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Let TR denote the class of typically real functions

(r) f(z): j tå;+z au<,t

in the unit disc lzl= 1, where p(l) is a probability measure on [- 1, l]. Kirwan [1]
has found that the radius of starlikeness of the class 7R is the number [2-1, i.e.
for each function f(TR the inequality

*" 'f=,(? =- oJGI

holds in the disc lrl=E-l, with equality only for the function

(z) .f(z):+j, +:§pn-!)szn-r
\t - z'f n:7

at the points z: li(lT -t).
In this paper we shall find the radii of starlikeness and convexity of an arbitrary

order a,0=d<1, of the class 74. In particular, for c:0 we obtain again the
Kirwan result by a new method (cf. [1] and [3]) and the heretofore unknown radius
of convexity of the class 7R reported in [4].

We denote by r"(a), 0--a<1, tåe radius of starlikeness of order a in TR,
i.e. r"(a) is the maximum of the numbers r such that the inequality

*, z"fi,?) > y
J lz)

holds for each function /eT:R in lrlnr.
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Theorem l. In the class TR of typically real functions in the unit disc the

radius of starlikeness of order u is obtained.from the formulae

. [J*,-a*:,(3) r"(a): 
V ffi if o< a=UlT

(4) r"(ll/3):2-lT if q,: UlT,

(5) r"(s) : i# ir 11/T- a < 1.

Equality holds only for the following extremal functions:
1) in the case 0<a= tl/T for thefunction (2)atthe"criticalpoints" z: trr"(a).
2) in the case o(: tlll for the function (2) at the "critical points" ,:*ir"(tl/3)

and for the Koebe functions

(6) .f(z) : 6b: ,å,* r\n-tnzn

at the "critical points" z:tr"(l y'3), respectively.

3) in the case tf lS=a=l for the Koebe functions (6) at the "critical points"
z : Lr"(a), resPectivelY.

Pr oof. By a theorem of Ruscheweyh (l2l,Theorem I a, pp. 19---20), the minimum

of thefunctional Relzf'(z)lf@)l in theclass TR at afixed point z is attained for
functions of the form

(7) "f(z):T=#4?+ffiera, o=p<r, -1 =tr=tz<!'

From (7) we obtain

(8) -f(z):ffi, r": (r-p)qapt,'

Hence

(9) '#: yQr, z)*y(tr, z)-y(r", z)

where

(10) ^t(u, z),: i-rrr'T7.
From (9) it follows that

*" 'q,g] : F(tr' z)* F(t" z)- F(r"' z)
J lz)

where

(1 1) F(u, z):: Re y(u, z).
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For a fixed z*0, lzl<l we write

(12) m"(z) : min (r(rr, i)+ F(tr, z)- F(r", z))

where

(13) 1" : {(tr, r", tz)l-l = tt = ts < tz = I}.
From (10) and (ll) we obtain for z:reio,0<r<1, -n<O=n and real

u:t, -1=r=1
F(t,z'):ffi

where

(14) o,:ch(,,+) :+[+.,), Qi:'n(,"+) :+(+-,)
By investigating the sign of the derivative (dldt)F(t,z), depending on t,

we conclude that for a fixed z*0, lzl < 1, on the interval -L<t=l the function
F(t, z) has the following properties:

a) It is strictly increasing if S=lBl=r/(o), where

(ls) cosry'(o) :{**-}-o, o - 7t.-/ Z , - =V/@)= 2 (o>1),

b) it is strictly decreasing if n-rlr(o)=l0l=zr, and
c) it is strictly increasing on [-1, ro] and strictly decreasing on [/0, l] if

t @) - l0l< n - rlr (o), where

(16)

and

(t7)

,o: "91$i$ (-1=ro-1)
o*lsin 0ll/o2-cosz0

D/+ _r_ o ,ld-co§4t \to. z) - k -- k lrio?l 
.

Thus, from a), b), c), (15-17), (12-13) and (7-8) we can draw the following
conclusions.

(i) If 0-r=1 and O<l0l=rlt(o), then

(18) m"(z) : mrin (ll(r, z)+(F(tz, z)- F(r", z))i) : p1-t, z) :;#m

with the extremal function f (z):zl01z)2. From (18) it follows that

(19) m"(rei|)=m"(r):;ft-, 0<r<1, 0= l0l =t@),
where the equality holds only for 0:0.

(ii) If 0=r=l and n-rlr(o)=l0l<2, then

(20) m"(z\ : qin ((f(lr, z)- F(r", z))+ F(tz, z)): F(1, 4 : #G6
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with the extremal function f(z):zlQ-z)2. From (20) it follows that

(21) m"(reio) =- m"(-r): *, 0 < r < 1, n-*(o) = l0l = n,

where the equality holds only for l0l:n.
(iii) If Q<7<1 and r!(o)<.101-n-rlr(o) and if we choose in (13)

(22\ tr: -1, ?, : /0, tz: 7,

then(23) 
_^*,);or 

t::W:,lr,*r.
oz-cosz 0 2s 2q lsin 0l ' ö \v/'

where the extremal function is determined by (8) with Q2).
For 0<0<zl2 the function on the right-hand side of (23) has a maximum if

l=o-217, and it increases rf o>2t/T. fte maximum is obtained on the interval

rlt(o)<0<n12. Hence for rlr(o)=Q=nl2 we have

(24) c(o)=-i,[s(/(o)),r(9), 1=o-2{i,
and

(2s) c@) =- e(rl,@)), o = 2{2,

where

(26) g(y,(o)):q(lo'!9-"), o>7.

and

(27) r(+):+-+, 1-o-2{2.

Thus for *(o)=l0l=n-rlr(o) we obtain from (23--27) and (14-15)

(28) m"(rei\>m"(tir):+-+, 1<o=\ry,
where the equality holds only for l?l:vl), a16

(2g) m"(reie)= auo'!8-o) , 6 7lrry
Now we compare the "minima" in (19), (21), (28) and (29). On the circle

Izl:r we have

(30) m,(z)=1-+, 7<o<2 (2-{!=r=1),oQ
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where the equality holds only for z - tir,

(31) m,(z)=*, o-2(r-z-fr,
v"

where the equality holds only for z- ti(2-l/, and z-t(2,-l/r, and

m,(z)=#T-, o > 2 (0 = r < 2-l/1),

where the equality holds only for z: tr, respectively.

Finally, if we equate with a (0=fl<l) the "minima" (30-32) for o=12,
we obtain the radii (3-5) of the discs in which the inequalities Re(zf'(z)lf(z))>u,
0=a< 1, hold with the extremal functions Q) and (6), respectively.

This completes the proof of Theorem 1.

In particular, for c:0 we obtain from our general formula (3) the well-known
radius of starlikeness r":: r"(0): l/2-t of ttte class (l) found by Kirwan [1] in a way,
which is, in our opinion, difficult. See also [3] for a simple proof of this Kirwan
theorem by an alternate method.

From (30-32) and (14) we obtain also t}re following sharp estimates for
Re(zf'(z)lf(z)) in the class 7A:

Theorem 2. For each typically real function (l) in the ring 2-{3=.y:lsl<l
the inequality

(32)

(33)

(34)

(3s)

holds, with equality only for the function Q) at the points z:Xir. On the circle

lzl:2-lT,

R#=ry

with equality only for the functionQ) at the points z: Xi(2-fi) and for the functions
(6) at the points ,:X(2-/3). In the disc 0<r:lzl=2-11 the inequality

zf'(z\ l-r

holds, where for r *0 the equality holds only for the functions (6) at the points z : tr.
Theorem 2 yields the following sharp estimates in the class 7A:

Theorem 3. For each typically real function (L), we haue under the conditions
2-li=q=y=D-|, and -n=O=n
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where for r*q the equality holds only for the function (2) with l0l:n12. Under

the conditions 0<g=v-2-l/Tl and -n<g=n,

lf7r,\l _ r (1*o)z

l7@Tl=(t+'x" a '

with equality for r*Q only for the functions (6) for 0:O and l9l:n, respectiuely.

Proof. The theorem follows if we use the identity

*"ff:,*hlf(z)\,
and integrate the inequalities (33-35) with respect to r from a=2-{5 to ,=t/2-t
and from Q=0 to r<2-y'5, respectively.

Nowweshallfindin TrR theradiusof convexityof order n,0=d<1, which
we denote by r"(a). By definition, r"(a) is the maximum of the numbers r such that

x"ft+$ff)="
for every function fCTR in lzl=r.

Theorem 4. Let (o:0.314... be the least positioe root of the equation

(36) x6-l7xa-t20x2+12:0.

Thenfor 0=d<do, the radius r"(a) is equal to the least positioe root of the equation

(37) (l+a)r6-(23+5a)ra+(23-5a)r2-(l-a) : 0.

In particular, for a,:a,o,

(38) r"(ao): #:0.182...::ro.
For d,s<a<|,

(3e) r"(a): -r1f
So for eachfunction f(zWR in the disc lzl<r"(a) the inequality

(40) x"(t+!!@,, \=o o--s=1,\ J'lz) )

holds with equality only for the following extremal functions:
a) in the case O<a,<uo for the function (2) at the "critical points" z: !.ir"(a).
b) in the cos€ d:ilo for the function Q) at the "critical points" z:tir"(a)

and for the Koebe functions (6) at the " critical points" z : *r 
"(a) 

, respectiuely .

(c) in the case d,o<q=.\ for the Koebe functions (6) at the "critical points"
z : i.rr(a), respectiuelY.
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Corollary. For q,:0 the radius of conuexity r"i:r"(O) of the class TR of
typically real fanctiom (1) rs

(41) r": y'6-{s: o.ztZ..-.

Thus for eachfunction f(z)€TR in the disc lzl=16 -lS the inequality

(42) x"[ra{p)=o( J'Q) )

holds with equality only for the function Q) at the "critical points" z:Li(l/6-15).

Proof. I. According to the same Ruscheweyh theorem ([2], Theorem la, pp.
19-10), the minimum of the functional Re(l+(zf"(z))lf'@)) in the class IÅ
is also attained for the functions (7). From (7) we obtain

(43)

where we have set
(1 - 2trz * z')' (1 - 2trz + z')z

(44)

and

p-cos2+, o =EsTT.

Via the logarithmic derivative of (a3) we obtain the formula

(45) L+'{=:,,(?) - 2y(tr, z)+2y(tr, z)-y(t, zr)-y(t", z)- y(8", z),r- ' f'(r)

with the notation (10). From (45) and (11) it follows that

x"(t* ''[.",(?)t( f O ) 
:2F(tr, z)+2F(t2, z)- F(l, zz)- F(t", z)- F(i", z).

For a fixed z*0, lzl< 1, let us note

m"(z) : m;n(zr$r, z)+2F(tr, z)- F(1, ,')- FG", z)- F(r", z))

where
I": {(tr, tr, a)l-L = tr= tz= !, 0 = E = n\,

For z:reie, -rl=0=n, we obtain from (10) and (11) the representation

(46) F(u, z): R. å 
.a-u'

r, : tr+iz * + eiq. t, : ry - L;L r-,*
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where

(47)

and o, q are given by (1a).

Above (see properties a), b) and c) in the proof of Theorem 1) we have studied

the function (46) for real u:t, -l<t < I and fixed z:reiq. Now we shall examine

the sum

(48) H(u1, u2, z):: F(u, z)+ F(u, z)

for the complex conjugates u:u1*iu2 and fr:ut-iu2 with lrl=t and fixed

z:rei|,0<r= 1D,-t, -n=0=n. From (46) and (48) we obtain

(4g\ o:'!^ : -a:4:2Re , ä 
.= +2 Re--L:\4" 0"?. - \uz - -,'- (a _ u), , " '- (a _ a),

and hence

(so) I4*oi4 - "o4-*, - "'
Thus from (49) and (50) it follows that for the considered fixed z the sum (48)

is a harmonic function with respect to u, and u, inthe disc lzl=1. Therefore
ttre maximum principle of harmonic functions, applied to H(ur,u2,z) in the disc

lul=l, says that the sum (a8) is maximal on the circle lul:l. The last condition
for the variables (44) with O=E<n is satisfied only for the following three cases:

(51) tr: -1, -l = tz= l, (p : Tt,

(52) tz:|, -l<tt<1, g:0,
(53) h: -1, tz: l, O < E -. v.

Now from the properties a), b) and c) in the proof of Theorem I and from
the corresponding cases (51-53) we can draw the following conclusions:

(A) If O-.r=.fr,-l and 0<lgl=r/(o), then

(54) m"(z) :2F(*1., z)- F(1, zz)

with the extremal function

(55) f(r): c;s
From (54), (10) and (11) it follows that

(56) m"(rei\=m"(z)- 2q o o-2-, 0<r= {2-t,0= l0l =tlo),'- o+1-?- a

where the equality holds only for 0:0.
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(B) If 0< ,=1/1-t and o -*(o)=Wl=n, then

From (57), (10) and (11) it follows that

(se)

m"(reio)- m"(-r) : 2q o 
- 

o-2 0= r< l[1-t, n-rlt(o)<l0l=n,;+1-7- a'
where the equality holds only for l0l:7.

(C) If g=r=l/2-1 and V@)=l0l<n-$(o), then

(60) m"(z) : 2F(-1, z)*2F(1, z)- F(1, zz)- F(eioo, z)- F(e-ioo, z)

: 3F(1, z2)- Fleioo, z)- F1e-ioo, z) :: m(go, z)

for a certain Es,O<qr<.n with the extremal function

(61) f(,):cos'ff.6?ry*"r"'? G+
From (46) we obtain

F (eivo, z) + F(e-i1Pos z) : X" ffi

(s7)

with the extremal function

(s8)

(62)

where

(63)

(64)

m,(z) - 2F(L, ,)- F(L, z')

-f(r)- --z :.
(1 -z)''

. zb(a-t)\ .- \t)o-W

to: COS Qo, 0 = 9o < Tt.

For fixed r (o=r=1/1-l) and 0 (0=l0l=z) and the corresponding a and b,

determined by @7) and (14), the Moebius transformation

maps the real axis of the complex /-plane onto the circle

(65) ib I'
2(lalT - 1) Im a | 2(lol' - 1) lIm a 

I

of the complex ä-plane. From (65) it follows that

(66) Reä - (lal'+?(lali-t]) Llmal+lal'
2(lal2 - 1) llm a 

I

Thus, from (62-66) with (47) and (14) in mind, we obtain the inequality

(67) F(eioo, ret\+ F(e-iEo,reie)= :: /(0)
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for 0=go=n,O=r=fi.-1 and 0<lgl=2. Equality is attained for Eo:n12 un6

l0l:n12. Finally, from (67), (60) and (46) we obtain the inequality

(68) m(Eo,reie)= #fu -/(o)::G(o)

at least on the intervals O=Eo=n, O<r</2-l and, *(o)=l0l-.n-{r(o), where
equality is attained for Eo:n12 and l0l:n12.

For O=0=nl2 and fixed r, O=r={2-1, the function G(g), determined
by (68) and (67), has the derivative

(6e) G'(e):-Xir*g#.,#{qry,
where

(?0) K(0) : 16osin8g(qa-q2sin20asina0;-1nz-5sin'zg) /G,+silt0{

The derivativ e K' (0) of the function (70) is positive for 0< 0 < z 12 and 0 < r< lD - t,
o=fi,Q=1. Hence for 0=0=nl2 and fixed r (O=r=.!Q-l) the function (70)
increases from K(0):-q7=0 to

Qr) .(+): -op,(oz)
where

(72) pr(x) : xz-22x2*48x-48, x: 02.

The polynomial pr(x) has only one real root x1 which lies on theinterval (19,20).

lf or:1$, then pr(oz)<O for {2-.o<or rrnd pr(o')=O for o-or. Thus from
(7 1-7 2) and (69) we conclude that for O < 0 <. v l) the function G(0) has a maximum
if l2-o-.o, anditincreases if o>o1. Hence for rlt(o)=O<nfT wehave

(73) G(0) =-i, [c1,21,y), "g)J 
, {1- o < o,.

where the equality holds only for 0:rL@) or 0:n12. For o>or,

(74) G(fl = G(t@)),

where the equality holds only for 0:*(o). From (68), (67), (15) and (14) we obtain

(7s) c(t(o)) - 
o(3o2-4)l/c+a-Q'E*a)

8oo
and(76) o(+):ffi
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From (75) and (76) it foll

(77) G(,t(")) -G(+):

ows that

o (o' - 2) (3o' - 4) 1/ oz a S - pz@')
Soq (o'-2)

2pr(o')

o Q (oz - 2) (o (o' - 2) (3o' - 4) 1l o'z + 8 * pr("'))

pr(x) : 3xs *2x2 - 48x +32, x : 02

and
ps(x) : 3xa-64x3+228x2-224x*64, x: 02.

The polynomial pr(x) has three real roots which lie on the intervals (-5, -4), (0, 1)

and (3, 4), respectively. Let x, denote the roots on (3, 4), and or:1/ xr. Then

pr(oz)=O for 1[2=.6=or. Thus from the first equation (77) the inequality

(78) G(*(o)) >G(+), /2<o=_ oz

follows. The polynomial pr(x) has four real roots lying on the intervals (112,314),

(314,1), Q.,3) and (17, l8), respectively. Let x, denote the root in (17, 18). Then

pr(x)=-O for xr=v<x, and pr(x)=O for x>xr. Therefore, if os:Es, we have

pr(oz)=O for or=6<o, and pr(o2)=0 for o>oz, Thus from the second equation

(77) we get the inequalities

G({(o)) >- Q(+), 62 < o 1 o,,

with equality only for o:os, &nd

(80) e(t@))-o(+), o>os.

Finally, for 0<90= ft,0<r-l/2-t and {(o)=l|l=n-rlt(o) we obtain from
(60), (68), (73-76) and (78-80)

(81) m(tpo,reio)=*(t,r;r): ffi, f2-o<o3>

with equality only for Ao:l0l:n12, and

(82) m(tpo,reie)=W, o>oB.

II. Now we compare the "minima" in (56), (59), (81) and (82). First, for

o-fr (S=1) we obtain from (75)

where

(7e)

where
pa@) : 3o4 - 6os *2oz - 6o +2.
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The polynomial pn@) has only two real roots which lie on the intervals (0, 1) and

Q,[A.Hence

(83) e(,1@)) ='-2s
at least for o={6. Thus it follows from (55-56), (58-61), (75), (81-32) and (83)

that on the circle lrl:r,0=r< {2-t,

(84) m"(z)=^h(ffi,+),o=1lz (e=1).

Equalrty is attained only by the corresponding extremal functions (2) and (6) at the

"critical points" z:*.ir and z:!r, respectively. Second, for o-y'2, p=l
we have bV (8a)

(85) o-z 
-e(lo1-9) : - 9o(o)=.q o(o2-2) op(o2-2)

where

(86) po(o) : 2os-5o2-4o*6.

The polynomial po@) has three real roots lying on t}re intervals (-2, -1), (0, l)
and (16,:). I.et oo denote the root in (fr,3). ttren po(o)=o for {2=o=oo
and po(o)>O for o>oo. Therefore it follows from (84-85) and (14) that on the
circle lzl:r:o-Q (O=r={2-1) we have the inequalities

(87) m"(z)=#$, [2=o-oo,
with equality only for the function (2) at the points z : !.ir,

(88) m"(z)=ffi:#, Qo:@il,
with equality only for the functions (2) and (6) at the points z:tir and z=*r,
respectively, and

(89) *"(4 =-*, o > oo,
a

with equality only for the functions (6) at the points z:tr.
In particular, for o:1[6 (e:]r, we obtain from (87) the radius of convexity

r":fi-fi of the class TR, i.e. the Corollary with (41--427.
In the general case we equate the "minima" (87-89) with a, i.e. we set

(e0) n(.'i^-9) : no(o2-2)
and

(g1) o-2 : o.
o



The radii of starlikeness and convexity of order alpha of typically real functions 105

First, we consider the case (88). From (90) and (91) we obtain

(92) (l-az)os-2o2-2(3-az)o*12 :0.
For o:oo the polynomial (86) vanishes. It is easy to eliminate o from (92) and
(86). This elimination leads us to the equation (36), four roots of which are real

and lying on the intervals (-1, 0), ?lf», -ltB), (0, 1) and (l/»,l$). Hence

the least positive root q0:0.314... of (36) is the value of the "minimum" (88).

Finally, for 0<s=1 we obtain from (90), (91) and (14) the equation (37) (the

roots of which with respect to 12 are on the intervals (0,ll2), (Ll2,l) and (1, * -))
and the expressions (38) and (39) which yield the radii of the discs where the in-
equalities (a0) hold with the extremal functions (2) and (6). This completes the

proof of Theorem 4.

A simple proof o/'the Corollary. By means of our method in [3], pp. 336-338,
we shall yield an alternate proof of the Corollary. Here from point (c), p. 101 we

continue in the following way: From (60), (46), (47) and (14) we obtain, with the

notation (63),

(e3)

where

(e4) P (ro1 -

m"(z) : aP(rr)
lbl'lo'-2ato* 112 '

4o (2oz + 4cos2 0 - 3) t'o-Zcos 0 (3oa* 8o2 cos2 0 +cos4 0) h

+ o(ot +2(l cosz 0 - 4)o2+ 9 cosa 0- 16 cosz e + n).

For cos0:0 the polynomial (94) is non-negative if o:/6. For o:/A tte
polynomial (9a) is reduced to the polynomial

QQ) t- 4fr fq cosz 0 +9) t3-2 cos 0 (cosa 0 +48 cosz 0 + 108) ro

+ { 6cos2 0 (9 cosz + 68).

The equation Q'(tr)-0 yields the value

(e6)

for which (95) takes

cos g(cosa 0+48 cosz 0+108)

(e5)

t{

(e7)

where

(e8) q (x) -
The polynomial q(x)

(- 1, 0) and (0, 1). On

4l/ 6(4 cosz g + 9)

its rninimum. From (95)

cosz 0

and (96) we obtain

4/ 6(4 cos2 A +9)
4 (cos 0)

x8 + 96x6 + 1656x4 + l896xz -3A24, x- cos x.

has only one pair of opposite roots which lie on the intervals

the other hand, we obtain from (15) for o -16 and from (98).

QQ[)

(ee) q(cos V t{ 011- 16 (8068 - 1787 fr) < 0.

Thus from (97-99) it follows that

(100) QQil 3 0, ,l (/6) = l0l = n-,1,U6),
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where the equality holds only for l0l:n12, i.e. according to (96) for lf :6. p.o*
(100) we conclude that the polynomial (95) is non-negative for these 0, i.e.

(101) QQ) =- o, ,1, ( O = lol = n-{t (/6),

where the equality holds only for lo:6 and l0l:n12. Finally (101), (93), (63), (61)

and (14) yield

(102) m"(z)> O, o :16, *l < t6< l, rlrUO=l0l=.n-{(/6),
where the equality is attained only by the tunction (2) at the points z : ti({6-l/, .

Now we compare (102) with (56) and (59) for o:fr and obtain

m,{reio)4 m"(*.ir) : 0,, : l6-13, -n = 0 = x.

Equality is attained only by the function (2) at the points z:+i(lG-y'5). Hence

for each function f(TR on the circle Irl:{6-{S the inequality @2) holds, with
equality only for the function (2) atthe points z:ti(fr-y'). Since the left-hand

side of @2) is a harmonic function in the closed disc lzl<l/6-l/5, then according
to the minimum principle for harmonic functions, the sharp inequality (42) holds

(without the equality sign) in the open disc lzl= / 6-l/ 5. Hence the radius ofconvexity
of the class IR is the number ( l). This completes the second proof of the Corollary.

Analogously to Theorems 2 and 3 we can obtain from Theorem 4 sharp in-
equalities for the expressions

and
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