro, {{ot, fr a0' ul}P t) o, o - @! u fi ̂
0P 

ulr' o) o, r).

The term ,S1 can be estimated as in (5.37) and tends to zero. since a[o:a[o, sz
can be written in the form

U,u : 
åri(a,- fi)a!, : bpo. : -b,p.

Since ry'* has compact support, integration by parts and application of Leibniz,s
rule gives

(5.43) Sr : , ,2 (fr*b,eGt)tat0i+*ulu)o,o
lol,lPl=^

*'''d=^' 4='(') (b'u oF -' +' u1(o' fr *) o)o' o'

In the second sum the derivatives 0§-t can be carried to the right side again, yield-
ing integrals which can be estimated by (5.37) and hence tend to zero.

Since aft:O if lal+lfl is odd, we have (-l)l,l+lFl:1 or b,u:g. This

Hence, we get from (5.38), (5.40) and (5.41)

(\iV 
") 

fia-ei p : ifi 
"0o 

u +fi *uoj ,

(\it i flu-ei q2 : - ifr *|ou-fi *uo, i "

Insertion of these relations into the second term in (5.34) yields

where

Sz : Z (b,pfi 
^0"ul0o 

,)0,o,
ial,lPl=m
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gives the formulae

(s.44) 
tordt=*(r/^ 

b*B? l)lBt60+"ulr),, {t :

(5.45) 
tq,ä=*('{, "b,s(- 

1)lpt 60 +"ulr)o, e :
Z tfi 

"b 
or,0o ul|. u)0, ** o (1),

lrl,lPl=*

Z (/^ b osT"ul\P u)n,sz * o (1),
lol,lP't=*

(5.46)

where o(1) denotes an expression similar to the last sum in (5.a3). Combining

(5.43)-(5.45) we obtain Sz:o(1)' Thus the lemma is proved'' 
ily Lemma 5.1 and Lemma 5-2 we conclude from Theorem 3'6'

Theorem 5.3. Let A be a unifurmly strongly elliptic operator in the smooth

exterior domain e such that the assumptions (Cl) and (CII) are satisfied' Then

the regular exterior boundary ualue problem ()'>0,0<ö=ll4)

(A- 
^)u 

: f, b€HT*(O), fe rT(CI),

Biul.o: giQH2*-mi-tl'(ro), i -0, 1,...,h1-1,

6'7s-i'u)(L?(r(Ro)), t= lul= m,

has afi,nite index x:ttz (for notation see Section 3) '

The soluability conditiions for (5.46)read: .for (f ; deL'zr(o)x IIiaL Hzm-ni-rtz(l o)

there exists a solution ifand only if

(flu)r,a-*i (g;l Tiu)o,ru : o,
j:0

which are solutions o/' the homogeneous adjoint problent

(A- ),)u - 0, VQHS* ((2),

Ciulro:0, i - 0, 1) "',ffi-1,
0"(ei'u)&i(r(no)), l= lol =Yn.

6. Polynomials of the LaPlacian

As a final example we consider differential operators I of the type

A: P(L),

where I is a uniformly strongly elliptic partial differential operator of second order

Lu(x) - 0 ,(o ,; (x) 0 iu (x)) * a (x) u (x),

where a,r(x), a(x)€R and aii:aii and where P:P(t) is a normalized polynomial

with reaicoefficients of degräe m in one variable. Hence A*:A. Since we shall

base our discussion of problem (2.15) on the results in [45], let us briefly recall the

assumptions on -L and P and the results of this paper'

(5.47)

holds fo, all u

(5.48)

n

z
i, i:L
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For the coeffi.cients of I we require

qii-öij, a€9(R\,

where ä,, is Kronecker's symbol, and where g(e) denotes schwartz's space

e(a): {'oec-pll1JiIL lrloe(r1: o for anv k€N}

of rapidly vanishing smooth tbnctions.
The polynomial P does neither vanish at t :O (cf.l3zlto avoid this assumption)

nor at any I such that (L-t)u:0 has a nontrivial solution in rz(R,). The latter
seems not to be a severe restriction for one can change the coefficients in some
bounded region to avoid this assumption. The zeros of p are denoted by -kzo,
Q:1,..., q, where Imko>0, kn*O, k,r*kl for q*r. By rn we mean the ordÄr
of -kf,. as azero of P. Hence

P(t): f7 g+t<31'"-
@:1

The results of [45, ch.2] are collected in the following lemma. For its formu-
lation we denote by o some exterior domain, by A thefirst order operator

and by 9(Q) the space

01o1: {e€c-(o)l,.tfg- lxl-ke(x) : 0 for some /r€N}.
We have

Lemma 6.1. Any solution ue Opy of the equation '

can be decomposed as 
P(L)u:f(g(o)

, : b'uj-' A, ru,n,
l:1 Y:0

where ur,u (l.t:L, ..., q; y:0, ..., rr-r) belong n 9p1 and solue

(L+kzu)uu," : fo,"€g 1e1.

The.functions up,t and fr,u can be calculated by application o.f certain systems of
dffirential operators to the pair (u,f). The decomposition of u is unique in the

following sense: If up,n, Dp,n€9@) satisfy

(L + kfl)u u,"€ 9 (O) ; (L + k2) o u, "€ 
9 (e)

and
q rl- t q rl-l

Z Z,rfnuu,n:Z ZAnzp,,,p:l y:0 p:1 v:0

t,

A - Z *,0,,
i:1
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then 
ur,,-uu,"€g (e).

We are interested in solving the problem (1.2) with A:P(L) for ./€H$,(O)'

Hence we choose 
K(e) :äå. (o).

Since the components ur,, satisfy reduced wave equations, asymptotic conditions

forucanbeformulatedbyimposingradiationconditionsotlllp;.
For the definition of /(p), /*(O) we denote by 'r:(s1, "''so) a 4-vecto-r of

real units, s;€{-1, *1} and put s*:-s' Then the space Ttxl(O) is defined

as ttre ,pu"r-of a1l functions u&#@) which for some sufficiently large s>0
satisfy

(6.1)

(6.2)

where for

(6.3)

(6.4;t*l

with

suPP P (L)ucQ(S),

ulplors) : 2 '2' Av ttu,.-,
F:L Y: o

the component u,r,n

Note that the

Im ku>'0, Jäger [13].

(L+k?,)ur,o€r(CI\m),

D, u,, - ir[* ) k ru u, rQ L'(O\m),

D :: å x;!xl -L Aii(x)Ii.
i, i:L

radiation condition (6.4it*l yields Fr,,,€H'(O1ffi) il

The decomposition of u

at infinity: given F, (6.4)(*)

y:0, ...)rp-1. OnlY in this

in 145, Theorem 3.3J.

Lemma 6.2. Let s({-1, l\q bertxed' Then we haue

(i) For any f(9(I',) there exists a unique solution ue 9(*)' of P(L)u:J''

satisfying(6,2)16.4).Thereexistsaposititseintegerlandapositioerealnumber
p iiåependentof u and f, suchthatforany R>O thesolution u canbeestimatedbl'

llullr*,B(R) = cll(1 + lxl')'"f llr,n" ,

where B(R):{xl lxl=Ä} andwheretheconstant c:c(R) isindependentof u and f.
(ii) For any exterior domain Q, the spaces

re§pectiuelY

Jr(O) - {u€ J (O)nHtr6" (O) lP (L) u - 0)

if*(O) : {ueJ* (O)nH{,rc" (O)lP(,L)a - 0}

suggests that we may admit more ,_seneral conditions

gives the same kind of radiation condition for any

case is the validity of Green's identity (2.19) proved

(6.5)

ore o.f the some finite dimension d.
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(iii) For f(9(Q)::{fl" lfegtR')} the Dirichlet problem

(6.6) u€J(A)nH{,ro" (O), P(L)u : f
i.s soloable if and only iJ'

(6.7) (.flu)o,o: 0, for all u€.t*(a).
Lemma 6.2 does not fit in the framework of the theory established in Chapters 2

and 3. For example (6.6) should be solved for f(K(O) and also inhomogeneous
boundary conditions should be considered. To take this into account we suppose
that Q has a smooth boundary l- and prove the following estimate:

Lemma 6.3. Let .for sorue ,S>sup {lxl k€f} the function uel(A) satisfy

(6.8) supp P(z)zco(§).

Then for any R>Q there exists a constant c, depending on R and on S, but not
on u, such that

(6.9) llttllr*,arnt = c(llp(L)ullo,orsr * 7'Wrrllr^-t-uz.r*llullo,or"*rr).j:0

Proof: Let us consider a testfunction X(9(R") such that y:l in B(,S+U3)
and that supp XcB(S+213). Writing

ur: Xu, ur: (l-y)u
and continuing u, by zero, we get from Lemma 6.2 (i)

(6.10) llzrllr,,,ot^r
:llurllr^,r«t=cll(1+lxlz)PP(L)u2llr,n"scllullt+z^-r,n(s+,/B)\B(s+r,,8)

and further from the well-known a priori estimate (l2ll, p. 149\

(6.11) llurllz,,,ornr s llurllz,,ors+rr

* c (ll P (L) urll o, ors * rr * §' il'1, un r,, - i - u z, r * ll urll o, o1" * ry)j:0

= c(llP(L)ullo,orsr* \llt,ullr--i-rrr,r*llullo,ors+rl*llzll*-r,B(s+2/B)\r«r*rru,).j:0

Using interior a priori estimates, llullr-_r,r<r*r/B)\B(s+Ua) and llullr*r^, r6+2/B)\s(s+Us)
can be estimated by llallo,rrs+r)\B(s), multiplied by a constant. Now, combining
(6.10) and (6.1l) we get the assertion.

From Lemma 6.2 and Lemma 6.3 we conclude

Theorem 6.4. For feK(A) and (go, ..., g*_1)eHz--i-tl2(l), there exists
a solution ueJ(A) oJ'the problem

(6.t2) P(L)u:f in A

(6.13) lJu : gi, j :0, ..., rn-|,
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if and only iffor any u(/*(A)

(6.14) (flu)o.r-\'k)r,u>o,r:0.
j:0

Here {yo,...;!m-L>To,...,7^-1} is a Dirichlet system of order 2m on I such
that Green's formula (2.8) holds with Bi:!i, Ci:?i.

Proo.f'. We first consider the case gi:O, j:0,...)m-1. lf f<K(O) satisfies

(flu)o,a : 0 for all o(Jr* (Q),

we can choose a sequence f"<g(O) which tends to .f in Lz(Q) and has the prop-
erties

suppl,cO(,S),

("f,\u)o,o : 0 for all rt€./r*(Q),

where ^S is some sufficiently large radius.
By Lemma 6.2 there exists a solution u*(J(Q) of P(L\u,,:fu, liun:O for

any n (N. Moreover, un can be chosen in such a way that

(6.15) (u,llth)o,e: 0 for all herf(q.
Here rlt€0(O) denotes a fixed function with the property

rlth*0, if hef(O), h*0.
Under the assumption

sup ll a,llo,rr,r+1y < -,
Lemma 6.3 and Rellich's compactness theorem guarantee the existence of a sub-
sequence zl, converging in Z,(O(^S+1)) and hence in H?#(q to an element
u$?#@). Clearly, rz satisfies (6.12) and (6.13) with .q;:0, as well as

(6.16) (ulLh)s,j2: 0 for all h€rf@).

AIso, z is in "r(O): With X and u2 as in the proof of Lemma 6.3, f :: PIL)u,
belongs to 9(R') and by Lemma 6.2 (i) there exists a unique solution ,?€"/(R') of

P(DA: i.
Putting

u,, :: (l-X)un,, i,, : f lqu;
and continuing these functions by zero, we see from interior regularity results, that

,tT ll(t * lxlz)r (l-i)il,, "" 
: o'

Hence, by (6.5), u, tends to fr in H?k@). But then uz:fr.(J(R"); thus uU(A1.
It remains to lead the assumption

,lim ll z,llo,e1s+r):-
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to a contradiction. For this we consider the normalized sequence

w, : ll uoll o, a(s + ry -14,,.

As above we can conclude that a subsequence 1e;, conv€rges in Hffi(CI) to a solu-
tion w(J(Q) of P(L)w:0,yrw:0, which satisfies (6.16). By the choice of r/ this
implies w:0, which contradicts the normalization of wo,.

Let us now consider problem (6.12;6.13) with nonzero g;. It is possible to
construct a function wct*!-(Q satisfying

(6.17) Tiw : 9i' i : O' "'' ffi-l'
supp wnsupp rlr : 0.

Green's identity gives for u(.,{*(A)

(r 1r1wlv)o, o : 2) G 1lr, ryo.,.

Hence, if (6.14) is valid, we have

(f-P(L)wlo)0,, : 0 for all u(,/r*(Q).

By the first part of the proof there is a solution {i<J@) of P(L)fr:f -P(L)w,
y.ifr:O. Moreover, the function fi satisfies (6.16). Then the function

u:: il*w
solves (6.12; 6.13) and, in addition, by (6.17), satisfies (6.16).

Since condition (6.14) is also necessary for the solvability, Theorem 6.4 is
proved.

From the proofofTheorem 6,4 one easily deduces a pseudoinverse for problem
(6.12;6.13)

o-' : x (a) x'fi' p'- -' -'t' (t) * J (a)
j:o

which is continuous as a mapping from H!,,(qXIIf=or pzm-i-rtz(f) into äffi(O).
For this we choose a nonnegative testfunction E€0(A) such that the mapping
.,(*(Q)*K19), u-eu is injective. Denoting by uL,...,Dd a basis of ,f*(A)
for which

(rpuilui\s,e: öii,
the mapping

Q: K(o)xfi' g'^-t-'t2(f) *1((o)x fi' g'*-i-'21r1,
j:0 j:r

e(f; s): (f- * «f,,.;,,,o-Z'k,lr,u,)o,,)vu,; s)i:t j:o

is a continuous projection of K(O)XII!;LHzn-i-u2(f) onto the range of the
mapping g i J(O)*K@)X ilf;' Hzn-i -uz(I'), where

39

(6.18) 9u - (P(L)u) loul., . ..,y*-fllr).
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A pseudoinverse of I is given by assigning to any (f;go,.",8^-t) the unique

solution u€J(A) of
P(L)u : f, !iu : 8i, i : O, ..., m-1,

with the property (6.16). Hete (f ;80, ...,8.-r):Qff,80, "',8,-r)'
We have to show the continuity of 9-r. Since Q is continuous, 9-r is

continuous if

llullr*,o(R) = g(ttr Q)u|| 0, o(s) + 2t lly iullr,,- j -Lp, r)
J:0

holds for any u€.I(A) with the properties (6.16-6.18). Estimate (6.19) has to be

shown for any Å, §, and the constant c:c(R, S) may not depend on a. If (6.15)

were wrong, ttrere would exist numbers Ä, ,S>0 and a sequence uo(J(Q) such that

lluollzm,e(R) : l,

l.-3 (tt r @)uoli,, ,,(s) .Zilv iuollr,,- i -ttz,r) : 0

and that (6.15) are valid. Without loss of generality, we may suppose that .R >'S* l.
Then by Lemma 6.3 and Rellich's compactness theorem there exists a subsequence

uk,, cotyerging to some a in Hffi(O). As in the proof of Theorem 6.4, we can

conclude, that u belongs to .,4r(A) and hence vanishes by (6.16). This contra-

dicts (6.20).

We have shown that for any exterior domain O with smooth boundary the

Dirichlet operator, as defined by (6.18), is a weakly indexed operator with index

0 and admits a pseudoinverse 0-, which is continuous as a mapping from

K@)xJIf;t gzn-i-rtz(f) into H?*@) and for which Q:gth-' it a continuous

projection of iK(O) onto the range of 9. Since the adjoint Dirichlet problem is

a problem of the same kind, this is true for 9* too. Therefore all assumptions

(A1)-(A6) are valid in the case under discussion and one can conclude that

Theorem 3.6 is applicable for exterior boundary value problems with respect to

the operator A- P(L).

Remark. To solve problem Q.l5), one could proceed as in the proof of
Theorem 6.4, using estimate (6.5) with 1l; replaced by Bi. However, this would

yield neither the index of the problem nor the finiteness of the codimension of the

range.
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