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ON THE EXTREME POINTS OF CLASSES
OF UNIVALENT FUNCTIONS

HEIKKI HAARIO

Introduction

Let H(D) denote the set of all analytic functions in the unit 6its p:{z€Cl
lzl=l). Equipped with the usual topology of locally uniform convergence II(D)
is a locally convex topological vector space. A function f(B is called an extreme
point of a subset BcH(D) if it cannot be written as a proper convex combination
of two distinct elements of .8. According to the Krein-Millman theorem the
extreme points of a compact set,B span the closed convex hull co (,8) of B, and
in the case of a compact co (B) the extreme points of co (B) belong to B. Each
continuous linear functional on H(D) achieyes its extremums in a compact set

,B at some extreme point of co(B). We call f€B asupport point of the set .B if
there is a nonconstant continuous linear functional which achieves its maximtm at f.

Denote by ^S the compact set of fI(D) consisting of all univalent functions
in D, normalized by "f(0):0, f '(0): l. L. Brickman showed that every extreme
point of ,S maps D onto the exterior of a slit with monotonically increasing
modulus [3], but a complete characterization of the extreme points of § is not
known. On the other hand, the extreme points of most of the common subclasses

of § (starlike, convex, close-to-convex functions, functions convex in one direction,
functions with real coefrcients) have been determined [4], [9]. In each case the
extreme points turn out to form a simple set of familiar functions. The extreme
point method thus gives an effective tool for linear extremum problems in such
classes.

The functions with bounded boundary rotation provide an example of a well-
known subclass of ,S whose extreme points are still unknown. Let Bo, k>2,
denote the class offunctions
(1) f(z): z+arz2+arz8+...

which
tion.

(2)

are analytic in D and map D onto a domain with bounded boundary rota-
The functions of .Bp are obtained from the equation

L+2ffi:+f ?#dr,(E),
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where p ranges over the compact (in the weak x topology) set of real Borel

measures on åD with

dp-2, ldp,l = k.

By Q) the class 81, is a continuous image of a compact set and thus cornpact. For
k=-4 tlre functions in Bu are univalent, for k:2 the class Bo coincides with
the class of convex functions.

The convex hull and extreme points of the class B"(fr) consisting of .86-func-

tions with real coeffi.cients are not known. Here we give a set of extreme points

and support points of ,8.(k) by determining the extreme points of the coefficient

body Vr:(dz, az). In the other subclasses of ,S listed above the analogous families

of functions give precisely the extreme points of the corresponding classes with real

coeff.cients. However, by studying linear functionals on the body Va we see that
in the classes B*(k) there are more extreme points than those given by Zr. This

indicates that, in contrast to the situation in the other well-known subclasses of 
^S,

the extreme points of .8"(k) are too numerous to be of value.

Integration of (2) with discrete measures gives the Schwarz-Christofi'el
mappings. Especially, integration with a measure supported by two points x.;'
x # Y, lxl: lYl: 1, Yields the functions

{r

(3)

In [10] Hengartner, Pfluger and Schober showed that for k>4 the support
points of Bo are of the form (3) and conjectured that the same holds for 2=k=4.
In favour of this conjecture they showed that linear functionals on the body V"

of 81, arc maximized only by the functions (3). Here we study more closely which

of the functions (3) indeed can give a maximum for a linear functional of ar, ar.

It turns out tlat only functions which are close enough to the "Koebe functions"
of the class Bu, i.e., the functions (3) with x: -!, can do this.

It is known that in the class ^S each support point maps the unit disc onto the

complement of a single analytic arc with the so called nl4 properly [11]. Examples

of support points of S can be obtained by a study of linear functionals of ar, ar.

Using the Lorvner method we get, similarly to the case of Bo, u certain "neigh-

bourhood" of the Koebe function in which such functionals only can reach their
maxima.
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1. On the extreme points of the class B^(k)

By aid of the Herglotz integral representation formula the convex hulls and
extreme points of several subclasses of ,S were determined in [4], [9]. We recall
the results for some of these classes. Denote by §* the class of univalent functions
with real coefficients and by §la,Kp, Cn,Fn the classes of functions with real
coefficients which are starlike, convex, close-to-convex or convex in the direction
of the imaginary axis. Let X:{z{,llz1:l,Im z=0), and let P denote the set
of probability measures on X. If 7 denotes the set of (typicalty real) functions

fuQ): 
rf O-;GAdp(x), pt(P,

then co (S*):co (,St^;:s. (C*):7, and the extreme points of these classes are
precisely the functions zl(l - xz)(l - *,21, x(X.

Similarly, the closed convex hull of K" and F^ is the set of functions

r I L-xz
JuG) : of ,_s loc 

t --t; dp(x), p€P,

and the extreme points of co(K*) and co(r^) are precisely the functions
(r-;;-t log ((l -xz)(L-Xz)),x€X; see [9]. Below we give a set of extreme points
in the class Ba(k), from which the extreme points of co (KJ are obtained as a
special case with k:2.

It is evident that in any class of functions for every extreme point (ar,...,an)
of the body Yn, n>2, the corresponding boundary function of the body is an
extreme point of the class: otherwise the representation f(z):tfr(r)+(t-t)fr(z)
would imply that the point (or, ...,a,) would not be an extreme point of Y,.
In this way we can construct examples of extreme points in any class of func-
tions by identifying the extreme points of coefficient bodies. Since in ,S and its
subclasses each Vn has a non-empty interior, every boundary point of co (I/,) has
a non-constant supporting functional. Because E(co(V,))cVo, the extreme points
of the class corresponding to the extreme points of To(V,) are thus support
points of the class, too (generally it is only known that the extreme points of
the closed convex hull belong to the closure of the set of support points [5]).
It can be expected that in classes where the extreme points are relatively few a
considerable amount of them is produced by the initial bodies already. The first
(trivial) region V2 of starlike and convex functions is given by lazl=2 and
lorl=1, respectively. The functions corresponding to the boundary points, the
Koebe mapping with its rotations and the functions zl(l-xz), Ixl:l, are thus
extreme points of the classes of starlike and convex functions. In these classes the
boundary functions of V, actually exhaust the set of extreme points cf. [4]. In classes
with real coefficients the determination of t}te extreme points of V, is equally
straightforward.
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Theorem 1. Let Ba(k) be the class of B1,-functions with real cofficients.

For any k>2 the functions

3 (l+ /)'(1 - t)or'-1-v

(4)

0

z

f (r) - i a,, argx€ [0, 7Tl2),

{ I(1 - x/) (1 - t/)1kt*+rtz

2^k^
as s ; ,Z*i, for 2lorl = klz+ 1,

_2 k-6 q,4kt-) 3k+2 ta,t;;*;aä+A#lo,l*ffi, for klz+1 =2laz1 = k,

, for 2lorl = kl2-1.,

dt, 0 = v < kl2-1,

klz-1 = 21a11 = k:

.f(r) -
(1 - t)ktz-t dt, arg x(lnl2, nl

ere extrente points of 6 (8"(k)) and support points of B*(,k).

Proof. The upper and lower boundaries of os in terms of o2 read

t(1 - xt) (1- t4lu tt+Ltz

z

f
0

(5)

2_k
cts 7 

3 
o;-7

2k+6 . 4k-2 ! 3k+2 r.utz 
3 k+2ai-T k+ztaztr@, Ior

cf. [7] where the complex body V, of -Bp was determined. By the formulas (5) the

extreme points of co (Izr) for any k>2 arejust the points on the lower boundary

of Vr, and so the corresponding functions are extreme points of co (f*1t)) and

support points of B*(ic).
The expressions (4) we get from (2) by recalling that for 2larl<kl2- 1 equality

on the lower boundary occurs with a measure p with two equal positive jumps

of size kl4+ll2 at the points e:nl2 afld E:3n12, and two negative jumps

-v, -kl2+1+v,0<v<kl2-L, atthepoints Q:0 and Q:n. For 2larl>kl2-l
the support of the measure for the lower boundary consists of three points: there

is a negative jump of size - kl2+l at E:g ot E:rv, and two equal positive jumps

kp+U2 at E- tq1, where E(lnl2,nf or E$lO,nf2i, respectively.

Remark 1. For k:2 the class .B*(&) coincides with the class K*. For

k:2 the first type of the functions (4) shrinks away, and the two last types yield

exactly the functions (x-i)-llog((l-xz)l(l-Xr)), arg x€[0, z]. The lower bound-

ary and extreme points of V, in the classes .SR,,S/R, Kp,Cn,F^ ate given by

the functions zlQ-xz)(1-Iz), argxel},nl (which are connected with those of
K* by the transformation f(z)-rf'(r)). Thus the extreme points in all the classes

co (§^), co (^SlÅ), co (K*), Eo (C*), co (.F") are precisely the functions belonging

to the extreme points of Vr. By the next remark the same is not true for B^(k),

so the set of extreme points of co (.4"1f1) is more complex.
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Remark 2. We show that the functions (4) do not exhaust the extreme points
of co (8"(k)) and support points of ,B^(ft) by maximizing functionals of the form
a4+ta,+uaz, t,u(R, on the boundary of the region Vo. The upper boundary
a4,:rnzx an(ar, ar) consists of nine different parts corresponding to the various
types of the generating measure p; see [8] where the body was determined (the
lower boundary is obtained by the transformation .f(z)--f(-r),(ar,ar,an)*
(-ar, ar, -an)). Because of the complexity of the formulas giving these parts the
search for the maxima had to be done by aid of a computer. A standard program
for finding minima (E04JAF from the NAG library) was applied to the functional
for different values of r and rz. In this way several functionals were found which
are not maximized among the functions (4). Having found such an example we can
readily check the situation directly.

As a typical example, consider the functional ao-ar. Its values on the lower
boundary of V, are most easily computed if we substitute the measure p into the
formulas

o*elL

Zar- { e-iEctp(E},
o

2n

6ar-1aZ+ { e-ziEdp(E),
o

12an - e-\iE clp(E),

which follow from the basic equation (2). We get the following cases. For 2a2>
kl2- |

2o': 1a12-I+t(kl2al)'

6a': 4qz-k+(k+2)r2'

l2an : -8oZ+tSarar- 6ar+4(kl2- 1) -l4d (kl2* t),

where the parameter r:cos E, O<r<1, represents the sites of the positive jumps
of the measure p. For 2larl=1112-1

2ar:-2Yakl2-1,
6ar: 4qz-l<,

l2an - -8a!* lSarar*2a2,

where the parameter v,0<v=kf2-1, gives the size of the negative jump of p.
The third case is obtained from the first one by a change of signs of as and an.

Take now, for instance, k:4. It is not difficult to check that the maximum
occurs in the first case with z: l. Thus we have max(an-ar):l among the func-
tions (4).

The global maximum of an-a, occurs in ,B^(4) in a part called Case 4b
in [8]. In this part of the surface aE:trrzxan(ar,ar) the support of p consists

59
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of four points: p has negative jumps -v, -kl2*1+v,0=v<kl2-1, at 9:Q
and rp:v, andpositivejumps kl4+U2 atthepointswhere cos E:'c, -ll3=x<0.
From (6) one readily computes the expressions

2a, : - 2u a klz - 1 + x (klz + l),

6ar: 4q7-k+12(k+2),

6a n : - 4rz *9arar* a2- (r - d) (k + 2).

The maximurn for k:4 is achieved with t: -0.249201 1.'., v:0.5479380...,

for which a4-az:I.006874... .

Similar examples of linear functionals not maximized by the functions (4)

were found for all tested 2<k=:4 and k>4.

Remark 3. It should be noted that the situation in the classes B*(k) does not

necessarily indicate an analogous "splitting" of the extreme points in the classes .B*.

Indeed, for k:4 the extreme points of co (A*) are exactly the functions (3), and

for k>-4 the extreme points of co (fo) and support points of Bo are known to be

among the functions (3); see lll,l2i, [4], [10].

2. Linear functionals on the body V B in the classes B k and S

The re_eion v2 of _Be is given by larl<k:2, The extremal functions are the

"Koebe functions" of Bo, the functions (3) with x : *!. We next give a necessary

condition for the extension which the body V3 can provide to this set of support

points of Bo.

Theorem 2. I'or k>2 the functional Re {z2ar-tl'a2\, r, )(C, iz : t. can

reach its maximunr in 81, only with functions of the form (3) satisfying the additional

condition

iarg(-xy)t= c(k),

where c(k) is q decreasingfunction of k.

Proof. Linear functionals of ar, a" reach their maxima only by rleasure§

p whose support consists of two points [10]. We flx the notation that the point

El corresponds to the positive jump År:1112*1, and the point E, to the negative

/z:-kl2+1. Consider for a fixed k the functional Z(9r,Er):Re{6ar-D"ar}
with ),:)t*i12, ).r,12€R. By (6)

222
(7) L(Er,E): (Z cosE,/,)2-() sinE,/)z* ) (cos2E -l"rcos E,-)rsin«p)/i.'Er 'i:L i:1

Suppose first that ir, ).r10. The signs of the parameters )"r, )., determine those

of Re az,lma, belonging to the extremal function: the transformation (E1,E2)*
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(-Er, -E) changes the sign of lma, and keeps Re a, fixed, while the trans-
formation (Er,E)*(Et*n,Er*n) only changes the sign of Rear. Thus always

-2r Re dz>O, lzlm ar=g in the maximum case.

The necessary conditions 0Ll0E,:9, i:1,2, give the equations

(8) Ät: h*4 Re ar,

).r: crl4lm ar,

where c, and c2 have the expressions

6t

(e)

. sin (0, - sin ca,
c1 - 4++=cos {p1 QoSQ)o.' Stn (9r - Qz)

, cos (0t - cos (20
Cz: a#SlnErSln92,- sin (8, - ez)

and Re ar,lmas ate given by

(10) 2F.e ar: (klz+ 1) cos qr-(kl2-l) cos Ez,

2 Im a, : -(kl2+ 7) sin qr*(kiZ- 1) sin Er.

Fix now the situation by setting Ar=0, ),2=0. Accordingly, we must have Re ar>O,
Im ar>Q. If we denote E:{(Er, E)l3nl2-.<pr=2n, nl2=Er=.rp1-rc}, then (10)
gives the mapping from ä onto the points Rear=O, lmar=g which belong to
the part of Z, produced by two-point measures; see [7]. For (Er, A)€E we have
c1<O,cr>Q. The condition iz:cz*4lmar=g is thus satisfied. However, the
sum ztr:6'r{ 4F.e a, is not negative for all (Er, Er) in ,8. Especially, ), is positive
on the two lines gz:Nl2,3nf2-Er-)n and et:2rl,nf2<<pr<v. These lines
give the boundaries between the parts of Y, produced by two-point and three-
point measures, so measures which are close to the three-point measures cannot
maximize the functional (7).

It is not difficult to check that for all (Er, g)(E the derivative of Re a, and
c, with respect to E, are positive. Since limrr* kor+r)+ ct: - - for each Er(
(n12, n), it follows that the equation 0:cr/4+Re a2, i.e.,

(11) 0: ffi=#cos Er "o,E,+|(+.,)cos E,- +(+_t)"o, E,,

has a unique solution E?:E?(Er,k),rp2*n<ql=2r, for each fixed Ez€(nl2,n).
For q\=.Er<2n the sum cr*4 Re a, is positive, so a necessary condition for
a pair (Er, E) to maximize the functional (7) with 1t*0, ),2=O is _eiven by
tp2*n<tpr<.E?(Er, k).

Consider next the rotated functional

(12) L"(Er, ez) : Re {r'26ar-il"2a2}, lzl : t.

By(6)arotation e*g*t,r:eit, ontheunitcircletransforfiis ar*x-lqz,oR-.c-2at,
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and so L,(E1*t, gz*t):L(tpr, Ez). Hence we can extend outside E the necessary

condition for pairs (Er,E) to maximize a linear functional of ar,ar. For any

E;€[0,2n) we can select any arbitrary point E2€(n12, n) and consider the functional
I" with argr:E[-E. The necessary condition for a pair (EI,E|),El=cp[-lr,
to maximize the functional is given by the inequality

et1-n =. ql -. q[+n*d(Er), d(qr) : El(Ez, k)-Er-n.

The best scope for the condition is given by the maximum of d(<p),nf2=Er=n.
The right hand side of (11) is increasing with k, so

c(k) : *,å*(El«pr, k)-Er-")

is a decreasing function of k. The condition for a pair (Er, tpr), q2*n<E1, to
give a maximum for a functional (12) with l1<0,,i2=0, is given by 0=Et-Qz-
n<c(k).

consider then the functional (17) with the parameters in the quadrant ,1r<0,

12<0. For a maximizing function we now have Re a2>0,Im az=0. These values

are obtained from those of the preceding case by the transformation (Er, E)*
(-Er, -gr) which keeps Re a2, crfixed and changes the signs of Im a2,c2. Fot
each Ez((-n12, -n) the equations (8) now have a solution if Q<.qr*t-Qr<
ql(Er,k). As above, we conclude the condition 0-Ez-Qrlr<c(k) for any

(Er,E) to maximize the functional (12). Combining this with the previous in-

equality and denotin9 x:s-ia', y:e-ie', we have the necessary condition
g<larg (-xy)l=c(k) for the functions (3) to maximize the functional (12) with
)1, ).2+0.

When ,l.r:Q the functional (7) achieves its maximum by the functions (3) with
x:fi,!:0, or x:0,./:2, which simultaneously maximize Rea, and lRearl.

For 1..:9, ,12=0 the equations (8) can be solved in terms of (cl\(vr, k), E)€E
only when ,1, is small enough. The upper limit for these l', can be found by the

Taylor expansions of the formulae in (8); cf. page 65. We omit here the computa-

tions. With larger values of )., the extremal function is fy(2, x, y) with argx:nf2,
argy:3TEl2. The case I'a-O is symmetric with that of Lr>O.

Remarks. The values of c(k) are obtained numerically. For instance

c(2):9.679674...,c(3):0.528959...,c(4):9.429386.... Theconditionofthetheorem
could be compared to the result of Aharonov and Friedland [l], according to which

the functions (3) are extreme points of co (,Bk), k>4, at least if larg(-x-y)l=4nlk.
The question arises whether all the functions (3) satisfying larg (-xy)l<c(k),
2<k<4, are extreme points and support points of ,Be. This is true if the formulas

(8) give a bijective map from Eo:{(Er,E)lnl2=cpr-.n, E2*n<Et=89,(Ez,k)\
onto the set I: {Q.1, )")pn=.O, .12> 0}. It can be seen that the mapping (8) is not
injective in the set .E However, numerically one can verify that the injectivity
indeed seems to hold in .Eo.
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In the class S the functional Re {ar- Lar} was studied by Brown [6] and
in the class S(b) of bounded univalent functions by Tammi [13]. The functional
generates a rather rich family of support points, since generally distinct values of
)" give distinct extremal functions [6]. Here we give a necessary condition for these
support points.

The study is parallel to the above case of .Be if we use the Lowner expressions

az: -2

as: aB-2 [ ux(u)z du,

x(u):e-ie@), O=u=1.
The coefficient body V, of § was obtained by Schaefler and Spencer l12l by
variational methods. In [7] the body was determined from the above formulae
by maximization of the functional Re {ar-af,-ca2\ for varying c, c€C. The
body consists of two main cases, Part I and Part IL Part I, which consists of
boundary functions of forked-slit type, is obtained with real parameters c. Part II
consisting of one-slit boundary functions is obtained with parameter values
c:cr*ic2, cr, cr*0.

Since the support points of § are known to be of one-slit type, it suffices to
restrict to Part II. We recall the parametric presentation for these boundary
functions.

In Part II the control function 0(u) for the Lowner equation of the boundary,
i.e., the function maximizing Re {ar-af,-ca2}, satisfies the Euler equation

,/ sin 20(u)- cl sin 0 (u)+c2 cos 0(u) - 0.

When, for instance, ct<0,c2>0, the equation gives a unique monotonic control
function 0(u), nl2=0(u) =n.

Denote the terminal values of 0 by a:O(l), co:0(0). By (13) the parameters
cr, cz assume the expressions

._ _ sin 2a cos crr

sin (a-ar) '
(14)

sin 2u sin ar
1,2-Sin(o(_o))

and o) the integrated expressions for Re a, and Im a2 are

Re a, : ct log# *cz(cot a-cot ., *u-*,),

rm a, : czlog # * ct(tan c,-tan a) - u* ot).b v slncD ' r\

63

! ,(u) ctu,

(1 3)

In terms of a

(1 s)
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The parameters s, ar determine the boundary function in a unique way. If we

denote F:{(a,a)lnl2=a=n,u.=tD=n}, the formulas (14) and (15) give the map

from the set F onto the points Rea2>0, rmar=g which belong to Part II'

l'heorem 3. The functional Re {'ezar-zlar}, r, )"QC, lzl: l, can reach its

maximum in the sel ^S only by one-slit boundary .functions of V, satisfying the

additionsl condition
l0(l)-0(0)i < c,

where c:0.601394... and 0(O),0(l) denote the terminsl ualues of the controlfunction

of the Lowner equation for the boundary function.

Proof. Start with the functional Z(O):p" {ar-(ir+il.r)ar}, and suppose

first that ),L, ),2*0. The Lowner expressions give

(16)
111

L(0): +(/ cos o dulz-+(/ sin 0 clu)z-2 f tu"otzl-Lcos0-Ä2sinl)du.

The necessal 
"*rr"-rrrn "onir,ron, 

obtained 

ouy 

u uoriution of g (or by formal

differentiation with respect to 0) reads

usin20-().r/2-Re a) sin 0+Q.rl2-lmcr) cos 0:0.

Comparison with (13) gives the necessary conditions

(1 7)
7rl2 : c1-f Re ar,

irlT : cz*Im ar,

where cr, c2 and Re4r, lma, are given in terms of q,)(D as in (1a) and (15)'

Again the signs of 1r,.1, fix those of Re a2,lma, belonging to the function

maximizing I. For )"QT:{(h,).)l)'r<Q,)"2=O} wemusthave Re ar>O,In1 qr>Q.

These values correspond to (a, a)€F, for which cr<Q, sr>Q. The condition

)"r12:cr-llmar>0 is thus satisfied, while the inequality ).1f2:c1*Re ar=Q is

not satisfied by all (4, o)€F. Especially, the sum is positive on the two lines given

by u:nl2,nf2=o=n and nf2=u<n,a-n. These lines give the boundary

between Part I and Part II in the quadrant Rear=g'lma,=g' whence the func-

tions of Part II which are too close to Part I cannot maximize any functional (16).

The expressions of c1 and Re a, are increasing with o for each nf2=u<a.
BeCaUSe limr-na C!:-*, the equation Q:cr*Reaz haS a unique solUtion

oo:ao(a), q,=ta,o=Tt, for eachfixed a. When sf <.a<n12, the expression c1*Re a2

is positive, so a necessary condition for (4, ar)€F to maximize (16) with 1r-0, )'z>O

is given by a-a<c»o(a).
consider then the rotåted functional z"(0):ps {rzar-il'a2}, x:eit' Replacing

the function 0 by 01u1:g@)+t n Lowner's formulae we get dz:t-Laz, dl,:t-zas'
So I,(0;:1(0), and the maxima of Z and I, coincide for 0 varying over the
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set of admissible functions. Similarly to the case of Bo we deduce the necessary
condition for 6 to maximize some functional L": the functions 6(a)-l must
satisfy (13) for some constant t, and the terminal values of 0 have to satisfy
O=ld(1)-0(0)l=c, where c:rnzx,q612,o1ao(u)-u. The numeric value of c is
obtained by computer.

Finally, consider the cases where one of the parameters ).r, )., vanishes. If
2z:0, the maximum 3+2lAl for Z is reached by the Koebe function. If l.r:g,
2z=0, the equations (17) have a solution («, ar.(a))€F only when )"2=4el@-1);
cf. [3] where Tammi determined the constant for the class S(å). For ),r>Ael@-l)
the extremal function is the (rotated) Koebe function. The case of a negative )",
is symmetric with that of a positive ,tr. The Koebe function is obtained from the
Lowner equation by a constant control function, i.e., by a 6 satisfying 0(l):g(0).

Remarks. The converse to the theorem holds if (17) gives a bijective mapping
between T and the set fo: {(q, a)lnl2=a=n, u<a<aoQy)}. The mapping is
not injective in the set F. Numerical verification indicates that the restriction to
the set F, would be injective, but due to the implicit character of the formulae
and the set F6 we do not haye an exact proof for this.

Schaeffer and Spencer showed that the support points of the body Vn, n>2,
form a closed connected subset of the boundary points of yn corresponding to
one-slit functions ([12], Chapter X). The condition of Theorem 3 could be regarded
as a quantitative example of this general result.
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