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THE RADII OF STARLIKENESS AND CONVEXITY
OF ORDER ALPHA OF TYPICALLY
REAL FUNCTIONS

PAVEL G. TODOROV
Dedicated To My Parents

Let TR denote the class of typically real functions

z
1-2tz+22 du(®)

1

(1) f=f

-1

in the unit disc |z|<1, where () is a probability measure on [—1, 1]. Kirwan [1]

has found that the radius of starlikeness of the class TR is the number }Y2—1, i.e.
for each function f€TR the inequality

z2f'(z2) _
RCT(Z—)— =0

holds in the disc |z|= Y2 -1, with equality only for the function

z(1+2%) _ 2°°.(2n_1)22,,_1

@) f(z) =- == — 2

at the points z=+i(})2 —1).

In this paper we shall find the radii of starlikeness and convexity of an arbitrary
order a,0=a<1, of the class TR. In particular, for a=0 we obtain again the
Kirwan result by a new method (cf. [1] and [3]) and the heretofore unknown radius
of convexity of the class TR reported in [4].

We denote by ry(a), 0=a<1, the radius of starlikeness of order o in TR,
ie. ryx) is the maximum of the numbers r such that the inequality

zf'(z) _
Re @ =q

holds for each function fETR in |z|=r.
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Theorem 1. In the class TR of typically real functions in the unit disc the
radius of starlikeness of order « is obtained from the formulae

[ VoZ 8 — o —
"s(a)=l/ Vo2 +8—a—2

(©) T ers a<1/y
4 r(1/V3) =2-V3 if o=1/V3,
5) r (o) = :Z it 1)3<a<1.

Equality holds only for the following extremal functions:
1) in the case 0=a <1 /V3 for the function (2) at the “critical points” z= Firy().
2) in the case a=1 / /3 for the function (2) at the “critical points” z =i1‘rs(1/ l/§)
and for the Koebe functions
z

© @) =g = 2 (F iz

at the “critical points” z= +r(1V3), respectively.
3) in the case 1/Y3<a=<1 for the Koebe functions (6) at the “critical points”
z =+r(n), respectively.

Proof. By a theorem of Ruscheweyh ([2], Theorem 1la, pp. 19—20), the minimum
of the functional Re [zf'(z)/f(2)] in the class TR at a fixed point z is attained for
functions of the form

" — Hz (l—ﬂ)Z < = = = = =
(7) f(Z)— l—2t12+22+]—‘2f22+22\TR, 0:/1:1, 1 :f1:72:1.

From (7) we obtain
z(1-21,z+4+ 23

® f(2) = (1=2tz+29)(1—2t,2+ 2% ° 1= (1—Wn+ut,.
Hence

© LY = (6. 941, =900 )

where

(10) y(u, 2) == 1—_12—%2_2_—1_—;5-

From (9) it follows that

Reijf,% = F(ty, 2)+ F(ty, 2)— F(z,, 2)

where

an F(u, z) :== Re y(u, 2).
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For a fixed z0, |z|]<1 we write

(12) my(z) = m’in (F(ty, 2)+ F(ty, 2)— F (x4, 2))
where )
(13) L={t,1,L)-1=n=1,=1=1}

From (10) and (11) we obtain for z=re”, 0<r<1, —n=60=n and real
u=t, —1=r=1
o(c—tcosb)

£, 2) = 1?—20tcos 0+ 02—sin20

where

14 a::ch{ln%}:%[%+r), 0= sh[ln%]:—%—(%——r].

By investigating the sign of the derivative (d/d¢)F(t,z), depending on 1,
we conclude that for a fixed z>0, |z|<1, on the interval —1=¢=1 the function
F(t, z) has the following properties:

a) It is strictly increasing if 0=|0|=y(s), where

2 —
(1) cospio) =L 0y~ Z oo,
b) it is strictly decreasing if n—y(s)=|0]=n, and
¢) it is strictly increasing on [—1, %] and strictly decreasing on [f,, 1] if

Y(o)<|0|<n—y(o), where

2 2
(16) y =S80 sint0) -y
o+sin 0| o2 —cos?0
and
6 Vo2—cos?20
17) F(t,, Z)—E-FW.

Thus, from a), b), ¢), (15—17), (12—13) and (7—8) we can draw the following
conclusions.
(1) If O<r<1 and 0=|0|=y(0), then

: 9
A8) () = min(F(r, 2+ (Flte, D= F5,, 2) = F(=1,5) = — 2
with the extremal function f(z)=z/(1+2z)%. From (18) it follows that
(19) my(re'®) = my(r) = ?%, 0<r=<1, 0=0]=y(o),
where the equality holds only for 6=0.
(ii) If O<r<1 and n—y(o)=|0|=n, then
(20) ms(z) - Inllsn ((F(t19 Z.) F(Tsa Z))+F([25 Z)) F(la Z) o—cds@
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with the extremal function f(z)=z/(1—z)?. From (20) it follows that

Y

c+1’

@n mg(re'®) = my(—r) = O<r<1, n—y(o)=|0] =m,

where the equality holds only for |0]=n.
(iii) If 0<r<1 and yY(o)<|0|<mn—y(o) and if we choose in (13)

(22) h=-—1, 1,=1ty, th=1,
then
(23) my(z) = F(—1, 2)+ F(1, 2)— F(t,, 2)
200 6 Vo*:—cos?0
T To2—cos?2@ 20  2¢lsin0] g(0),

where the extremal function is determined by (8) with (22).

For 0<6=m/2 the function on the right-hand side of (23) has a maximum if
l=06<2V2, and it increases if c=2 2. The maximum is obtained on the interval
Y(o)<0<m/2. Hence for Y(o)=0=mn/2 we have

(24) ¢(0) = min [g(w ). g [%)} 1<o=<2V2.
and

(25) ¢(0) = g(¥ (o)), o=2V2,

where

(26) g () = _Q&z%s_—_a)_’ o= 1,
and

()2 oo

Thus for Y(6)<|0|<n—y(c) we obtain from (23—27) and (14—15)

(28) m,(re’®) = my(Lir) = %TQ——EQ—, l=<=o0= V—7—_I—:—2Vi7— .

where the equality holds only for |0|=n/2, and

Q(V0'2.|_8—0') s >l/7+;/ﬁ.

(29) my(re'’) > )

Now we compare the “minima” in (19), (21), (28) and (29). On the circle
|z|]=r we have

(30) ms(z)z%f——%, l<o<2 2-V3<r=<1),
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where the equality holds only for z= +ir,

(31) my(z) = V%_ c=2 (r=2-V3),

where the equality holds only for z==+i(2—}3) and z=t(2—¥3), and
(32) m()=—r, o=2 (0<r<2-Y3)

where the equality holds only for z=+r, respectively.

Finally, if we equate with a (0=a<1) the “minima” (30—32) for ¢=}2,
we obtain the radii (3—S5) of the discs in which the inequalities Re(zf"(2)/f(2))=0,
0O=a<1, hold with the extremal functions (2) and (6), respectively.

This completes the proof of Theorem 1.

In particular, for «=0 we obtain from our general formula (3) the well-known
radius of starlikeness r,:=r,(0)=}2—1 of the class (1) found by Kirwan [1] in a way,
which is, in our opinion, difficult. See also [3] for a simple proof of this Kirwan
theorem by an alternate method.

From (30—32) and (14) we obtain also the following sharp estimates for
Re (zf"(2)/f(2)) in the class TR:

Theorem 2. For each typically real function (1) in the ring 2—V3<r=|z|<1
the inequality
zf’(z) _ 1=6r24r
(33) Re T - i
holds, with equality only for the function (2) at the points z==tir. On the circle
[Z] =2— Vé-a
zf’(2) 1
34 Re =—,
9 CRREE
with equality only for the function (2) at the points z = +i(2—V3) and for the functions
(6) at the points z=+(2—V3). In the disc 0=r=|z|<2—V3 the inequality

zf'(2) _ 1-r
(33) R~ =15

holds, where for r#0 the equality holds only for the functions (6) at the points z = *r.
Theorem 2 yields the following sharp estimates in the class TR:
Theorem 3. For each typically real function (1), we have under the conditions

2—V3=9=r=Y2-1, and —n=0=n

|f("eio)| . r(1—r? (4%
[7Gee®| = W+ o(l—¢)°
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where for r=g the equality holds only for the function (2) with |0|=n/2. Under
the conditions 0<Q§r§2—]/§] and —n=0=m,

|freD | r (1400
[7Ge®| = @+r® o

with equality for r+g only for the functions (6) for 0=0 and |0|=mn, respectively.

Proof. The theorem follows if we use the identity

zf'(z) _ 0
Re CHn r Wln lf(2),
and integrate the inequalities (33—35) with respect to » from ¢=2— V3tor=y2-1
and from ¢=0 to r=2-— V3, respectively.

Now we shall find in TR the radius of convexity of order o, 0=a<1, which
we denote by r.(«). By definition, r(«) is the maximum of the numbers r such that

#"(2) )
V©)

=

Re [1 +
for every function f€TR in |z|=r.

Theorem 4. Let ay=0.314... be the least positive root of the equation

(36) x8—17x*—120x2+12 = 0.
Then for 0=a=ay,, the radius r ) is equal to the least positive root of the equation
37 A+ r*—23+50)r*+(23—50)r2—(1—0a) = 0.

In particular, for a=u,,

_ 2—V3+02 _ .

(38) rc(ao)——W——O.182...—.ro.

For ay=a<l1,

2—13+2

(39) r. (OC) = T .

So for each function f(z)¢TR in the disc |z|=r/(a) the inequality

7)) = _

(40) RC(1+W]=C¥ O0=a<1,
holds with equality only for the following extremal functions:

a) in the case 0=oa<ay for the function (2) at the “critical points” z= Lir(x).

b) in the case a=a, for the function (2) at the “critical points” z=tir ()
and for the Koebe functions (6) at the ““critical points” z = tr/a), respectively.

(c) in the case og<a<1 for the Koebe functions (6) at the “critical points”
z=12r/a), respectively.
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Corollary. For a=0 the radius of convexity r,:=r/0) of the class TR of
typically real functions (1) is

(41) r.=16—15=0213....

Thus for each function f(z)€TR in the disc |z|=V6—V5 the inequality

zf"(2)) _
42) Re[l—i— e )=0

holds with equality only for the function (2) at the “critical points” z=+i(J6—V5).

Proof. 1. According to the same Ruscheweyh theorem ([2], Theorem la, pp.
19—20), the minimum of the functional Re (1+(zf"(2))/f"(z)) in the class TR
is also attained for the functions (7). From (7) we obtain

Q-1 -2t.z+2)(1—2%7.z+ 2%
(1 =2tz + 222 (1 — 21,z + z%)?

(43) 7 (@)=

where we have set

€ 2 2

_ t1+f3+ lh—1h

L bty =t
T. = —— el
2 2 +

(44) T, e,
and

uzcosz—%, O=¢p=m.

Via the logarithmic derivative of (43) we obtain the formula

Zf// (Z)
1@

with the notation (10). From (45) and (11) it follows that

(45) 1+ = 2y(t, 242y (t2, 2=y (1, 2=y (z., 2) =7 (3. 2),

Re [1 +fo—(g)) = 2F(t,, 2)+2F(ty, 2)— F(1, 2 — F(z,, z) — F(Z,, ).

For a fixed z=0, |z|<1, let us note

m,(z) = mIin (2F(ty, 2)+2F(t, 2)— F(1, 2 —F (1., 2)— F(%,, z))

where
I={t,t,0))|-1=t,=t,=1, 0=¢ =n}.

For z=re", —n=0=mn, we obtain from (10) and (11) the representation

b

—Uu

(46) F(u,2) = Re—
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where

(CY)) a:=ch [ln —i—] = (—2——!—2]: o cos 0—igsin 6,

= D=

b:=sh [ln l] = [—l——z] = gcos 0—iosinf
z z
and o, ¢ are given by (14).

Above (see properties a), b) and c) in the proof of Theorem 1) we have studied
the function (46) for real u=t, —1=¢=1 and fixed z=re®. Now we shall examine
the sum
(48) H(uy, Uy, z) 1= F(u, z)+ F(i1, z)

for the complex conjugates u=u,+iu, and #=wu;—iu, with |u|=1 and fixed
z=re", 0<r<)2—-1, —n=0=n. From (46) and (48) we obtain

0*H 0*H b b
(49) —37%’——8—113——21{3(‘1_1‘)34-21{3(‘1_1_‘)3
and hence
0*H 0°H
(50) AT i 0.

Thus from (49) and (50) it follows that for the considered fixed z the sum (48)
is a harmonic function with respect to #; and u, in the disc |u|=1. Therefore
the maximum principle of harmonic functions, applied to H(uy, u,, z) in the disc
lu|=1, says that the sum (48) is maximal on the circle |u|=1. The last condition
for the variables (44) with 0=¢ == is satisfied only for the following three cases:
(51) h=-1, -1=t=1, ¢=m,

(52) =1, —1==1, ¢=0,

(53) h=—-1,1=1 0<¢p<n

Now from the properties a), b) and c) in the proof of Theorem 1 and from
the corresponding cases (51—53) we can draw the following conclusions:

(A) If 0<r<V2—1 and 0=|0|=y(o), then
(54) my(z) = 2F(—1, z)— F(1, z?)

with the extremal function

z
(55) [ = (_117)5
From (54), (10) and (11) it follows that

(56) mc(re"")émc(z>=a%—%= ";2, 0<r<)3—1, 0=10] = ¥ (o),

where the equality holds only for 0=0.
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(B) If 0<r<V2—1 and o—y(0)=|0|=n, then

(57 m.(z) = 2F(1, z)— F(1, z?)
with the extremal function
(58) 1O ==
From (57), (10) and (11) it follows that
(59)
mo(re®) = m, (=)= —2 % _ 972 oY1, n—y() =0 =7,
c c o1 0 0

where the equality holds only for 10|=mn.
(C) If 0<r<y2—1 and yY(o)<|0|<n—y(c), then

(60) m,(z) = 2F(—1, 2)+2F(1, 2)— F(1, z2)— F(e'%, z)— F(e~ %, 2)
= 3F(1, z%)— F(e'%, z)— F(e~ ", z) =: m(@,, z)
for a certain ¢,, 0<@,<n with the extremal function

2 Po . 2‘!’0 Z

(61) f(2) = cos > (1—|— )2+ sin 3 (1_2)2.
From (46) we obtain
: ; 2b(a—ty)
i, —igy 7) = Re—m % _
(62) F(e'%, z)+ F(e ', 2) 2ai+1
where
63) f,=1c0s @y, 0 <q,<m.

For fixed r (0<r<V2—1) and 6 (0<|8|<n) and the corresponding a and b,
determined by (47) and (14), the Moebius transformation

. 2b(a—1)
(64) 0:= a®—2at+1

maps the real axis of the complex 7-plane onto the circle

[bB—2b(laP= 1) _ b
2(Jaf—DIma | 2(jaP—1)|Ima]

(65) o—

of the complex d-plane. From (65) it follows that

(Ib2+2(lal>—1)) Im b| + |b[*
2(jal*~1) lm a|

Thus, from (62—66) with (47) and (14) in mind, we obtain the inequality

(66) Red =

o (302 —sin2 0) |sin O]+ V(g*+sin2 )

29(2—sin26) |sin 6| =40)

(67) F(e', re'®)+ F(e~ ", re) =
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for 0<g,<n, 0<r<}2—1 and 0<|0|<=. Equality is attained for ¢,=n/2 and
|0|=m/2. Finally, from (67), (60) and (46) we obtain the inequality

300

(68) m (o, re”) =
at least on the intervals O<q,<n, O<r<}2—1 and Y(o)<|0|<n—y(c), where
equality is attained for ¢,=n/2 and |0|=m/2.

For 0<0=n/2 and fixed r, O<r<}2—1, the function G(0), determined
by (68) and (67), has the derivative

ey gcos 0K(0)
(©9) G0 = 2sin20(g*—sin*6)? ’

where
(70) K(6) = 160sin3 0 (¢*— 0%sin? 0+ sin* ) — (¢ — 5sin?0) V(% + sin®)°.
The derivative K’(9) of the function (70) is positive for 0<60<n/2 and 0<r<}2—1,

6=>V2, 0>1. Hence for 0=0=n/2 and fixed r (0<r<}2—1) the function (70)
increases from K(0)=—¢"'<0 to

Q) k(%) ==omi@
where
(72) pi(x) = x3—22x2+48x—48, x = o2.

The polynomial p;(x) has only one real root x, which lies on the interval (19, 20).
If 6,=Vx;, then p,(6%)<0 for Y2<o<o, and p1(6*)=0 for o=0;. Thus from
(71—72) and (69) we conclude that for 0<8<mn/2 the function G(0) has a maximum
if Y2<o<o; and it increases if o=0,. Hence for Y(e)=0=nr/2 we have

(73) G(6) = min [G(lp (0)), G(—g—]] , V2<o<o,,

where the equality holds only for 6=y/(o) or 6=n/2. For oc=0,,

74 G(0) = G(¥ ()

where the equality holds only for 0=y (¢). From (68), (67), (15) and (14) we obtain

0 (30> —4) Vo2 +8—(30*+98)

79) G((@) = o
and

i 0(c2—6)
9 o(3) -6
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From (75) and (76) it follows that

n 0(62—2)(36%2—4) ) 02+ 8— p,(c*
7 G(‘p("))—G(?] S 8ag(a)2l/—2) 2L
_ 2p,(0?)
0(0*—2) (0 (6>~ 2)(36*—4) V6> + 8+ ps(09)
where
Pa(x) = 3x3+2x2—48x+32, x =o?
and

ps (%) = 3x*—64x3+228x2—224x+64, x = o

The polynomial py(x) has three real roots which lie on the intervals (-5, —4), (0, 1)
and (3, 4), respectively. Let x, denote the roots on (3, 4), and 0,=Vx,. Then
po(6?)=0 for Y2<o=0,. Thus from the first equation (77) the inequality

(78) G()(0) =G [%] V2<0 = o,

follows. The polynomial ps(x) has four real roots lying on the intervals (1/2, 3/4),
(3/4, 1), (2, 3) and (17, 18), respectively. Let x; denote the root in (17, 18). Then
ps(x)=0 for x,<x=x,; and py(x)>0 for x=>x;. Therefore, if 03=Vx,, we have
po(63)=0 for o,<o=0,; and p4(6®)>0 for 6=0;. Thus from the second equation
(77) we get the inequalities

(19) G @)=6(Z), s<o=0,
with equality only for ¢=0;, and
(80) G(Y()<G (%] , 0=>0,.

Finally, for O<q@o<m, O<r< ¥2—1 and y(o)<|0]<m—y(c) we obtain from
(60), (68), (73—76) and (78—80)

0y = m(Z, 1ir] = 2229
(81) (oo re = m(E 1) = L9793 <0,

with equality only for ¢,=|0|=n/2, and
0(362—4) Vo2 +8—(30*+8)
8o0

II. Now we compare the “minima” in (56), (59), (81) and (82). First, for
o>V2 (0=>1) we obtain from (75)

(82) m(p,, re?) = , 0>0;.

_ 4(oc—1) py(0)
c0(c (362 —4) Va2 +8+30*+8(c—1)?)

G @) -2

where
pa(0) = 36*—60%+202—60+2.
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The polynomial p,(¢) has only two real roots which lie on the intervals (0, 1) and

(2, V6). Hence
o—2
(33) G(¥ (o)) > —
at least for 6=}6. Thus it follows from (55—56), (58—61), (75), (81—82) and (83)
that on the circle |z|=r, O<r<}2-1,

(84) mc(z)gmin[g(a2 6) o= 2], o=12 (o=1).
(6*=2)" ¢
Equality is attained only by the corresponding extremal functions (2) and (6) at the

“critical points” z=x4ir and z=xr, respectively. Second, for ¢=}2, g>1
we have by (84)

0—2 0(@®—6) _ Do(0)
(85) 0 6(6®=2)  eo(6°—2)
where
(86) Do(06) = 263—502—40+6.

The polynomial py(s) has three real roots lying on the intervals (—2, —1), (0, 1)
and (V/6, 3). Let o, denote the root in (V6, 3). Then py(6)=0 for V2<o=a,
and py(6)>0 for o>0,. Therefore it follows from (84—85) and (14) that on the
circle |z|=r=0—¢ (0<r<}2—1) we have the inequalities

_ 0(®=6)
(87) m(2) = Sy V2=o=a,
with equality only for the function (2) at the points z = =+ir,
- 00(05—6) _ 0o—2 _ ]/ )
(88) mc (Z) - 0_0(0_3_2) - % s QO - 0-0 19

with equality only for the functions (2) and (6) at the points z=+ir and z=+r,
respectively, and
(89) m.(2) = c_r_;_%, g = 0y,
with equality only for the functions (6) at the points z = +r.

In particular, for 6=V6 (e=V5) we obtain from (87) the radius of convexity
r.=V6—V5 of the class TR, i.e. the Corollary with (41—42).

In the general case we equate the “minima” (87—89) with «, i.e. we set

0(c®*=6)
0 @2 "
and
©1) =2 _,
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First, we consider the case (88). From (90) and (91) we obtain

92) (1—a?)e3—262—-2(3—0?)o+12 =0.

For o=, the polynomial (86) vanishes. It is easy to eliminate ¢ from (92) and
(86). This elimination leads us to the equation (36), four roots of which are real
and lying on the intervals (—1,0), (—V22, —¥23), (0, 1) and (V22,V23). Hence
the least positive root «,=0.314... of (36) is the value of the “minimum” (88).
Finally, for 0=0<1 we obtain from (90), (91) and (14) the equation (37) (the
roots of which with respect to 72 are on the intervals (0, 1/2), (1/2, 1) and (1, + <))
and the expressions (38) and (39) which yield the radii of the discs where the in-
equalities (40) hold with the extremal functions (2) and (6). This completes the
proof of Theorem 4.

A simple proof of the Corollary. By means of our method in [3], pp. 336—338,
we shall yield an alternate proof of the Corollary. Here from point (c), p. 101 we
continue in the following way: From (60), (46), (47) and (14) we obtain, with the
notation (63),

0P (1)

Ib|2|la®—2at,+1]*’

3) m.(z) =
where
(94) P(ty) = 40 (202 +4 cos?0—3)15—2 cos 0 (36 + 802 cos?+cos* O) 1,
+0(a*+2(7 cos® 0—4)6>+9 cos* —16 cos? 0 +12).

For cos =0 the polynomial (94) is non-negative if o= V6. For =16 the
polynomial (94) is reduced to the polynomial
(95) O (1) == 4V6 (4 cos?0+9) 2—2 cos 0 (cos* 0 +48 cos20+108) 1,

+V6cos20(9 cos2+68).
The equation Q’(f5)=0 yields the value
cos 0 (cos*6+48 cos?6+108)
4Y6(4cos?0+9)

for which (95) takes its minimum. From (95) and (96) we obtain

(%6) iy =

cos20

97 ) = ——— cos 0

oD 0D =~ e eomors) 17

where

(98) q(x) = x®+96x5+ 1656x*+1896x2—3024, x = cos x.

The polynomial g(x) has only one pair of opposite roots which lie on the intervals
(=1, 0) and (0, 1). On the other hand, we obtain from (15) for o= V6 and from (98).

(99) q(cos ¥ (1/6)) = 16(8068 —1787Y21) < 0.
Thus from (97—99) it follows that
(100) Q) =0, y(/6)<|0]<n—y(/6),
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where the equality holds only for |8]=m/2, i.e. according to (96) for f3=0. From
(100) we conclude that the polynomial (95) is non-negative for these 6, i.e.

(101) Q(t) =0, Y(V6) <[] <rn—y (V6),
where the equality holds only for 7,=0 and |0|=w/2. Finally (101), (93), (63), (61)
and (14) yield

(1) m()=0, o=V6 —l=t,<1, Y6 =<0 <r—y(6),

where the equality is attained only by the function (2) at the points z = +i(}6—5).
Now we compare (102) with (56) and (59) for 6=}/6 and obtain
m.(re®)=m, (£ir)=0, r=)Y6—V5 —n<0=n.

Equality is attained only by the function (2) at the points z= = i(}6—}5). Hence
for each function f€TR on the circle lz|=V6—V5 the inequality (42) holds, with
equality only for the function (2) at the points z= = i()/6—35). Since the left-hand
side of (42) is a harmonic function in the closed disc ]z|§l/3—‘/§, then according
to the minimum principle for harmonic functions, the sharp inequality (42) holds
(without the equality sign) in the open disc |z|<}6—}5. Hence the radius of convexity
of the class TR is the number (41). This completes the second proof of the Corollary.

Analogously to Theorems 2 and 3 we can obtain from Theorem 4 sharp in-
equalities for the expressions

21" (2)
Re [1 + —f’(z) )
and
S’ (re?)

17 (0e”)
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