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HARMONIC MAJORIZATION OF SUBHARMONIC
FUNCTIONS II{ UNBOUNDED DOMAINS

S. J. GARDINER

l. Introduction

Let Q be a domain in Euclidean space R", where n>2. lts closure and
boundary in Rn are respectively denoted by O and åO. We define a class of
functions on O by saying that s(9(A) if

(i) s is defined on O,
(ii) "r is subharmonic in O,
(iii) limsyrs(X):.(I)= +- (Y€\A).

xea

we note immediately that if s(9(A),then s= * - on O, s is upper semicontinuous
(u.s.c.) on O and so locally bounded above thereon.

First consider the case where o is bounded. (we will use the notation of
Helms ll2, Chapter 8] for concepts related to the Perron-Wiener-Brelot solution
of the generalized Dirichlet problem.) rf s<g(Q) then, since s is bounded above
in O, it follows that s€9" and that a?t" contains a finite constant function. Thus

s=g35Ef<1-
in O. But,sincetherestriction of ,r to åg is u.s.c., E?:U.! from [l2,Theorem
8.131, and so äf; exists and is a harmonic majorant of s in O.

However, if O is unbounded and s(9(A). it need no longer be the case that
s has a harmonic majorant in o. An obvious step is to take an expanding sequence
(O.) of bounded subdomains of O such that vQ^:O, and to consider the limit
of the increasing sequence of harmonic functions (H!"). unfortunately, except in
the very simplest of cases, the expression for the harmonic measure of e- will be
too complicated to give a criterion for harmonic majorization in O that could be
considered either elegant or useful. Instead, research in the half-space (Kuran [13]
and Armitage [3]) and infinite strip (Brawn [8] and Armitage and Fugard [5]) has
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shown that special "means" over the boundaries of suitable subdomains of Q can be

used. The general outline of the methods in [5] may be employed in other domains

but each case would require separate treatment. The purpose of this paper is to

develop a fairly general theory, of which the above examples are actually special

cases. The general results are not difficult to prove once a suitable expression for

the mean has been identified (see.{/(s,x) below). The great benefit is that, having

established these, applications to individual domains can be made very quickly -
for example, contrast §8 with [3] or §9 with [5].

2. General results

2.1. Wedenotepointsof R" by X,Y,Z,P ot Q' Whenappropriate, X will

be written in terms of its co-ordinates

X : (xr, ..., xn) - (X', xr)

where x,€R'-t. we recall that a bounded domain co€R' is called a Lipschitz

domain tf 0a can be covered by right circular cylinders whose bases have positive

distance from åar, and corresponding to each cylinder L, there is a co-ordinate

system (N',*,) with i,-axis parallel to the axis of I, a function E:R'-l*R
and a real number c such that

lE(X)- E(Y')l = ,lN' -Y'l

Lnro - {X€L:frn> E(N')},

Lnlc» - {X€L:*u- E(N')\.

From now on o will always denote an unbounded domain. Let v be a fixed

Radon measure with compact support EcA, and suppose that for each positive

real number x there is a corresponding open set W * whose intersection O, with

O is a bounded Lipschiz domain satisfying

(a) ,Ee nO,,
(b) O:uO,,
(c) x-.y-A*cWrnA.

The sets \g*nQ and 0Q*a0o will be abbreviated to o* and t", and p*,y

will be used to denote harmonic measure on lrJ* with respect to x€Q*.
lf s€9(8), then, for each positive real number x, let

H,,*(X) - HP*6)*

for all X', Y'€.R"-1,

and

{ 
tQ-) dP'"x(Y)'

,{ 
t(r) cl{'*'x(Y)'1r, * (X) :
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and

,K",,(X) : 
- !- 

s(Y)dp",11(Y),
rr \r1

which are clearly harmonic in o-,,,,,r,. Let h* denote a strictly positive harmonic
function in ot which vanishes on z, (clearly such functions exist, for example
the Green function for 9, with its pole in oz\orl this is a consequence of the
regularity of 9,r, which follows from the zaremba cone criterion, fll, Theorem
8.270.

Lemma l. The quotients H","lh*, 1",*lh* and K",*f h* can be continuously
extended to l4/nn0, where y:y1in (-r, 1).

The extended functions of Lemma 1 will be denoted respectively by .ff",*, g",*
and ff",* and are used to define

,/4(s, x): [ 4,,6)dv(X),

.4r@, x): f 9",*(X)dv(X),
E

9(s, x) : I tr",*(X)dy(X).

2.2. The following result is now almost immediate.

Theorem l. (i) If se?@). then ,.r/t(s, x) is an increasing, real-ualuecl

function of x.
(ii) If also s<O on 0Q, thenthesameistrueof .,f(s,x).
(iii) If h is harmonic in Q and continuous on A, then ..4(h, x) is a constant

.function o.f x.

Theorem 2. If s€?(A) and ./{(s,x) is bounded abooe on (0, +-), then
s has a harmonic majorant in Q.

It will be shown later that the converse of Theorem 2 is false. However, defining
r(8) to be the class of functions subharmonic in an open set containing o, we
obtain the following.

Theorem 3. Let s€T(A). Then s has a harmonic majorant in e if ancl
only if .,il(s, x) is bounded aboue on (0, + -;.

corollary. Let sE{(a) and s>o in g. Then s has a hqrmonic majorant
in A if and only if lf$,x) and g(s,x) each tend to afinite limit as x**-.

Finally we give two results which are very simple to prove.

Theorem 4. If h isnon-negatiaeandharmonicin Q andcontinuousin §, then

_lyrg(lr, x) < 1-.
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Theorem5. If s€Y(A),s<0 on AO and

(r)

then s<0 in A.

Theorem 5 is a generalization of a Phragmön-Lindelöf type of result (for

example, see [1, Corollary to Theorem l] and [14, Theorem 4]). one generalization

of this type of theorem has already been given in [4] for arbitrary unbounded domains'

There the mean emPloYed is given bY

,1, (r*) : lipy;f 1",,,(X) I G a,(Q, X),

where (O.) is an expanding sequence of bounded domains such that vd)-:Q,
and where we denote by P either a point of O. or a minimal Martin boundary

pointof Or, by Q afixedpointin ON{P}, andby Go, theGreenkernelof O,'

it will later be clear that for certain domains O such as the whole space, half-space,

and infinite cone, where the natural choice of ,E is a singleton, ,1,(s*) and ,fi(s+, m)

can coincide. However, for other domains such as the infinite strip and infinite

cylinder, these means differ significantly, and fr(t*, x) appears to be more natural,

coinciding (in the case of the strip) with means that have previously been studied, [5]'

we point out that if E:{P}cA and one of the subdomains, which we label

as Or, satisfies ArcQ, then the mean .,/{(s,r) is merely a multiple of af-(f).
The results of this section will be proved in §§3-6'

3. Proofs of Lemma 1 and Theorem I

3.1. We will make use of the following results.

Theorem A. Let Q' be a bounded Lipschitz domain and f be a resolutiue

boundary function on DQ'. If f is continuous (in the extended sense) at a point

Y€\Q', then

tryrufl<xl 
: f Q).

Theorem B. If h, and h, are positiue harmonic functions on a bounded

Lipschitz domain Q' uanishing on a relatioely open subset A of 0Q', then hrlh,

can be continuously extended to a strictly positioe function defined on Q'vA.

Theorem A is due to Armitage [2, Theorem 2]. Note that it asserts more than

the regularity of Q'. Theorem B is a slight modification of [6, Theorem2].

3.2. We now prove Lemma 1. First we show that I1",* vanishes on wrn|Q
If x>1, then define

if x(Q*
if XEDQ*,

lig;gf ,.{(s+, x) - 0,

I H!- (x)
ts(x)F(X) _
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(3)

From [9, p. 98 (e)] it follows that HF, - H?* in Qr, and so

(2) H,,*(x) HP*6)- { s(r) dpr,r(r) - [ F|)dLrr,r(y).
Tr ol

Alternatively, if x-1, then similarly

H,,*(x) : /{r g)- { s/)dpr,re)) dp*,*(y).
ox rl

Thus, in either case, ä",, is a harmonic function in O, which, by Theorem A,
vanishes on WraDQ.

If we now rewrite (2) as

H,,*(x) : [ ,*(r) dpr,*(y)- f F- (y)clpr,*(y),
ol oL

and treat (3) analogously, it follows by two applications of rheorem B that H","lh*
can be continuously extended to WraA.

In the case of the quotients l",*lh* and K",*fh*, only the latter part of the
above argument is required.

3.3. Theorem I is straightforward to prove. lf w<x, then, with F as in § 3.2,

H!*(X) = HF*(x): F(x) (X<o,)

and so .{t(s, x) is an increasing function of x. If also s<0 on åO, then

I sQ)dp.,r1v1= [ 'g)dp*,*(Y)tx Trv

srnce pr,x=pw,x on ?w, and so 1",,=1",, in d)*, proving (ii). part (iii) is
trivial.

4. Proof of Theorem 2

4.1. The following results will be required.

Theorem c. Let Q' be a bounded Lipschitz domain o.f which p is a fixed
point, A be a relatiuely open subset of 0e', and w' be a subdomqin of e' satisfying
0Q'n014'9A. Thenthereisaconstant c suchthat, if h, and h, aretwopositiue
harmonic functions in Q' uanishing on A and hr(p):fur1p1, then hr(X)<chr(X)
.fo, all X€W' .

Lem ma 2. Let s€g(A) and define

I HP"(x)s'(x) - t r(x)\ 
/

Then r,€ g(Q).

if x€Q*
if x€ o\o...
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TheoremCcanbefoundin[10,Theorem4lor|L7,Theoreml].Theproof
of Lemma 2 is very similar to that of [5, Lemm a 2), bvt is given below for the sake

of completeness.

To establish the subharmonicity of s, in o, it suffices to show upper seml-

continuity and the mean-value inequality at points of o,. since o, is regular

and the restriction of s to åO, is u.s.c' and bounded above'

(4) limsynäP"(x) = §(r) VQa)

[l2,Lemma8.20,Theorem8.22|.Uppersemicontinuityisnowproved,andthe
mean-value inequality is an immediate consequence of the fact that s=H!" in O.,'

In fact, combining the latter inequality with (4) yields

li?§PPs,(X) : s(Y) : 5*1Y; (Y€Ao)'

whence s*(9(8).

4,2.WewillnowproveTheorem2.Foreachpositiveintegerkletslbe
as in Lemma 2. From fh"or.- 1 (i) and the hypothesis of Theorem 2 it follows that

(s) rt$1,, L) -": -4/ (so, k) : "4/ ls, k) = sup ll ls, k) = f oc'

Since, lbr each k, (sJi=r is an increasing sequence of harmonic functions in Qo'

either lim,r; is harmonic in O or is identically equal to * -' The theorem will

follow if the latter case is shown not to hold'

Suppose lims,=*-. Then there exists /rs such that s'10>s' in Q'' Fixing

p€Qt,-ih"or"* C shows that there is a positive constant c such that,for k>ko

and X€Qrp,

H a, {X) - H 
",,, 

(X) = c {h *(x) | h *(P)} {H".,, (P) - ä",,' (P)}

and so

.,// (su, 1) - t/,( (sr, t) =
--**- (k* +-).

This contradicts (5) and so the result follows.

5. Proof of Theorem 3 and CorollarY

5.1. The'oif" part is contained in Theorem 2 since {($qg(q'

5.2. Conversely, s is subharmonic in an open set w containing CI and has

a harmonic majorant in o. It follows (compare [5, Lemma 3]) that the function ,16,

equal in o to the least harmonic majorant of s there, and equal in lll\o to s,

is also subharmonic in W. From [9, Chapter IX, § 6],

c' { tro( Y)-sr(r)} dp,.,P(Y)
(rl

H?-(x) = I/',t*(x) : so(X) (X€OJ,
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Whence

as required. 
-"/4 (s' x) = "'//(so' x)

5.3. We come now to the proof

- .//(so, 1) (x€ (0, a *)),

of the Corollary. If x>1, define

L", *(X) : I s Q) {d p,, x (Y) - d Ltr, * (Y)},
tL

and observe that L",*f h* may be continuously extended to w1n8 (compare Lemma
1). Denoting the integral of this function with respect to v by g(s, x), it follows that

(6) 
"d{(s, x) :,[(s, x)+g(» x)+9(» x).

Since "r>0 and pr,*>px,x oD z, whenevet y=x, it is easily seen that both
9(,s, x) and 9(s, x) increase with :r. A1so, s has a positive upper bound, c say,
on 0r, whence

L",*(X) = c- c1\,1s(tr) : cpr,*(or) = c'h*(X) (X(euz)

by Theorem c. Hence 9(s, x) is bounded above for all x and so has a finite
limit as x* * -.

Now suppose that .,{(s, x) and g(s, x) each tend to a finite limit as x* * -.
Since this is also true of g(s, x), it follows from (6) that d/(s,x) is bounded
above and so, by Theorem 3, s has a harmonic majorant in O.

Conversely, suppose that s has a harmonic majorant in A. Then, using
Theorems 1 and 3 and equation (6), it can be seen that ,.4r$, x)*g(s,x) tends to
a finite limit as x* * -. Since g(s, x)>0 and g(s, x) is increasing ,both .,lrg, x)
and 9(s, x) tend to a finite limit as x* * -.

6. Proofs of Theorems 4 and 5

6.1. To prove Theorem 4, we note from Theorem I (iii) that ft(h, x) is in-
dependent of x. Since h>0, it follows from (6) that g(h,x) is (increasing and)
bounded above, whence the result.

6.2. To prove Theorem 5, first observe that s+(g(O) and s+:0 on åO.
Thus, from Theorem I (ii) and (l),,,{(s+,x):0 for all x. In view of Theorem B,
itfollows that Hft:0 in O, for all x. Since s+=I13r in (2,, we have s+=0
in (), as required.
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7. Applications to R'

Let O:R, (n=2). The results in this case are elementary, but are given for

the purpose of illustration. Let A:{O), v be the Dirac measure at the origin,

Q*:B(x), the ball of radius x centred at the origin, and take lr*=1 in R".

Clearly the hypotheses of § 2.1 are satisfied. Since z, is empty, it is immediate that

,/il (s,x) : ,r{(s,x) : {rn/,'-'}-t { s(f) do(Y),
öB(x)

where c, denotes the surface area of the unit sphere in R', and o denotes surface

area measure. From § 2 we give immediately the following well-known results'

on

Theorem 6, Let s be subharmonic in Ro (n>2).
(i) The mean d/(s,x) is an increasing function of x((0, *-)i
(ii) s has a harmonic ma.iorant in R" if and onllt i7 "/l(s' x) is bounded aboue

(0, +-;;
$D if liminf,-a- fr(s*,x):0, then s<O in Rn.

-xn lf l-'lX-f,i-') do(Y),

8. Applications to the half-sPace

Let O:R'-tX10, + *) (n>2) and let E and v be as in §7, O,:B(x)nO
and h*(X):xn in Q. Again the hypotheses of § 2.1 are satisfied'

In order to find ,/.t(s, x) we recall (see (6)) that, if x> 1,

.% (s, x) : ,{(s, x)+ 9(s, x)+ 9(s, x).

As in 14, Example 2l it can be shown that

$ (s, x) : (2n I c") *-n -L

From the expression for the half-ball Poisson kernel given in [3, p. 615] it follows that

9 (s, x) : l,g (21c,,) I s (r) {lX -Y l-" - xnlY l-"lx -r-l -'} do (Y),
\rr

and

9(t, x) : !+(21c")

where I, denotes the image of I under the inversion of centre O and radius x.

lf se9(8), then s is locally integrable on 0Q (see [14, Theorem 1 (ii)]), and it is

easy to check that the convergence of both integrands above is dominated by an

{r*(Y) 
cto (Y)-

f 'tr) tlYl-"lx-Y,l-"
Tl
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integrable function. Hence

CI(s,x)+e(s, x) : (4d{ .f 'Vl{lyl-"-*-.}do(y)+ I'V){r-x-,}doe)}
"*\r Nr

x
: (2nlc,) ! r"-, I tV)do(Y)dt,

tr,

using integration by parts (see [14, p. 314]). Thus

.d/ (s, x) : (2nlc,) {r-"-. I ns(Y)d.o(y)+ i ,-,-t f s(y)d,o(y)d\ ,
oxLr,

and the same formula may similarly be established for 0<x<1.
Further, if s>0 in O then the statement lim,-a- g(s,x)-f * holds if

and only if
I <, * lr 121-"rz t 1r) do (Y) < r o.

aa
To see this,

1

Tt,-IL 7(s, x)

= _IT_ (1 - 2-") { lYl-"x-+ + oo 
'*li\'r

proving the "only if" case. The converse is even more elementary.
In this context, Theorems 1 (i), (iii), 4 and 5 are given in [14], the corolary to

Theorem 3 is part of [l3, Theorem 3], and Theorems 2,3 are due to Armitage [3],
who also provides a counterexample to the converse of Theorem 2, [3, §6].

9. Applications to the infinite cylinder

Recently results similar to those of § 2.2 have been obtained in the infinite
strip, [5], and the infinite cone, E1]. These can be shown to be special cases of our
general theorems. However, for the sake of originality, we will deduce previously
unpublished results for the infinite cylinder. Modifications of our methods can be
employed in the above-mentioned cases.

Let g- {X:(xr, ..., xn):(X', x,): lX'l-.1\, (n--2). We will employ the
Bessel function J6-2112 defined in watson [16, pp. 40-42]. The least positive zero
of this function will be denoted by a, and we write

and
,L @ - 1(3 -n)tz J@-,ap(o,t) (/ > o)

br: arJ6_L)lz@) = 0,

(see U6,p.45 (4) and p.479 § 15 .227). We will require the following

51

x-* * _ r*\rr

(r) do (Y) 
= (1 - 2-")

-') s (r) do (Y)

{ t, +lY l\-"r's (r) do (Y),
å(2\r,
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Lemma 3. The !'unctions ,lr(\x'l) exp (t anxn) are positioe and harntonic

in Q, and vanish on 0Q.

The proof of Lemma 3 is analogous to that of [7, Lemma 1].

Now let
E : {x€R':lX'\ = l, x,, - 0},

dv(x) : 2a,*lt (!x'l)l2dx'dön@) 6€E)
and 

h',(x):'l'(lx'l)cosh (a'x')'

where äo denotes the Dirac measure at the origin of R. It follows from Lemma 3

that h* satisfies the hypotheses of § 2'l' Also, let Q*:{X€Q: lx,!=x}' If
sQ9(A), then

tf(s, x) : 2an ! { ! ttxldtt',r''plX))V lr'Dav'
{lrl<1} o*

:2on"!n /r(D{ I ,t,tlr'll*oo-(r, (Y',o))dY') do(x),
ox ' ' '11r'[=r1 ' '' '' dnx

where yr:Qn)-L, yn: {@-2)c,)-L (n=3) (see [10, Theorem 3] or [15, Theorem C]),

and ny denotes the inward unit normal at X with respect to Q*. The interchange

in order of integration is justified because s is integrable with respect to harmonic

measure on the boundary of Q*. Now, if x,:x,

(010n)Gr-(x,(v',0» : ,ljp Gn*((X', t), (Y',0))/(x-r),

this convergence being dominated by a constant for all lr'l=l (see Theoren c;'
A similar argument (with a change of sign) holds for x,: - x, and so

(7) ..{(s, x): f s$)(010n)Ge-p(X)do(X),

where 
clp(Y) : zo).-,v,rl, (lv'l) dY'döoQ,) g€E)'

Now consider the function

u*(x) : sinh an (x - l.rc,l) sech (4, x) {' (lx'l)

which, as is easy to check from Lemma 3, is positive and superharmonic in O,,

harmonic in o\{x,:0} and continuously vanishes on åo.,. It follows that u,

is a potential in d)*, and its corresponding measure is -eiven by P':-^1,/1t,,
where /u* is the distributional Laplacian of u*.

Now let Y be a c- function with compact support in o.. From Green',s
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theorem it follows that
(Åu,)(V) : { u.(X) lY (X)dX

sls

: 
"rif* {,*, !. ".: u{* rn ft r*l -'.6) # wll a' 6'y

* 
o*',',f ,,: -,,{". "'Y-* 

6) -'.Y (x) ff w} o' t,\
- -2a, I \y (x',o)ty(x'l)dx',

{lx'l=1}

whence p:p'. Thus, from (7),

-,f(s,x): a,sech 1a"x1 f pllx'l)s(x)do(x).
ox

The determination of the remaining part of .,il(s, x) is similar, and involves
calculating the normal derivative of u* at points of z,\{lx,l:0 or x} (noting
that the interchange of differentiation and integration to obtain (7) is valid
except on the set t*n {lx,l:0 or x} which has surface area measure zero), perform-
ing the corresponding calculation for ur, and integrating by parts (as in §8) to
obtain

-il(s, x) : tf (s, x)+a,,bn j sech'(a,t) I ,Vtcosh(anxn)do(X)dt.

The results of § 2.2 may now be applied to subharmonic functions in the infinite
cylinder. In the case of Theorem 4, it is a routine matter to check that the conclusion
is equivalent to the simple condition

f exp (- a,lx,l) h (x) do (X) = * -.
0r»

The details are left to the reader.
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