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oN /"lf' Af{D INJECTIYITY

JULIAN GEYIRTZ

Duren, Shapiro and Shields [DSS] seem to have been the first to observe that
there is a constant l>0 such that for a function f analytic in the unit disk D,
sup {(l -lrl\lf"Q)lf'Q)l: z€D\=l implies that f is univalent in D. Their proof

with A:2115-Z) was based on a univalence criterion involving the Schwarzian

derivative due to Nehari [N]. Using the Löwner differential equation, Becker [B]
subsequenfly showed that the same theorem holds with A:1. By means of an

elementary argument Martio and Sarvas [MS] established the following analogous

fact for analytic functions in a uniform domain U: there exists a constant A,
depending on two parameters which roughly limit the shape of U, such that
sup {dist(2, 0u)lf"(z)lf'(z)l: z(U\<A implies that f is univalent in U, where

dist (2, 0U1 is the distance from z to 0U. The purpose of this note is to show

how the argument of Martio and Sarvas may be used to obtain a similar injectivity
criterion for mappings of a uniform domain in a normed linear space.

First we set down our notation and terminology. X and Y will always be real

normed linear spaces and U will always be a domain in X. The conjugate space

of I is denoted by I*. Norms of elements, linear functionals and linear trans-

formations are all denoted by l' l. For f : U*Y we let Ärf(x,h):lf(x+h)-
f(x)lllnl and /,f(x, h):lf(x+h)+f(x-h)-2f(x)lllhl'. We define D*f(x) and

D-f(*) to be, respectively, the upper and lower limits of Årf(x,h) as h-0, and

we denote by Drf(x) the upper limit of Arf(x,h)lAi(x,h) as h-0. Further-
rnore,for xQU and a(X wedenoteby f'(x,a) thederivative of f inthedirection
a; that is, the limit in the norm topology of I of (f(x+ha)-f1x))lh as h*0.
Obviously, if f'(x,a) exists, thenf'(x,ta):tf'(x,a) and D-f(x)=lf'(x,a)llal=

=D+f(x). The mapping / is said to be differentiable at x if there exists a bounded
linear transformation T:X*Y for which lf(x+h)-f(x)-r(Dlllhl*0 as å*0.
This linear transformation is denotedby f'(x).
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If X and I are both the complex plane considered as normed spaces with the
usual Euclidean norm and f is an analytic function with f'(z)*0, then clearly
Dyf@):lf"G)lf'Q)1. We generalize Martio's and Sarvas' injectivity criterion to
cover the class of mappings we now define by using Drf as a substitute for
lf"@)lf'Q)1.

Definition l. If I(>1, then Q(U, Y,K) denotestheclassoflocallyLipschitz
mappings f : U-Y such that D+f(x)=KD-f(x) for all x(U and for each

x€U there is a ä>0 such that f(x+h)tf(x) for 0=1hl=ö.
For example, if X and Y are both the complex plane and / is an analytic

function on U with f'(z)*O, then fCQ(U,Y,l). Similarly, if X and Y are
n-dimensional Euclidean spaces and f :U*Y is continuously differentiable and
locally K-quasiconformal, then f(Q(U, Y, K). We point out, however, that a

mapping in Q(U,I,K) need be neither locally one-to-one nor open.
Aside from changes in the meaning of the parameters the following definition

is due to Martio [M].

Definition 2. An open subset U of X is an (a, b)-unifurm domain if any
twopoints x and y of U maybejoinedbyacurveCcUsuchthatC hasfinite
length L<alx-yl, and if e:l0,Ll*[ is the arc length parametrization of C,
then dist (EQ),\U)>b min {t, L-t\ for all KlO, Ll.

The result we establish is the following

Theorem. Let X and Y be real normed linear spaces and let UcX be an
(a,b)-unifurm domqin. If f(Qg,Y,K) and

:?B 
dist (x,0u)Dr"f(x) =

then f is injectiue.

8b

3 (1 + 51() (Z+ Ka *(4Ka + Kz oz)Ltz)

Henceforth we shall assume that the image space I is complete. This, of
course, constitutes no loss of generality in the theorem since Y can always be
embedded in its completion. This assumption is necessary since we shall be differen-
tiating functions with values in I, which in general requires the completeness

of Y. In several places in what follows we use some elementary properties of
integrals of continuous functions with values in Banach spaces; for a complete
treatment of integration in this context the reader is referred to [HP, p. 62-67].

The following six lemmas lead up to the proof of the theorem; the first of them
is the Fundamental Lemma of [J, p. 82].

Lemma 1. Let 7 :la, bl be a real interoal and let f : I*Y satisfy D+f(t)<M
for all tCL Then lf(b)-f(a)l=M(b-a).
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Lemma2. Let 1:la,bl be a real interual and let f :I-Y be continuous.
Let r be a continuous real ualuedfunction on I. If D+f(t)<-r(t)lf(t)l on I, then

(1) l.f@)-f(q) l= tf@)t( i ,<,1dt)exp( i,f,l o4

holds for all x€L

Proof. Let g1t 
1 
: 

71t ) - f(a) - Then D +g( t) : D + f (t) =r(t )lf(t)l= r(r) 
I 
g(l) I +

r(t)lf(a)\. Let a:so<r1<... <sn:t and let ä:max {s,-s,-r: l=i<n\. Let ,R,

and G, denote the maxima of r and ISI on [s,-r,r,], respectively. By Lemma I
we have lg(s)-g(s,-r)l<(,R,G,+,R,1/(a)l)(s,-s,-r). Summing from I to n and
letting ä*0 we have

ig(r)l = r(s)lg(')lds* lJ'@)i

Applying the Gronwall inequality (see [W, p. l4]) to this we conclude that lg(x)i
is indeed bounded above by the expression on the right hand side of(1).

Lemma 3. I-et 1:(a,b) be a real interual and let f ; I*Y be locally Lipschitz
continuous. Let r be a continuous real ualuedfunction on I. ff Daf@)=r(x) on I,
then f is continuously dffirentiable and D+f'(x)=r(x)lf'(x)l for x(1.

Proof. Let E€I* with lEl:t. Let g:Eof. Let J:(x-e,x*d) and assume
that f has Lipschitz constant M on I and that r(l)<Å on ./. Then for t(J
we have lim supl-e / ,g(t, h)< RM. Consequently the functions gr:MRtzl2X g
satisfy lim infl-6 (sr(t+h)+sx(t-h)-2gt(D)lhr=O for t<J. This impties
(see [N, p.39]) that g+ and g- are convex. Thus for x-a<J1<Jz=t1<tr<.aas
we have

g* (tr) - gt (rr) gt (sr) - gt (sr)

t

! ,(s) ds.

t

f

=tz- tt

from which we conclude that

§z-sr

(2t lsul-s@ -s(§,)-s(sJi= r^(å+-+)I tz- tr sz-sr I

for such values of s1, s21 t1;t2. Since E is any element of I* with norm l, (2)
holds with g replaced by I This clearly means that f is differentiable. What is
more, it means that for tL,h(f we have lf'Ur)-f'(tr)l=MRPr-trl, from which
it follows that f is continuous. Since we may use the value M:sq {lf'(t)l: t<J}
and since "R may be taken to be the corresponding supremum of r, we conclude
that D+ f '(x)=r(x)lf'(x)1.

Lemma 4. Let J' : U -Y be locally Lipschitz continuous and satisfy Daf@1= 11

on U. Then f '(x, a) exists for all x€U and aeX. Furthermore, if U contains
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the closedsegmmt joining x and x*ta, then

(3) lf' (x* ta, a)-.f' (x, a)l = lf' (x, a)llalntet'tnt

and

(4) lf(x+ta\-f(x)-tf'(x, a)l = lf'1x, a)lq(lalÄ, r),

where p(q, t):(qteqt -e4 +l)lS.

Proof: Since the function g given by g(s):/(x*sa) satisfies Drg(s)=lalR
in a neighborhood of [0, l], we may apply Lemma 3 to conclude that D+g'(.r)<

lal,Rlg'(s)1. Applying Lemma 2 and the fact that f'(x*sa, a): g'(s), we obtain (3).

Integration from 0 to I then gives (4).

Lemma 5. Let f(Q(U,Y,K) satisfy Daf@)<R on U. If lal:lbl:L and

dist (x, 0U)-2t, then

lf' (x * ta, b) -f' (x, b) I = (1 + Rt) eRt lf' (x, a) l(1 + 5&q (3 R I 2, t) I t.

Proof: Let y:x*tal2 and c:al2-b. Since x:y-taf2 and xlta:
y*tal2, Lemma 4 implies that lf@)-f(y)+tf'(y,a)l2l and lf(x+ta)-f(v)-
tf'(y, a)l2l are bounded above by lf'O, a)le(R, tl2). Similarly, since x*tb- y-tc
and x*ta-l$:y{tc, wehave that lf(x+tb)-f(y)+tf'(y, c)l and lf(x+ta-tb)-
f(y)-tf'(y,c)l are bounded above by lf'0,")le(lclÅ, t). Also by Lemma 4 we

see that lf(x+tb)- f(x)-tf'(x, b)l and lf(x+ta)- f(x* ta- tb)-tf' (x1- ta, b)l

are bounded above by lf'(x,b)lp(R,t) and lf'(x*ta,å)lq(,R, t), respectively.

Together these six bounds imply that

if' @ * ta, b) (x, b) 
I

= (21 f' O, a) 
I s (Ä, t I 2) + zlf ' (y, c) | 

q (l c l,R, t) +

lf'(x, b)lo(R, t)*ll" @*ta, b)ls(R, t))lt.

But since .feQ(U,I, K), we have

lf'(y, c)lll"l = Kl.f'(y, a)lllal = Kl.f'(x, a)l(t+Rtl2)eRttz
and

lf'(x+tq, b)l = Klf'(x*ta, a)l = Klf'(x, a)l (1+Rr)eR',

by Lemma 4. Finally, lf'(x,b11=-171f'(x,ai)1. Since lrl=-slz and q(q, t) is in-

creasing in q and p(q, st):sq(sq, t), (5) yields the desired conclusion. (ffre
condition dist (x, 0U)>2t was tacitly used in the various applications of Lemma 4.)

Lemma 6. Let J<QU,Y,K) satisfy D"f(x)=r(x) on (1, where r is con'

tinuous on (J. Then f is continuously dffirentiable on U and

D+f' (x) =
3 (1 + 5/<) r (x)

l"f'(x)1.

(s)

Proof. Let xQU and let o,b€.X.
a and b. Let (J': {r€X': x+u€.U).

Let X' be the subspace of X spanned bY

Let E(Y* and let g denote the real valuecl
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function on U' defined by g(u):E(71x+u)). Since / is locally Lipschitz contin-
uous, 8' is also, so that g is differentiable a.e. on U'. If g is differentiable at
u and c(X', then g'(u)(c1:E(f'(x+u,c)). By Lemma 5, f'(x*u,c)*f'(x,c)
as a*0. Since g'(u) exists a.e. on U' and is linear wherever it exists, we have that

E(f'(x, c)) is linear in c. Since E(Y* is arbitrary, f'(x, ta*sb):tf'(x, a)*
sf'(x, b) for all s, l€R. Lemma 4 now implies that f is differentiable at x and
that f'(x)(a):f'(x,a). Finally, Lemma 5 implies that .f is continuous and that
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D*f'(x) is bounded above by

[r* (1+ sK)r(ry,41r) sup t-f, (x, a\i, - 3 rt + sfl',d 
lJ'/ (x)i,.

lai:r

With these lemmas we now prove the theorem by extending Martio's and Sarvas'
argument to this more general context. Let f be as in the statement and let b' <b
be such that

(6) A : sup dist (x,0U) Drf(x) -
8b'

3 (1 + 5lO (2+ Ka *(4Ka + K2 a2)Lt2)

Let x and y be any two distinct points of U. Since U is (a, å)-uniform, there is
a piecewise linear curve C joining x and y in U such that if cp:l-M, Ml-U
is the arc length parametrization of C with e(-M):x and tp(M):y, then
2M=aly-xl and dist(rr(r),0U)=O'1r-rrr, for t(l-M,Ml. Let g denote

f 'oE. Lemma 6 implies that g is continuous and satisfies

D*g(t)=fiffiAt>,
so that by applying Lemma 2 to g as a mapping of l-M,M) into the Banach
space of all bounded linear transformations of -Y into f we have

(7) tgG)-g(o)i = ts(o)t ,(ffi) "r(ffi),
where for convenience we have set B:3A(1*5K)/(4å'). Now,

lu)-t@) -

where
M

lrl = _f I 
g G) - g (o) 

I le' (s) | r/s = 2M Blg (o)ll 0 - B)'

by (7). siilce l€Q(u, v,1(), ls(O)(y-x)l=ls(0)l ly-xjlK. Thus, lf9)-f(x)i=
ls(O)l ly-xl(llK-aB(I-B)-). If g(O):Q, then by (7) f is identically 0 on the
curve C. This means that f is constant on C, which cannot be by the last con-
dition of Definition l. Thus lg(0)l=0. Hence by (6) we have that J'O)lf(x),
so that / is indeed injective.
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