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TOPOLOGICALLY, QUASICONFORMALLY
OR LIPSCHITZ LOCALLY FLAT EMBEDDINGS
IN CODIMENSION ONE

JOUNI LUUKKAINEN

1. Introduction

We consider locally C-flat embeddings in codimension one in three categories C :
TOP (continuous maps), LQC (locally quasiconformal maps), and LIP (locally
Lipschitz maps). The latter two categories are our main subjects; the first one is
in fact only auxiliary. In [TV,], [V,], [LT] the category LQC is extended to a
category LQS of locally quasisymmetric maps: LQS manifolds and their LQS
homeomorphisms are the same thing as LQC manifolds and their LQC homeomorp-
hisms, but LQS embeddings are defined in every codimension. We consider LQS
or LIP embeddings in codimension one (which need not be locally TOP flat),
too. We refer to Section 2 for terminology. The prefix TOP will usually be omitted.

Sullivan [S] proved recently for n>4 the existence and Hauptvermutung of
C-structures, C€{LQC, LIP}, on every n-manifold without boundary. Tukia and
Véisild [TV;] then extended for n>4, 5 these results to all n-manifolds which may
have a boundary. In the LQC case they made use of the extension of a quasi-
conformal selfhomeomorphism of R" to one of R"'', which they proved in [TV,]
by the aid of [S].

In Section 3 we apply the basic result of [TV;] on approximation of homeo-
morphisms by C-homeomorphisms, C¢€{LQC, LIP}, to generalize it so as to
give it the following form: The given homeomorphism f is supposed to carry,
either homeomorphically or C-homeomorphically, a given closed locally C-flat
submanifold M of codimension one onto a submanifold of the same kind, and the
approximating C-homeomorphism is claimed either to carry M onto fM or to
coincide with f on M, respectively.

In Section 4 we prove, in a relative form, for all C¢{TOP, LQC, LIP} and n=4
that if two locally C-flat embeddings of an (n—1)-dimensional C-manifold into
an n-dimensional C-manifold without boundary are sufficiently close to a given
closed embedding, then one of them is carried onto the other by a small ambient
isotopy consisting of C-homeomorphisms. For C=TOP this absolute form is
due to Craggs [Cr] if n=3 and to Price and Seebeck [PS] if n=5. We prove the

doi:10.5186/aasfm.1983.0819


koskenoj
Typewritten text
doi:10.5186/aasfm.1983.0819


108 JouNl LUUKKAINEN

relative form by applying [Cr] and [PS]. For C =TOP we use the TOP result and
Theorem 3.1.

Section 5 contains our main theorem: If Ce{TOP, LQC, LIP} and n:=4,
every embedding of an (n—1)-dimensional C-manifold into an n-dimensional
C-manifold without boundary can be relatively approximated by locally C-flat
embeddings. The absolute case for C =TOP, n=5 is a recent deep result of Ancel
and Cannon [AC]. The relative case follows from this result and Theorem 4.1. For
C =TOP, n=3 the theorem is due to Bing. For C #TOP we apply the TOP case
and results of Section 3. Our theorem has also an analogue for immersions.

In Section 6 we prove that if either YCXCR"™! with ¥ open in R"™! or
YCXCR™" with Y openin R%™' and if n4, then every embedding f: X—~R"
which is quasisymmetric or bilipschitz, respectively, can be approximated on ¥ by
locally LIP flat embeddings which can be extended by fIX\ Y to quasisymmetric
embeddings or bilipschitz embeddings, respectively, of X. The proof is based on
Theorem 5.3 on extending locally LIP flat approximations. An analogue of this
result is proved in [LT]. There the dimension pair (n—1, n), n=4, is replaced by
a pair (n,q) such that either g=n=1 or 2=n=¢g=3 or n=2, ¢g=n+3 and
PL (piecewise linear) embeddings are used in place of locally LIP flat embeddings.

In Section 7 we prove, using theorems of the two previous sections, that if
Ce{LQS, LIP} and n>4, then every embedding (or immersion, respectively)
of an (n—1)-dimensional C-manifold into an n-dimensional C-manifold without
boundary can be relatively approximated by C-embeddings (or C-immersions,
respectively). This was proved in [LT, Theorem 4.4] for the dimension pairs (n, q)
of the previous paragraph.

In Section 8 we show that if M is an n-manifold, n=4, and if C¢{LQC, LIP},
every C-manifold structure on the boundary dM of M can be extended over M.
This implies that every manifold carries a C-structure if every 4-manifold carries
a C-structure.

In the last section we show that for every n, every LQC selfhomeomorphism
of R" can be extended to an LQC selfhomeomorphism of R”*'.

One of our starting-points was the paper [G,] by Gauld, who applied [S].
We give both of his two theorems either as a corollary (3.2.2) or with a short proof
9.4).

Relatively little is known about the results of Sections 3, 4, and 5 for LQC or
LIP in codimensions =2. The theorems of Section 3 are open in these codimensions;
see, however, [GV] and [G,] (in [G;, Theorems 1 and 2] one can omit the assumption
n=5 using LIP straightening of TOP handles instead of PL straightening). In
codimension two the equivalence and approximation theorems of Sections 4 and
5 do not hold as shown by the following facts: There are knotted locally PL flat
embeddings f: S""?—~R" (n=3) arbitrarily close to id, and there are embeddings
[ S"X 8™ 1> R¥™+? (n=3) that cannot be approximated by PL embeddings or
locally flat embeddings [M, Theorem 5.3] (here S'=4I'*"). However, by [Ve] every
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embedding of I" into a PL (n+2)-manifold can be approximated by locally flat
PL embeddings. In codimensions =3 the results of Sections 4 and 5 are (essentially)
known for TOP and PL (cf. [Mi], [Ma], [E]) but open for LQC and LIP. However,
the author has partial results. The LQS and LIP approximation theorems of Sec-
tion 7 are open in codimension two even in the absolute case.

One has considered C-embeddings and locally C-flat embeddings, C¢€{LQS,
LIP}, separately. This is in order because of the following facts: In codimensions
0, 1,2 there are LIP embeddings which are not locally flat [LuV, Examples 3.10
(1) and (5)] and others which are locally flat but not locally LQC flat [T,, Section 17].
It is known that LIP embeddings in codimensions =3 are locally flat [LT, Theorem
1.14] but not whether they are locally LIP flat or at least locally LQC flat. In every
codimension there are LQS embeddings which are not locally flat [V;, Theorem
6.3] and others which are locally flat but not locally LQC flat [V3, Remark 6.4.3].

Acknowledgements. 1 thank Robert Craggs and Thomas Price for giving me
some details of certain ideas due to [Cr] and [PS], respectively.

2. Terminology and preliminary results

In this section we let X and Y denote metric spaces.

The letter n denotes an integer which is positive except when n is explicitly
stated to be only non-negative. We identify R"~' with {x€R"|x,=0}. We set
R ={x€R"x,=0}, and for n=0 and r=>0, I"=[-1,1]", I"(r)=rl", J"=(—1, 1)",
J"(F)=r]", B"(x,r)={yeR": |[x—y|<r} if x€R", B"(r)=B"(0,r), B"(r)=clB"(r),
B"=B"(1), S"=0B"*'. If ACR" (and int A#0), we write A, =ANR". The
standard orthonormal basis of R" is written as ey, ..., ¢,. We set I=[0, 1] and
N={l,2,...}. We let id denote an inclusion map. Let C.(X)={f]f: X—~(0, )
continuous}.

All manifolds are separable metric. Every metric, except the Euclidean one,
is denoted by d. In a metric space, d(A4, B) denotes the distance between two sets
A, B, with d({x}, B)=d(x, B), and d(4) denotes the diameter of A.

Suppose that f, g: X—~Y are continuous maps. We write

d(f, g) = sup {d(f(x), g(x))| x€X}.

If e€C,(X), welet U(f,¢) denote the set of all such g that d(f(x), g(x))<&(x)
for each x€X. For some facts we need about these e-neighborhoods U(Y, ),
we refer to [LT, 1.6].

If AcX, we let “near 4 mean “on an open neighborhood of 4.

An isotopy H of X onto Y is a continuous map H:XXI—Y such that for
ecach t€l the map H,:X-Y, x—H(x,t), is a homeomorphism. As known,
there are other definitions of an isotopy of X onto Y, equivalent to this one if
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X and Y are locally compact. If AcX and H,|A=HyA for each ¢, we say
that H is rel 4. If e€C,(X) and H,€U(H,,¢) for each ¢, we say that H is
an e-isotopy. If X=Y and H,=id, we say that H is an ambient isotopy of X.
If A4,e are as above, the e-neighborhood of A4 in X is the set N(4, &)=
{x€X|3y€4, d(x, y)<e(y)}. If H is an ambient e-isotopy of X rel XN\ N(4, ¢),
we say that the homeomorphism H;: X—~X is an e-push of (X, 4). The combina-
tion of two isotopies G and H of X onto Y with H,=G, is the isotopy K of
X onto Y defined by K,=G,, if 0=r=1/2 and by K,=H,_, if 12=t=1.
Given an isotopy G of X onto Y and an ambient isotopy H of Y, the isotopy
HxG of X onto Y is defined by (H*G),=G,, if 0=¢t=1/2 and by (H%G),=
Hy 4Gy if 12=t=1; H%G is ambient if and only if G is ambient.

We will often need the fact that if UcX is open and f:X-Y, g: U~Y
are embeddings such that d(f(x), g(x))=d(f(x), fF[X\U])/2 for each x€U, then
h=gu(f|X\U): X—Y is an embedding. This follows from

FAU@, FO) = d(hG), h») = 2-d(/(, F)) for x€U, yeX\U.

An immersion f: X—Y isa continuous map which embeds some neighborhood
of each point of X.
An embedding f: XY is called (L-) bilipschitz if, for some L=1,

d(x, y)/L =d(f(x), f(»)) = Ld(x,y) for all x, ycX.

If f is only a function satisfying the right inequality, f is called Lipschitz. A LIP
map f: X—Y is one which is locally Lipschitz. Every PL map between polyhedra
in Euclidean spaces is LIP. An embedding f: X—Y is called (5-) quasisymmetric
if, for some homeomorphism #: R, ~R',,

d(f(a), fX)A(f(b), f(x) =n(d(a, x)/d(b, x)) for a,b,xcX, b= x.

Like bilipschitz embeddings, quasisymmetric embeddings form a category; cf.
[TV.]. Every bilipschitz embedding is quasisymmetric. An embedding f: XY
is said to be a LIP embedding or an LQS embedding if f is, locally, bilipschitz or
quasisymmetric, respectively. Every LIP or LQS embedding of a compact space
is bilipschitz or quasisymmetric [TV, Theorem 2.23], respectively. For increasing
embeddings f: A—-R', where ACR' is an interval, our definition of quasisym-
metry is equivalent to the one in [LV,, II. 7.1]. Hence, by [LV,, II, Lemma 7.1
and (7.2)], every quasisymmetric homeomorphism £ : [0, 1)~[0, 1) can be extended
to a quasisymmetric homeomorphism F:J'—-J! by reflection, i.e., if we set
F(x)=—f(—x) for x<0.

Let n=2, let ACR" be a set such that 4cclint 4, and let f: A~R" be
an embedding. If thereis K=1 such that the restrictions of f to all components of
int 4 are K-quasiconformal in the sense of [V,], f is called (K-) quasiconformal.
If each point of 4 has an open neighborhood in 4 on which f is quasiconformal,
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f is said to be LQC. The sets A and the LQC embeddings f: 4A—~R" (observe
that fAcclint f4) form a category. We will freely use Theorem 35.1 of [V;] about
the piecewise construction of quasiconformal embeddings. In particular, an LQC
embedding of a compact set is quasiconformal. Further, if p: R"—~R" is the ortho-
gonal reflection in R"~!, we can extend every open quasiconformal (or LQC)
embedding f: U—~R", where UCR" is open, to a quasiconformal (or LQC,
respectively) embedding F: UupU—~R" by reflection, i.e., by setting F=pfp
on pU; cf. [V,, Theorem 35.2]. It follows from this and [V, Theorems 2.3 and 2.4]
that if UCR", is open, an open embedding f: U—~R" is LQC if and only if f is
LQS. For embeddings f: A—-R', where ACR!, we let “quasiconformal” and
“LQC” mean “quasisymmetric”’ and “LQS”, respectively. Also id: R°~R° is
called LQC. It follows that if n=1, UCR", is open, and f:U-—R" 1is an open
LQC embedding, flUnR"': UnR"'~R"" is LQC.

Let C denote either LQS, LQC, or LIP. An atlas on an n-manifold, n=0, is
called a C-atlas if its coordinate changes are C-homeomorphisms (cf. [LT, 1.3]).
A C-structure is a maximal C-atlas, and a manifold equipped with a C-structure
is called a C-manifold. Observe that LQC manifolds are the same as LQS manifolds.
However, we prefer to use the term LQC rather than LQS whenever possible. We
define C-embeddings of C-manifolds (of the same dimension if C =LQC) by using
charts. A C-immersion is a continuous map which is locally a C-embedding. The
restrictions of the charts of the C-structure &/ of a C-manifold M to the boundary
OM of M form a C-atlas &/|0M on OM. In fact, &|0M is a C-structure, because
by [TV,, Theorem 4.10 and Remark 4.11] every C-embedding f: ON—~dQ, where
N, Q are n-dimensional C-manifolds, can be extended to a C-embedding of a neigh-
borhood of ON. If M,Q are C-manifolds (of the same dimension in the case
C=LQC), M is asubset of Q, and the inclusion M —~Q is a C-embedding, then
M is called a C-submanifold of Q.

Let Ce{TOP,LQS,LQC, LIP} and let Q be an n-dimensional C-manifold.
Every discrete subspace of Q is defined to be a locally C-flat 0-submanifold of Q.
For 1=k=n, we want every locally C-flat k-submanifold of Q to meet dQ trans-
versally. For this purpose we introduce the notation R%* ={x€R" |x;=...=x,_,=0,
X,-1=0} for k=2 and R} ={x€R" |x;=...=x,_,=0, x,67}. Wesay that a subset
N of Q is a locally C-flat k-submanifold of Q (k=1) if for each point x€N
there are an open neighborhood U of x in Q and an open C-embedding h:U—R".
such that H{UNN]=hUNR"%%. Since R%* for k=2 is PL homeomorphic to R%,
it is easy to see that N is then a C-manifold in a natural way (a C-submanifold of
QO except if C=LQC and ks=n). Clearly NndQ is a locally C-flat (k—1)-sub-
manifold of dQ and of dN. Let M be a k-dimensional C-manifold and f: M—~Q
an embedding. If k=0, we call f locally C-flat. For k=1, we say that f is
locally C-flat if for each x€M there are an open neighborhood UcM of x,
an open subset ¥ of R%, a C-homeomorphism h:U-~VnR%Y, and an open
C-embedding g: V—~Q such that glhU=fh~1. Then fM is a locally C-flat sub-



112 JOUNI LUUKKAINEN

manifold of Q and f gives a C-homeomorphism M —fM. Conversely, if fM
is a locally C-flat submanifold of Q and f gives a C-homeomorphism M —fM,
it is easy to see that f is locally C-flat. An immersion f: M—Q is said to be
locally C-flat if it is locally a locally C-flat embedding. We need the easily proved
fact that if M, Q are C-manifolds, f: M—Q is a locally C-flat embedding, and
N is a locally C-flat submanifold of M, then f|N is locally C-flat, provided that
either f7190=0 or f~'9Q=0M. It is useful in this paper to have the concept
of local LQS flatness, too, though it is equivalent to local LQC flatness.

Local PL flatness is defined in an analogous way. We need the fact that if
A is a closed subset of a PL manifold M and UcCM is a neighborhood of A,
there is a closed neighborhood P of A4 such that PcU and P is a locally PL
flat PL submanifold of M. To construct such a P, choose a sufficiently fine trian-
gulation K of M, let N(4,K) denote the union of all (closed) simplexes of K
which meet 4, and set P=N(N(4, K), K”), where K” is the second barycentric
subdivision of K; cf. [H, pp. 65, 67], [RS, pp. 32—35], [Ru, p. 20]. We also need the
fact that a PL n-ball B in R" is locally PL flat if BAR"~' is either empty [RS,
Corollary 3.13] or a PL (n—1)-ball [H, Lemma 2.14].

The following lemma is needed in 3.1.

2.1.Lemma. Let I;=Ile;CR? j=1,2,3, let T=0VIl,Vl;, and let [:T-~T
be a homeomorphism.

(a) If fliv1; is quasisymmetric for all i, j, f is quasisymmetric.

(b) If flLVly and f|I;Ul; are quasisymmetric, f is quasisymmetric.

(¢) If flI, is quasisymmetric, there is ‘a quasisymmetric homeomorphism
F: T—T such that F=f on I;ule,, es} and F is PL near {e,, e3}.

@) If flLul, is quasisymmetric, there is a quasisymmetric homeomorphism
F:T~T such that F=f on I,ul,u{e;} and F is PL near es.

Proof. We first observe that if f|I;ul, is #n-quasisymmetric and H =n(1)
(=1), then, since f(0)=0, |f(x)|=H|f(x,)] and, hence, |[f(x;)—f(xz)|=
H | f(xy)— f(x3)] whenever x;€I,\0, |x;|=|x,|. By the aid of this fact it is easy to
prove (a) and reduce (b) to (a) (we do not need (b)). To prove (c), we first extend
fllyu{es, es} to a homeomorphism Fy: T—~T by setting Fo(te;)=|f(te))|f(e;)
for t€I, j=1,2,3. By the reflection principle and (a), F, is quasisymmetric. The
existence of F now easily follows from the fact ([LV;, p. 13]) that every increasing
quasisymmetric homeomorphism ¢:7/—~I can be extended to a quasisymmetric
homeomorphism ¢’: 2I—-2I which is PL near 2. The proof of (d) is similar. O



Topologically, quasiconformally or Lipschitz locally flat embeddings in codimension one 113

3. LQC or LIP approximation of homeomorphisms

Consider the approximation result which is contained in [TV;, Theorem 4.8]
and which generalizes [TV,, Theorem 4.4]. A slight modification of [TV;, Remark
4.9] (where s; should have been chosen so that g'(s))#0) implies that this result
also holds for n=1. Moreover, the condition “f|0M is a C-embedding” can be
replaced, as the proof shows, by the more general condition “‘f|0M is a C-embedding
near BnOM™. In this section we apply this theorem to prove the more general
Theorems 3.1 and 3.3, whose special case of empty M; and M, itis. In the proof
of 3.3 we also use 4.1.

3.1. Theorem. Let Cc{LQC, LIP}, let Qy, Q; be n-dimensional C-manifolds,
let A, BcQ, be closed and B'CQ, a neighborhood of B, let M; be a closed
locally C-flat (n—1)-submanifold of Q;, i=1,2, such that (M\A)N0Q,=
OMN\A, let f:Q,~Q, be a homeomorphism such that f is a C-embedding near
A and fMy;=M,, andlet e€C_ (Q,).

(@) Provided n=4,5,6, there is an e-isotopy H of Q, onto Q, such that

(1) Ho=/,

(2) H,=f for each tcl near A and on OQ\\B’,

(3) H.M,=M, for each t€l,

4) H, is a C-embedding near AUB.

(b) If Xc{0My,00,, My} and if f|X is a C-embedding near BnX, then
(a) is also true for n=6, and H can be chosen to be rel X.

(c) Suppose that f|\X is a C-embedding near BnX for each X€{0Qy, M,}.
If C=LQC and n=2, suppose in addition that fl00,0M; is LQS near 0Min
(B\A). Then (a)is also true for n=>5 or 6, and H can be chosen to be rel 0Q, VM.

Proof. Note that f|0M, is necessarily a C-embedding near BndM; in (b)
and (c). As in the proof of [TV;, Theorem 4.4], the general case can be reduced to
the special case where B is compact and either (Q;, M;)=(Q,, M;)E{(RY, 0),
(RL, 0), (R, {0} if n=1 or, if n=2, Q,, Q, are open subsets of R’ and M=
Q:nLy, i=1,2, where Ly=R"?X{0}X R, CR". For n=1, the case (Q;, M;)=
(R, 0), i=1,2, is proved in [TV, Remark 4.9]; the remaining cases can be proved
similarly.

Let now n=2. To prove the special case, we may additionally assume that
B’ is compact and Q; connected. Choose an open neighborhood 4" of 4 such
that f|4’ is a C-embedding. Let Q/=0;n (R"*XjR}XRY}), j=—1,1. Then
0,=0'00;" and Q'O '=M,. Itis easy to see that fQ! is either Q) or Q;*.
Hence we may assume that fQ{=0Q{, j=—1,1. Let L;=R"*XjR} X{0}CR%,
Jj=—1,1. Then f[0:nL;J=0Q,nL;. Note that there is a PL homeomorphism of
R"*XjR% X R. onto R". which is the identity on L;, j=—1, 1.

By Theorem 4.8 of [TV;] and its proof, for all j=—1,0,1 and 0=0 there
is a d-isotopy G’ of Q,nL; onto Q,nL; with the following properties: Gj=
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fl0inL;, G’ is rel (O;nL)\D for some compact neighborhood D (independent
of j) of B\A" in intyg B"\4, and G is a C-embedding near BNL;; G;=
G’=G;* on M, foreach t€1I; G’ is rel M, whenever f|0M; is a C-embedding
near BndM,, and finally, G’ is rel XnL; whenever X€{0Q,, M;} and f|X
is a C-embedding near BnX. In the part (a) we needed n=5, 6, in the part (b)
n#5. For j=—1,1 define an isotopy K/=G°UG’ of dQ{=0;n(L,UL;) onto
004. Then Kj is a C-embedding near BndQj if (C,n)=(LQC,2). To obtain
this claim for (C,n)=(LQC,2), too, additional care is needed. We may assume
that {0}=0M;cB\A4. The part (c) is clear, since K{=f|0Q{ is LQS near 0
by our particular assumption. In the part (a), [TV;, Remark 4.9] shows that the
isotopies G', i=—1,0,1, can be chosen in such a way that G{ is PL
near 0, in which case the claim holds. Consider the subcase of (b) where f|M,
is LQS near BnM, (implying Gi=f|M;). We may assume that GiuGi! is PL
near 0. Hence, modifying G'UG™! by combining it with a new isotopy, we may
assume by 2.1 (¢) that GIuGIUG' is LQS near 0, whence the claim. Finally,
the treatment of the subcase of (b) where f|0Q; is LQS near BndQ, is similar;
we now use 2.1(d).

Again by Theorem 4.8 of [TV;] and its proof, if the above J is sufficiently
small, for each j=—1, 1 there is an (¢|Qj)-isotopy H’ of QJ onto @} which
extends K’ such that Hj=f|Q], Hi=f for each t€I near AnQf and on Q{\B’,
and HJ isa C-embedding near BnQf. Then H=H'UH ! is the desired isotopy. (]

3.2. Remarks. 1. In the case n=1, Theorem 3.1 also holds if we omit the
assumption (M \A)NOQ;=0M\A (=0). In fact, the isotopy H given by 3.1
with M, replaced by M\9Q; is then the desired isotopy, since it is rel 00, UM, .

2. The following special case of 3.1 is [G,, Theorem 1]: If C€{LQC, LIP},
n#4,5, and M,, M, are compact locally C-flat (n—1)-submanifolds of S" without
boundary such that (S", M;) is homeomorphic to (S”, M,), then (S", M;) is
C-homeomorphic to (S”, M,).

In the case dM;C A, the next theorem also follows from 3.1.

3.3. Theorem. Let C, Q;, A, B,B’, M;, f, ¢ be as in 3.1 but such that M;C
AUB and that the assumption (M;\A)N0Q,=0M\A is replaced by the assumption
M\ AcCint Q;.

(a) The part (a) of 3.1 holds with (3) replaced by the condition H M,=M,.

(b) If Xe€{0M,, M} and if f|X is a C-embedding, then (a) is also true for
n=6, and H can be chosen such that H{|X =fX.

(c) If fl0Q, is a C-embedding near Bn0Q;, then (b) with X =M, is also
true for n=>5 or 6, and H can be chosen to be rel 00, in (a) and (b).

Proof. Choose open sets A4, A;, B;CQ; such that AcA4,cA,C4,, f is
a C-embedding near A, BCBICECintQ1 B, and f|0Q, is a C-embedding near
B,ndQ; in (c). Then N=f[B\4;]nintQ, is a neighborhood of f[M;\4,]
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in Q,. Choose n€C.(Q,) with U(idg ,n)oU (f,nf)cU(f,e). Then choose
1E€C (Q1), ni=nf, such that 6=n,|M; is the function given by 4.1 with the substi-
tution C—C, n—n, MM,, Q—Qy, A, B—~M,, U—~A,nM,, ff|M;, N—N,
e—n|N. By [TV, Theorem 4.8] there is an n;-isotopy G of @, onto Q, rel 4,0
(Q\B’) such that Gy=f, G,|4,UB,; is a C-embedding, and G is rel 90, in (c).
Then f,=G,|M; is a locally C-flat embedding in U(f|M,,d) with fi=f on
A,AM,. Again by [TV,, Theorem 4.8], there is a C-homeomorphism f5: M;—~M,
in U(f|M,,d) such that f;=f on 4,nM; and that fo[X=f|X whenever
Xe{dM,, M} and f|X is a C-embedding. Then f; islocally C-flat as an embedding
into Q,. Hence, by the definition of §, there is an ambient #-isotopy K of O,
rel O,\N such that K; is a C-homeomorphism and K;fi=f;. It follows that
H=K«G is the desired isotopy. [

3.4. Remark. For n=2, the modification of 3.3 holds where the assumption
M \Adcint Q; and the assertion (c) are omitted and where Hy[0M;=f|0M;.
This result can be proved as 3.3 by the aid of 4.2.

3.5. Example. For every C¢{LQC, LIP} and for every n=1, each of the
parts (), (b), and (c) of 3.1 and of 3.3 is false without the assumption that M; is
closed in Q;. We show this by constructing a locally LIP flat (n— 1)-submanifold
M of R" without boundary and a homeomorphism f: R"—~R" which is a LIP
embedding near M such that fM is not the image of M under any LQC homeo-
morphism h: R"—~R". Suppose first n=2. We modify [V,;, Example 5.11]. Let
M=R""1\0. Set ¢(t)=tsin(l/t) for t=0 and ¢(0)=0, and define f(x,?)=
(x, t+o(|x])) for x€R"', t€R'. If now h: R"—>R" were an LQC homeomorphism
such that AM=fM, then hR"~'=jfR"-', which is impossible, since no neigh-
borhood of the origin in fR"~! is of bounded turning; cf. [TV,, Theorem 2.11].
Consider n=1. We let M ={+1/j|jéN} and define f(x)=x* for x=0 and
f(x)=x for x=<0. Suppose that there is an LQS homeomorphism h: R'—~R!
such that hM=fM. We may assume that h is increasing. Then h|M=f|M,
which is impossible, since f|M is not locally quasisymmetric at the origin.

4, Equivalence of close locally C-flat embeddings

In this section we prove the following two theorems. For a discussion on them,
see 4.3.

4.1. Theorem. Let C¢{TOP,LQC,LIP} and n#4, let M be an (n—1)-
and Q an n-dimensional C-manifold, let ACM be closed, BCM a neighborhood
of A, and UCM open, let f: M—~Q be an embedding with f[A\U]cint Q,
let NCQ be a neighborhood of flA\U], and let e¢€C.(N). If C#TOP and
n=2, suppose that f[A\U] is closed in Q. Then there is 6c¢C.(M) with the
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following property: If fi, fo: M—~Q are locally C-flat embeddings such that
d(f;(x), f(x))<b(x) for each x€B, i=1,2, and f|U=/f|U, there is an ambient
isotopy H of Q tel QNN such that d(H,(x), x)<&(x) for all x€N and t€l,
H, is a C-homeomorphism for each t€l, and H,fi=f, on N(4,}F).

42. Theorem. For n=3, Theorem 4.1 also holds with the following modi-
fications: 1) The assumption f[ANU]cint Q is replaced by the following assumption.
Let TCM be an open neighborhood of ANU. Suppose that Tnf~0Q is an
(n—2)-submanifold of 0T whenever either n=2 or C=TOP,n=3 and that
Tnf900=0T whenever C #TOP, n=3. 2) The embeddings f,f, are assumed
to have the additional property that either T f;"'00=Tn 700, i =1, 2, whenever
n=2 or Tnf{00=Tnf;'0Q whenever n=1. 3) Only H, is claimed to be a
C-homeomorphism, not H, for each t€l.

4.3. Remarks. 1. For C=TOP and n=3, 4.2 generalizes 4.1.

2. The forms of 4.1 and 4.2 where N is more generally a neighborhood of
flANinty, U] only follow trivially.

3. Consider the (uninteresting) case n=1. In 4.2 the isotopy H can, as in
4.1, be chosen such that H, is a C-homeomorphism for each 7€/ also if C=TOP.
We omit the proofs of 4.1 and 4.2 because they differ from the proofs in the case
n=2. We only remark that these results reduce to the special case of 4.2 where
C =LIP, A=M, U =0, for which there exists an easy direct proof.

4. For all C=TOP and n=2, the assumption in 4.1 and 4.2 that f[A\U]
is closed is essential. For example, for every 6¢C . (B""'), where n=2, the
S-neighborhood of the inclusion B"~'—R" contains a locally LIP flat embedding
which is not quasisymmetric, and which thus is not a restriction of any LQC homeo-
morphism R"-R".

5. For C=TOP, 4.1 and 4.2 are known in the absolute case A=M, U=0
(we may now assume that f is closed). For n=5 this is due to Price and Seebeck
[PS, Theorem 3]. The case n=3 follows from Craggs [Cr, Theorem 8.2] (cf. [B,,
Theorem 9]); this result of [Cr] also implies for n=2 the absolute case of 4.1. Of
course, 4.2 for C=TOP, n=2 is well-known, but it seems that it does not exist
in the literature.

6. The first of the three stages of the proofs of 4.1 and 4.2 consists of handle
lemmas. For C =TOP these lemmas base on the handle lemma [PS, Theorem 2]
if n=5, on [Cr, Theorem 8.1] if n=3 (cf. the paragraph just before Theorem 8.2
in [Cr]), and on the Schoenflies theorem if n=2. The handle lemmas for C =TOP
follow from the TOP handle lemmas and 3.1.

We begin with C =TOP, n=3.

44. Lemma. Let M be a PL 2-manifold, Q a PL 3-manifold, f: M—~Q
a closed locally flat embedding, ACQ closed with f being PL near 1A, and
e€C (ONA). Then there is an ambient isotopy H of Q rel A such that d(H,(x),x)<
&(x) for all xeO\A and tcl and that H, f is PL.
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Proof. Choose a closed polyhedral neighborhood N of 4 in Q such that
f is PL near f~'N. Obviously, there is a triangulation K of the space §= fMUN
such that f is PL, N a polyhedron, and the inclusion map N—~Q PL with respect
to K. Then S;=SndQ is a polyhedron under K. We may assume that a sub-
complex K, of K triangulates S,. We conclude, by the analogue of [B;, Theorem8’]
for 2-manifolds without boundary (this is obviously true) or directly, that a sub-
division of K,, which we may assume to be K, itself, can be extended to a triangula-
tion K’ of the space Q. Then by [B,, Theorem 8] a subdivision of the trian-
gulation KUK’ of SUAQ, which we may assume to be KUK’ itself, can be ex-
tended to a triangulation K; of the space Q. By [B;, Theorem 4], for every
5€C.(O\A) there is a PL homeomorphism g:(Q, K;)~Q such that gld=id
and d(g(x), x)<4(x) for each x€ O\ 4. Then gf is PL. If & is small enough,
by [Ks, Theorem] there is an ambient isotopy H of Q rel 4 such that H is an
e-isotopy on O\ A4 and H=g. O

4.5. Lemma. Theorem 4.2 holds if C =TOP, n=3, and A=B=T=M.

Proof. We first reduce the lemma to the case where f is closed. Since fM
is locally compact, it has an open neighborhood Q, in Q where it is closed. We
may assume that N is open, NCQ,, and e(x)=d(x, O\N )2 for each x€N.
Let & with 6(x)=d(f(x), O\Q,) for each xéM be the function given by the
lemma if Q is replaced by Q,. Consider f;, f; as in the lemma; then f,MC Q-
Let H° be the ambient isotopy of Q, thus obtained. Extending H? for each
t€1 by the identity of O\ Q, we get the desired ambient isotopy H of Q.

Thus we may assume that f is closed. Then we may also assume that there is
£€C,(Q) extending . We may further assume that N is open and that M and
O are PL manifolds. Then L=f"'9Q is a PL l-submanifold of dM. Choose
closed locally PL flat submanifolds M;, M,CU of M such that M, is a neigh-
borhood of M\ f~'N, M, is a neighborhood of M;, and M,NL is a 1-manifold.
Choose an open set N;Q such that NyC N and

(4.6) fM\MzC Nl’ fMlmNIZQ.

" Then choose an open neighborhood N, of N,UfM\M, in Q with N,CN.
Choose 7,€C.(Q) such thatif ¢y, ..., p;: Q—Q are homeomorphisms in U(id, no),
then @7 Q3'00.05€U(d,¢)). Define a continuous p:Q—RL by ux)=
min ((x)/2, d(x, ON\Np)). Let v€C (M) be the function given by [Cr, Theorem
8.1] with the substitution M—Q, K—M, K—~L, L—M,, fr>f, p—u. That is,
if g,, g2 M—~Q are PL embeddings in U(f,v) such that g;=g, on M, and
¢7'90=L, there is an ambient (PL) isotopy G of Q such that G,g,=g and
d(G,(x), x)=p(x) for all x€Q and t€l. Choose 0€C.(M) and neC.(0),
n=#n,, such that if @€U(f,d) is an embedding and @1, €U (dgy, 1), then
¢ is closed, @;[ONN]CO\Ns, (4.6) holds with f replaced by ¢, and @:0,0¢
U(f,v).
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We show that this ¢ is the desired function. Let f;, f; be as in 4.5. Then,
since (f;|My) '0Q=M,nL is a l-submanifold of 0M,, the embedding f;|M,=
folM 5 is locally flat, and, hence, by 4.4 there is a homeomorphism g: Q—Q in
U(id, n) such that f{=gf;, i=1,2, is PL on M,. Since (f;)"{O\N,]Cinty M,,
Lemma 4.4 gives an ambient n-isotopy G' of Q rel O\W; such that g,=G: f/
is PL. We have gcU(f,v), &|My=g,/M;, and g;7'0Q=L. Thus the second
paragraph of the proof gives a certain isotopy G. Then by defining H,=
g YGHG,Glg for tel we obtain an ambient ¢-isotopy H of Q rel O\N
such that H; fi=f,. O

The next lemma is needed for n=2.

4.7. Lemma. Let NCR? be a neighborhood of I and let ¢=0. Then there
is 0=0 with the following property: If fi,f:: [—1,2]>R? are embeddings with
d(f;, id)<$, thereis a homeomorphism h: R*—~R? such that d(h, id)<e, h| R\ N=id,
and hfi=f, on 1. Moreover, if
4.3) fi=rfa on [—1,2]\I,

h can be chosen such that hfi=f, on [—1,2].

Proof. Choose an integer p=2 such that if n=1/p, then n<eg/8 and
(=29, 14+2)X(—n,n)cN. Let d=n/4. Let fi,fs: [—1,2]—-R? be embeddings
with d(f;,id)<d. Choose arcs A, i€{l1,2}, je{-1,0,..,p+1}, k€{0,1},
with endpoints f;(jn) and (jn, (—1)*1) such that

int 4y < (G—1/2)m, (G +1/2)n) X (=n, DN\ Ai[-1, 2],
Ayjp = Agy for je{—1,p+1} in the case (4.8).
Then the open arcs int 4,5 are disjoint. The arcs 4;; can be found, for example,
as follows. Let fi(a;) be the point of f[—1,2]n{jn}x[—#n,n] closest to
(jn, (= D*n). We have |aj—jn|<6 and fiJ , <(jn—26, jn+28)X(—35, ), where
Jix=l[ax, jnl (or[jn, ay]). The arc 4;; is now the union of a subarc of the segment
{/m}*x[—n,n] and an arc close to f;J;.
There are Jordan domains
G © ((j_3/2)’7» (+1/2m) X (=n, 1)
for i€{l,2}, je{0, ..., p+1}, k€{0, 1} such that
3Gijk = [(j—Dn, jnlX {(— l)kﬂ}UAi(j—l)kai[(j —Dn, j’?]UAijk s
if (4.8) holds or if j¢ {0, p+1}, or such that
GijO = Gijl for je {O, P+1}’
0Gio0 = [—11, O1X {1, n} U {=n} X[—1, 1]V As00L 401,
ac;i(p+l)0 = [1» 1 +’1]>< {_77’ W}U{l +’7}><[—11, ”]UAipOUAiply
if (4.8) does not hold.
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By the Schoenflies theorem there is a homeomorphism h: R®—~R? such that
hGyj = Gy for je{0, ..., p+1}, ke{0,1},
h=id on R™\int(U{Gylj€{0, ..., p+1}, k{0, 1}}),
hfi=fs on I,
hfi=fs on [—1,2] in the case (4.8).

Then h|R™\N=id. Finally, since G,;nGy; =0 and d(G;)<e/2 for all i,j, k,
we have d(h,id)<e. O

The next two lemmas are the handle lemmas needed for 4.1.

49. Lemma. Let C¢{TOP,LQC,LIP}, let ns4, let k,m=0 be integers
with k+m=n—1, let f:1""'—>R" be an embedding, and let ¢>0. Then there is
8=0 with the following property: If fi, fo: 1" "*~R" are locally C-flat embeddings
such that d(f;, f)<6 and fi=f, on (I"™I*(1/2))XI™, there is an ambient e-isotopy
H of R" rel R\N(f1""*(1/2),¢) such that H, is a C-homeomorphism for each
t€l and H,fi=f, on I*XI™(1)2).

Proof. The case n=1 being trivial, we may assume n=2. Consider first
C =TOP. The case n=5 is [PS, Theorem 2]. The case n=3 follows from 4.5
(apply it to fI*X1™(1/2)). Let now n=2. Since f can be extended to a homeo-
morphism R?--R?, we may assume that f is the inclusion map. Then 4.7 and
Alexander’s construction of isotopies (cf. [RS, Proposition 3.22]) give the lemma.

Consider now C #TOP. By [TV;, Theorem 3.4] it suffices to construct =0
with the following weaker property (this reduction also holds for C =TOP): If
fi, f» are as in the lemma, there is a C-homeomorphism h: R"—~R" such that
d(h,id)<e, h=id on Y =R™N(fI""'(1/2),¢), and hfi=f; on I*XI"(1/2).
We apply the case C=TOP of the lemma and 3.1. We first choose 7€(0, 1/2)
and an open neighborhood ¥; of Y such that Y¥,nfI"~'(1/2+n)=0. By the
TOP case, there is =0 with the following property: If £, fo: I""'—~R" are
locally flat embeddings such that d(f;, f)<d and fi=f on (I'™\J*1/2))xI™,
there is a homeomorphism g: R"—~R" such that d(g,id)<e¢/2, g=id near ¥,
and gfi=f; on U=J*XJ™(1/2+n). We may assume that ¢ and J are so small
that A[1""\J""'(3/4)]CY.

We show that this & is the desired number. Suppose that the last-mentioned
fi» f> are, in fact, locally C-flat. Choose an open set V'CR" such that fiU is
a closed subset of ¥; then f,U is closed in the open set gV. Define &€C. (V)
by 2&(x)=min (¢, d(g(x), R"™\gV)). We apply 3.1(c) with the substitution C—C,
01—V, Qu—>gV, A—>Y,"V, B, B'—~V, M—f,U, f—~g|V, e—¢,. This is possible
since g extends the C-homeomorphism f,f;': fU—~f,U. We obtain a C-homeo-
morphism g’: V—gV such that g’cU(g|V, &), & =g=id on Y;nV, and g'=g on
fiU. Extending g’ by g|R™\V we obtain a homeomorphism g;: R">R" such that
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d(g,id)<e, g|Y1=id, g fi=/f; on U, and gV is a C-embedding. By [TV,,
Theorem 4.4] there is a C-homeomorphism #h: R"—~R" such that d(h,id)<e,
hlY=id, and h=g, near fi[I*(3/4)X1™(1/2)]. Then hfi=f, on I*XI™1/2). [

4.10. Lemma. Let C,n,k,m, e be as in 4.9 with m=1 and let f: 1" '~R"
be an embedding. Then thereis >0 with the following property: If fi, fo: I'™'—~R"
are locally C-flat embeddings such that d(f;, f)<é and fi=f, on (I™J*(1/2))x 1",
there is an ambient e-isotopy H of R" rel R™\N(fI77*(1/2),€) such that H, is
a C-homeomorphism for each t€1 and H,fi,=f, on I*XI™1/2).

Proof. We reduce the lemma to 4.9. We begin with some preliminary construc-
tions. Let N=N(f17"%(1/2),¢). Let ¢: R*~I' and t: R'—~] be the unique non-
decreasing retractions; then we define a retraction r: R"~I"""' by r(x)=(a(x,), ...,
0(x,-3), 7(x,-1)). For s=0, let B=I""*(1+s)X[—s, 1+5]XI(s)CR" and
define homeomorphisms o, f;: R*'—~R' by

St—I—S—I, t=-—1 st =0
a () =11, —-1=t=1 5s(z)={ —
st+1—s, r=1 ag (1), 1=0.

Then ¥ : R"—>R", Y(x)=(ot(1), ---» % (Xy—3)s Bs(Xn—1)5 5X,), is a PL homeomorphism
such that |/t '=id, yB,=B,, and ry;=r. We choose ac(0,1) such that
|fr(x)—fr(y)|<e/15 for all x, y€R" with |x—y|<a. Consider b€(0, a/2) and
the subset

A =T-XT"=1(1/2+b) X [b, 1/210(I*\J*(1/2+ b)) X I™~1(1/2+b) X0, 1/2]

of I}~'. Tt is obvious that if b is sufficiently small, then f7"~%1/2+b)c N and
there is an ambient a-isotopy I' of R" rel R"\N,, where N,=N(I""%1/2), a),
such that I', is PL and I, I}7'cl?™" for each t€] and that I'y[7*XI"(1;2)]cC A.
We fix such a number b.

Obviously, there is a PL homeomorphism ¢:7"~!'—~7"~1 such that

P[(INT*(1/2) X I"] = (I*\T*(1/2)) X I'7,
@I"1(1)2) = I*(1/2) X I" (124 b) X[b, 1/2] < I"~1(1/2+b),
P[I*x I™(1)2)] = A.

Thus by 4.9 there is J,>0 with the following property: If £, fz: I""*~R" are
locally C-flat embeddings such that d(f;, f)<d, and fi=f, on (I*\J*(1/2))x1™,
there is an ambient (g/3)-isotopy H® of R" rel R"™\ N such that H? is a C-homeo-
morphism for each #€l and that H}f,=f, on A4, whence HYfil''=f,I'; on
I*XI"(1)2).

We show that for every locally C-flat embedding g: I}™'—~R" with d(g, /)<
¢/15 there is an ambient (¢/3)-isotopy G of R" rel R™\ N such that G, is a C-
homeomorphism for each €I and G,g=gl\|I'"". By [Ru, Corollary 3.4.1]
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if C=TOP or by [GV, Theorem 4.3] if C =TOP, there is a C-homeomorphism
g’: R"—>R" extending g. Since d(r|B,,id)—~0 as s—0, there is s=>0 such that
d(g’|Bs, gr|B;)<e¢/15. Then g=g"y,: R*~R" is a C-homeomorphism extending
g with d(g|By, gr|B)=d(g'V|B1, griy;|B1)=d(g’| By, gr|B,)<e/15. We set G,=
gr,g— for tcl. Then G,|R™gN,=id and G,g=gl/I""" If x€R", ycI"*(1/2),
and |x—y|<a,

12(x)—=f)] = 8(x)—gr (x)|+ |gr (x) —fr ()] +]fr () —fr ()]
< 3.¢/15 = ¢/5,
whence gN,CN. If xéN,CB,,

187 (x)—8(x)| = 2d (8|B,, gr|By)+2d (g, )+ |/frl'(x)—fr (x)]
<=5 °8/15 = 8/3.

Hence G is the desired isotopy.

We show that §=min (J,, &/15) satisfies the lemma. Let f;, f; be as in the
lemma. By what we have proved, there are ambient (g/3)-isotopies H°, H!, H*
of R" rel R\ N such that H/} is a C-homeomorphism for all t¢/ and i=0,1,2,
that HYfily=f,I7 on I¥XIY(1/2), and that H\f;=fI,|I'"", i=1,2. Then
H=(H?*»'%H°xH' is the desired isotopy. O

The rest of the proof of 4.1 will now be standard. The next lemma is the second
stage of this proof.

411. Lemma. Let CE{TOP, LQC, LIP} and n=4,let G be an open subset
of R"Y, let A, B, U beopenin G such that AnGcU, BCG, and B is compact,
let {:G—R" be an embedding, and let ¢=0. Then there is 6= O with the following
property: If fi,f: G—R" are locally C-flat embeddings such that d(f;, f)<?o
and f\U=f,|U, there is an ambient e-isotopy ¢ of R" rel R™\N(fB, ¢) such that
@, is a C-homeomorphism for each t€l and ¢, fi=f, on AUB.

Proof. Let A,=AnG and N=N(fB,¢). Choose a compact PL (n—1)-
manifold Pc f~'N with Bcintg P. Choose a triangulation (K, K;) of (P, 0P).
Let K’ be the first barycentric subdivision of K and K” the second one. For
66K, let & be the barycenter of o, H,=u{r|6€1€K”}, and i(H,)=dim o.
Write K={oy,...,0,} with dimo;=dimo;,;. Then #={H,,...H,} is
a handle decomposition of P as in [H, pp. 224—227], [RS, p. 82] or [Ru, pp.
31—33]. In fact, if 0€K, P,=U{H [t€K, dim t<dim o}, H,=cl ((U{t|6€T€K"})\
P,), k=i(H,), and m=n—1—k (thus m=1 whenever ¢€K,), it is easy to show
that (H,, H,, H.nP,, H,ndP) is PL homeomorphic either to (I*Xx2I™, I*XI™,
AI*X2I™, 0) whenever g€KN\K, or to (I*X2I™ I*XIT, dI*X2I, I*X2I™"")
whenever o€K,. Setting H,=H, if H.nH #0 and i(H,)=i(H, (ie., if o is
a face of 7) we obtain a partial order for #. Let # and #;, respectively, be the
sets of the handles H€ # such that there is H'€# with H=H’ and with either
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H'nA,#09 or H’~B#0, respectively. Then H=H’¢s#, implies He#, for
i=0,1. We may assume that u#cU and uUH#Cintg P. Observe that
(intg P)NOP =(int; P)nR"~2 Write sE\H= {H,, ..., H) with i(H)=i(H, ).
Let #=(#n#)V{H,,....,H;} and P;=us#/ for 0=j=s. Then P,DB.
For each HE# with HnH;#0 we have i(H)<i(H;) if and only if HeH#/_,.
We set Uy,=U>4,0P,. Inductively, for each jc{l,...,s} we first choose
either a PL embedding pu;: I"~'—~f"IN\A4; whenever H,nR"*=0 or a PL
embedding p;: 17"~ "IN\ 4, whenever H;nR""*#0 and then define an open
neighborhood U; of A,UP; in G such that, setting k=i(H;), m=n—1-k,
we have either
#J;—an—z —_ 0’
WX I (1/3)] = H,,
i I" Py = o1 X I,
w [(INT* (1)) < I"] € U;_y,
U;= (Uj—l\#j[Ik(2/3)le])uﬂj[IkXJm(l/z)]
whenever H;nR""*=0 or
uj—an—2 — In—z’
w12 3)] = Hj,
il O Py = oI X 17,
[N (1)) X IT] € U; g,
Uj = (U; o\ I 2/3) X I L [T X T (1/2)]
whenever H;nR"~*>0. In both cases, the image of u; is locally PL flat in G.
Choose numbers 0<d;=¢;=¢/s for 1=j=s such that ¢;=6;,,/2 for j<s,

that either

Ny = N(fiy I"1(1/2), &) © N\N(F[G\[1*Q/3) X 1], 8,)
if H;nR""2=0 or
Ny = N(fiy I 2(1)2), &) © N\N ([N {1 2/3) < I21], 8,)

if H;nR"~®#0, where k, m are as above, and that ¢; is the number given either
by 4.9 if H;nR""*=0 or by 4.10 if H;nR""*#0 with the substitution (C, k, m)—
(C, k, m), f—~fu;, e—¢;. Then §=0, satisfies the lemma. In fact, let f;, f; be as
in the lemma. Then it follows inductively that there exist ambient e;-isotopies
@l, 1=j=s, of R"rel R™\N; such that ¢/ is a C-homeomorphism for all ¢ and
@i ...01fi=f, on U;. Hence ¢o=¢°*...%¢' is the desired isotopy. [

4.12. Proof of 4.1 for n=2. We may assume that B is closed and UcB.
Choose an open set Q,CQ such that f defines a closed embedding f’: B—~Q,,
x+—f(x). We may assume that Ncint Q, and that N is closed either in Q, if
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C=TOP orin Q if C#TOP. Then there is ¢'¢C,(Q,) such that &|N=e¢ and
g'(x)=d(x, O\Q,)/2 for each x€Q,. There is a locally finite family ¥ =7¥,u¥"
of open subsets of M in M, where ¥;={U}, such that 4cuU¥" and that for
each V€¥”, V is C-homeomorphic to an open set in R%", V is compact in B,
and fV is contained in an open subset Qy,CN of Q C-homeomorphic to R"
By [Mu, Lemma 2.7] we may assume that ¥~ has a partition ¥'=%u...07,
with each family ¥ being disjoint. We choose for each Ve¥” open sets
V=V-"15V°>...oF" such that V/cV/~' and that Acu{V"|Ve€¥’}. Define
open sets
D;=u{Vi-l0=i=jVe¥}cB (0=j=n),
Di=v{yi-*Ho=i=jVe¥JcB 0=j<n)
in M. Then Dy=U" D,>A, and for each 1=j=n we have D;_,cD;_; and
D; = Dj_yu(u {Fo|ves;).

Consider je{l,...,n} and a function ¢;€C,(Q,), to be specified below. For
each V€7, we choose &,>0 such that Ny=cl N(fV° ¢y) is compact in Qy,
ey=min g;Ny, Nynf[B\V]1=0, and that {Ny,|Ve€¥;} is a locally finite disjoint
family in Q,. It is easy to see that 4.11 also holds if the embedding f: G—~R"
is replaced by the embedding f|V : V—~Q, for Ve¥;. Let 6,=>0 with d,=
d(fV,O\Qy) be the number given by this version of 4.11 with the substitution
A—D';_1nV,B—V° U~D;_1nV, ey, Thereis 6;€C.(B) such that max J; V=9
and 6;(x)=d(f(x), Ny) for all ¥€¥; and x€B\V. We fix the functions &,, é;, ...,
&, 0, so small that

U(idg,, &) © ... o U(idg,, &) < U(idg,, &),
Ul(idg,, &) o U(f",0) c U(f",0;40) if 1=j<n.

There is 6€C,(M) such that §(x)=min (6,(x), d(f(x), O\Qy)) for each xcB
and N(4,0)cCD,.

We show that this & satisfies the theorem. Let fi, f; be as in 4.1. Then f;
defines an embedding f: B—~Q,, x+—fi(x). We construct inductively ambient
gj-isotopies H’, 1=j=n, of Q,rel Q;\N such that H{ is a C-homeomorphism
for all 7 and j and that H{... Hif{=f; on D; for each j. The desired isotopy
H is then the union of H"x...x*H' and of the trivial ambient isotopy of O\ Q,.
Let 1=j=n. The embedding g;-,=H{'..Hif{: B~Qy (g=/{) is locally
C-flat on inty B, g;_y, fs€U(f’,6,), and g;_;=f; on D;_;. Then for each
Ve there is, by the definition of Jy,, an ambient gy -isotopy H Voof Qg rel Q\Ny
such that H} is a C-homeomorphism for each ¢ and H{g;_,=fs on D;nV.
We set Hi(x)=H}(x) for each tcI whenever there is V€?¥; with x€N, and
Hi(x)=x otherwise. Then H’ is an ambient ¢&-isotopy of Q, rel Q;\N such that
H} is a C-homeomorphism for each ¢ We finally show that if x€D;, then
Hig;_1(x)=/f3(x). If xeVe¥], then for each W¢e¥;, W#V, we have x¢W,
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whence  d(g;-1(x), f(x))<6;(x)=d(f(x), Ny), and thus g;_4(x)¢N,. Hence
H{gj—l(x)?Hygj—l(x):fz/(x)- If x¢u¥j, then g;_4(x)¢ V{Ny|[V€Y;} and x€Dj_q,
whence Higj—l(x)zgj—l(x)=f2,(x)' O

413. Lemma. Let Q=RLXR', let f:[0,21-Q be an embedding with
f7100={0}, and let ¢=0. Then there is 6=0 with the following property: If
fi>f2: [0,21-Q are embeddings such that f7'00={0} and d(f,, f)<$6, there is
an g-push h of (Q, fI) with hfi=f, on L

Proof. Since f can be extended to a selfhomeomorphism of Q. it suffices to
prove the modification of 4.7, with the additional assertion omitted, where
(R%,[—1,2]) is replaced by (Q,[0,2]) and where f;7'0Q={0} (it is not difficult
to construct the isotopy). The proof is otherwise the same as earlier, but we now
define A4,y to be the segmentin dQ whose endpoints are £;(0) and (0, (=D¥). 0O

4.14. Lemma. The modification of 410 is true where n=2 or 3, R" is
replaced by R"., ;i 'R"'=f"1R"'=I""% and, whenever C #TOP, H, is not
claimed to be a C-homeomorphism for t 1.

Proof. For C =TOP, n=2, this is proved in 4.13. The case C =TOP, n=3
follows from 4.5. For C #TOP, the lemma can be proved by the aid of the TOP
case, 3.1(b), and [TV,, Theorem 4.8] as the case C =TOP of 4.9 (construct the
isotopy gradually). [

4.15. Lemma. The modification of 4.11 is true where n=2 or 3, R" is replaced
by R, fi'R"'=f"1R"1=GNR"2, and, whenever C =TOP, ¢, is not claimed
to be a C-homeomorphism for t#1.

Proof. The proof is a slight modification of that of 4.11; Lemmas 4.9 and 4.14
are applied. [

4.16. Lemma. The modification of 4.9 is true where C =TOP, n=3, k=0,
(R* 1", 1"""(1/2)) is replaced by (R>,IXI,[0,1/2]X[0,1/2]), and f'R®=
fTIR =1

Proof. This follows from 4.5. [

4.17. Lemma. The modification of 4.11 is true where C =TOP, n=3, (R", R
is replaced by (R’ , R\ XRY), and f'R*=f"'R®=GNR .

Proof. The proof is a slight modification of that of 4.11; Lemmas 4.9, 4.10,
4.14, and 4.16 are applied. O

4.18. Proof of 4.2 for n=2. The proof is an obvious modification of 4.12;
Lemmas 4.11, 4.15, and, whenever C =TOP, n=3, also 4.17 are applied. O
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5. Locally C-flat approximation

In this section we first prove the following three theorems. The first two of
them deal with the relative locally C-flat approximation of embeddings or of
immersions, respectively, and the third one with the extension of locally C-flat
approximations. We then give two applications, 5.10 and 5.11, on “LQC or LIP
taming” of locally flat embeddings. For a discussion on 5.1—3.3, see 5.4.

5.1. Theorem. Let Cc{TOP,LQC,LIP} and n=4, let M be an (n—1)-
and Q an n-dimensional C-manifold with 0Q=0, let ACM be closed, let f: M—~Q
be an embedding which is locally C-flat near A, and let ¢€C.(M). Then there is
a locally C-flat embedding f*: M~Q in U(f, &) such that f*=f near A.

5.2. Theorem. Let C,n,M,Q, A be as in 5.1, let BCM be closed and
B’'cM open with BCB’, let f: M—~Q be an immersion which is locally C-flat
near A, and let ¢€C (B’). Then there is an immersion f*: M—~Q such that f*=f
near A and on MN\B’, that f*|B’c¢U(f\|B’,¢), and that * is locally C-flat near
AUB.

5.3. Theorem. Let C,n,M,Q, A,¢ be as in 5.1, let UcCM be an open
neighborhood of A, and let f: M—~Q be an embedding. Then there is 6€C (M)
with the following property: If fo: U—Q is alocally C-flat embedding in U(f|U,6|U),
there is a locally C-flat embedding f*: M—~Q in U(f, €) such that f*=f, near A.

5.4. Remarks. 1. Theorem 5.1 implies immediately the following version
of 5.2, which generalizes 5.1: Suppose that f in 5.2 is an embedding (and B =0);
then f* can be chosen to be an embedding such that f*[B” is locally C-flat. The
sets B and B’ of 5.1 and 5.2 could similarly be included in the analogous result
[LT, Theorem 4.4]; see 5.9.

2. Several special cases of 5.1 and 5.2 are known. In particular, for C=TOP,
n=5, and A=0, Theorem 5.1 has been proved by Ancel and Cannon [AC, p. 61].
(In[AC] this result is only stated in the case dM =0, but its general case [D, Theorem
5B.1] is obtained as follows. Using a collar of dM in M construct a closed locally
flat embedding h: M —int M sufficiently close to id. Choose a locally flat embedding
g:int M—~Q sufficiently close to flint M. Then f*=gh is the desired embedding.)
Theorems 5.1 and 5.2 hold with f*=f in the case n=1 trivially and in the case
C=TOP, n=2 by the Schoenflies theorem. For C€{LQS,LIP} and n=2,
5.1 and 5.2 follow from the relative C-approximation result [LT, Theorem 4.4]
(cf. 5.4.1) and the C-flatness of C-embeddings I'—R? ([Ri, Theorem 1], [T,, Theo-
rem B]); however, we will give a new proof for this special case. Theorem 5.1 for
C =TOP, n=3 follows easily from Bing’s results [B;, Theorem 9] and [B,, Theorems
7 and 8]. In the case C€{LQC, LIP}, n=3, and A=0, we may assume that M
and Q are PL manifolds; hence 5.1 now follows from the fact that f can even be



126 JOUNI LUUKKAINEN

approximated by PL embeddings, by the case C =TOP and [B;, Theorem 6 and
its proof].

3. To prove 5.1 and 5.3 for C=TOP, n=5, we apply, together with 4.1,
the Ancel—Cannon theorem in its general form, mentioned above. However,
a slight reorganization of this section shows that the special case (M, Q)=(R""", R")
of this result would suffice. In fact, the special case (M, Q)=(I""", R") is enough
in a more laborious proof.

5.5. Lemma. Theorem 5.3 holds if C =TOP.

Proof. We may assume that f is closed. Then there are #€C.(Q) and
0,€C (M) with U(idgy, n)oU(f, d0)cU(f,¢). Choose a closed neighborhood
B of A with BcU. Let §,€C.(U) be the function given by 4.1 with the substitu-
tion C—TOP, n—n, M—U, Q—Q, A—~A, B—~B, U—0, f—f|U, N—~Q, e—.
There is 6€C (M) such that 6=6, and &|B =4,|B. We show that this J satisfies
5.3. Let f, beasin 5.3. By the special case C =TOP, A=0 of 5.1, which is known
to be true (see 5.4.2), there is a locally flat embedding f;: M~Q in U(f, 6). Then
by 4.1 there is a homeomorphism h: Q—Q in U(id, n) such that hf;=f, near A.
Hence f*=hf; is the desired embedding. O

5.6. Lemma. Theorem 5.1 holds if C =TOP.
Proof. This follows from 5.5. O

5.7. Lemma. For C #TOP, 5.1 holds if M =R""' or R'' and if there is
an embedding F : R"—~Q extending f.

Proof. Choose an open neighborhood U of 4 in R" such that f|[UnM
is locally C-flat. By 3.1if M =R""! or by 3.3 if M =R""!, there is a C-embedding
F;: U~Q extending flUnM such that F; can be extended by F|R™\U to an
embedding F,: R"—~Q. Then F,|M =f. By[TV,, Theorem 4.4] there is a C-embedd-
ing F*: R"—~Q such that F*|McU(f,e) and F*=F, near A. Then f*=F*M
is the desired locally C-flat embedding. [

5.8. Lemma. Let Ce¢{TOP,LQC,LIP} and n#4, let (X,Y) be either
QLI or (J%NLJTY, let fi X—R* be an embedding which is locally
C-flat near a closed subset A of X, let BCY be compact, and let ¢=0. Then
there is an embedding *: X—~R" such that f*=f on X\Y and near A,d(f*,f)<e,
and f* is locally C-flat near AUB.

Proof. Choose a closed neighborhood 4; of 4 in X such that f is locally
C-flat near A4,. By 5.6 there is a locally flat embedding g: Y—-R" such that g=f
on A;nY and that g is so close to f|¥Y that fi=gu(f|[X\Y) is an embedding
with d(f;,f)<e. Then fi=f on A4;. Hence f*=f; satisfies the lemma for
C =TOP.
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Consider C¢{LQC, LIP}. We may replace f by f; and, hence, assume that
f1Y islocally flat. Choose r€(0, 1) with BcrY. Then f|rY is locally flat. We may
well replace Y by rY in the lemma. Thus we may assume that f]Y is locally
flat. Then by [Ru, Corollary 3.4.1] there is a homeomorphism F: R"—~R" extending
fIY. Thus, if we repeat the above construction of f;, we may assume by 5.7 that
g is locally C-flat. Then again f*=f; satisfies the lemma. [

5.9. Proof of 5.1, 5.2, and 5.3. For C=TOP, the proof is only needed for
5.2 by 5.5 and 5.6. The joint proof of 5.1 and of the special case B=M of 5.2
is almost the same as that of [LT, Theorem 4.4]; it is only based on 5.8 in place
of the analogous [LT, Lemma 4.2]. To obtain the general case of 5.2, we modify
this proof as follows: In the notation of [LT], we choose the family ¥ in such
a way that U¥'CB’, where ¥'={Ve¥|VnB>0}. In the construction of the
sets C' and the immersions f; we then replace ¥~ by ¥" and ¥ by ¥ n¥ for
1=i=k.

Theorem 5.3 for C #TOP now follows from 4.1 and 5.1 as in 5.5 for
C=TOP. QO

5.10. Theorem. Let C=TOP, n,M,Q, A be as in 5.1, let f: M—~Q be
a locally flat embedding which is locally C-flat near A, and let €€C (Q). Then
there is an e-push h of (Q,f[M\A]) such that hf=f near A and hf is locally
C-flat.

Proof. Choose open sets U, VcM such that AcVcVcU and f|U is
locally C-flat. By 5.1 for every 6€C.(M) there is a locally C-flat embedding
g: M—~Q in U(f,5) with g|V=/f|V. By 4.1 there is an e-push h of (Q, f/[M\ A])
such that hf=g, provided that ¢ is small enough. Then & is the desired homeo-
morphism. O

5.11. Theorem. Let CE{LQC,LIP} and n+4,5,6, let M be an (n—1)-
and Q an n-manifold with 0Q=0, and let f: M—~Q be a locally flat embedding.
Then M and Q can be given C-structures such that f becomes locally C-flat.

Moreover, if M (or OM, respectively) is already a C-manifold, this can be
done without changing the C-structure of M (of OM, respectively) for all n=4
(n#4, 5, respectively).

Proof. We may assume that M and Q are C-manifolds by [TV;, Theorems
4.6 and 4.8] and, whenever dM =0 and the parenthetic assertion is considered,
by 8.2. Then 5.11 follows from 5.10. O

An application of 5.11 is given in 8.3.2.
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6. Locally LIP flat approximation of quasisymmetric
or bilipschitz embeddings

In this section we prove the following two theorems concerning, respectively,
quasisymmetric embeddings and bilipschitz embeddings.

6.1. Theorem. Let n»4 and let n: R, ~R', be a homeomorphism. Then
there is a homeomorphism n*: R',—~R' with the following property: Let either
YCXCR"™! with Y openin R'™' or YCXCR'™ with Y openin R, let
f: X—>R" be an n-quasisymmetric embedding, and let e¢€C.(Y). Then there is an
n*-quasisymmetric embedding f*: X—~R" such that

) fHXNY =flX\Y,

(2) fHYeU(flY,e),

(3) f*Y islocally LIP flat.

6.2. Theorem. Let n#4 andlet L=1. Then thereis L* =1 with the following
property: Let X,Y,¢ be asin6.1 and let f: X—R" be an L-bilipschitz embedding.
Then there is an L*-bilipschitz embedding f*: X —~R" satisfying the conditions (1), (2),
and (3) of 6.1.

6.3. Remarks. 1. Theorems 6.1 and 6.2 are trivial for n=1. They are new
for n=5 only because of their analogues mentioned in the Introduction and
proved in [LT, Corollary 2.20 and Theorem 3.2]. In the proofs for n=2 we closely
follow [LT]; we use Carleson’s finiteness idea [Ca] (also used in [V,], [T;], [T:],
[Kk], [TV.], [TV,]) but replace the PL methods of [LT] by 5.3 for LIP. As in [LT],
in 6.1 and 6.2 we could suppose about (X, Y) more generally that XCR"~' and
that Y is only an open subset of X which is the union of a subfamily, locally finite
in Y, of the cube family % of 6.4 and which is a manifold.

2. One obtains easily an analogue of 6.1 and 6.2 for weakly quasisymmetric
embeddings, defined in [TV;]; cf. [LT, Theorem 2.22].

6.4. Cubical decompositions. Let n=2, let Y be an open subset of R"~'
orof R, let ¢:Y—~Z be acontinuous map into a metric space, and let é€C ,(Y).
We define a decomposition # of Y into closed (n—1)-cubes as follows. Let £ be
the family of all closed (n—1)-cubes in R"~! with side length 2% and with vertices
in 27%Z"-' k€N. For each Qc%, we let z, be its center and 24, its side length.
Define ay: R""'—~R""" by ag(x)=z+2x, and let Q(t)=uyJ" (1), O(1)=0(?)
for t=0; then Q=0(1). Let #° be the family of all maximal cubes Q of &
contained in Y and satisfying either the conditions Q(3)cY and d(¢Q(3))<
min e0(3) whenever QndY=0 or the conditions Q3)NR%Y'CY and
d(e[0B3)NR")<min e[Q(3)NR%""] whenever QndY #0. Dividing each cube
of #° into N=2""' cubes by bisecting the sides we obtain the family #. We
express A as a disjoint union A'=X;U...0Xy as follows: Divide I"' into cubes
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0., ..., Oy by bisecting the sides. Then set A= {0,|0€ #°}. The following
properties of % are easily verified:

(1) Y=UX.

(2) If OQ,ReA, QnR=0, and Q#R, then intQnint R=0 and
JolAr€{1/2, 1,2).

(3) If Qe and QnAY =0, then Q(3)cY. If Qe and 0NndY =0,
then Q(3)nR""'cCY.

(4) If O, REA and QnR=0, then Q(3/2)nR(3/2)=h.

(5) If xeQe, then d(pQ)<e(x).

6) If Q,ReA; and Q#R, then QNnR=0.

We call o the cubical (@, €)-decomposition of Y or also a cubical decomposition
of Y if we do not specify ¢ and e.

6.5. From now on to the end of the proof of Lemma 6.13, we suppose that
n,n, X, Y, f are as in 6.1 with n=2, that A is a cubical decomposition of Y,
and that ¢=0. We may assume card X =2; then n(1)=1.

For each Q€A we set go=|f(z9)—f(zgo+%0er)| and o*(t)=0@)nY
(=0(t)nX) for t€(0,3]; then aélQ*(t)=J""(t) if 0NdY =0 and az'Q*(t)=
T OON(RY —ey-q) i 0NOY #0.

The following lemma can be proved in the same way as [LT, Lemma 2.6].

6.6. Lemma. There are constants ¢;=1 and c,=1 depending only on n and
n with the following properties:

(1) If Q,ReA, OnR#0, and Q+#R, then 0o/cr=11(zg) —f(zr)|=c100-

(2) If Q,ReH and QNR=0, then gglor=ci.

(3) If QeA, x€Q*(5/4), and yeX\Q*4/3), then |f(x)—f(3)|Zgolc2- O

6.7. Constructions. Let x,, %, be the least natural numbers such that 2*1=2 Vn
and 2%:=2c%. For each Q€4 let u, be the greatest integer such that sy=2"e=g,.
By 6.6(2) we have spfsp=2" if Q, ReA, QnR=0. We choose bye2te™™Z"
such that |bo—f(zp)|=Vn2te™*7Y(=5,/4). Define o: R"~R" by Po(x)=
(x—bg)/sq-

6.8. Lemma. There are a finite set o depending only on n and a finite set
B depending only on n and n such that if Q, REA, QNR=0, then ap ey s/ and

BoBrE€A.

Proof. The existence of o/ follows from 6.4(2). The existence of % follows
from an obvious analogue of [LT, Lemma 2.8], which can be proved by the aid of
6.6(1) and 6.6(2) exactly as [Kk, Lemma 2.4]. O
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6.9. Constructions. We set for 0=i=N
A= H0...uA;,
U=u{Q*(1+27"7Y|QeA"},
Vi=u{0*(1+27"79)|0e A"}
Then U, V; are openin Y, V,_,CU;, and Uy=Y. If i=1 and Qcx;, we set

Up = g [Q*(3/2)nU;_4],
Vo= a5 [0 (4/3)nV,_,].

Then V,cU,. There s a finite set & depending only on » such that (Ug, Vo) &.

Let 7={I""1(2), I" ") (R*—e,_,)}. For T€T let F(T) be the set of
all #-quasisymmetric embeddings g: 7—R" with [g(0)|=1/4 and 3/4=|g(e,)|=3.
In the topology of uniform convergence Z(T) is compact by [TV,, Theorems
3.4 and 3.7 and Remark 3.6]. For each Q¢4 we set Ty=05'10(2)nY] and
Jfo=BofxglTy. Clearly Ty T and fo€ ZF, (Ty).

6.10. Lemma. For every &=0 there is 0*(¢')€(0,¢’] depending only on
n,n, and & which has the following property: If A" is as above, Q€ X, g€ F(Typ),
and if h: Uy—~R" is a locally LIP flat embedding with d(h, g|Uy)<6%(¢’), there is
a locally LIP flat embedding W :To—~R" such that d(W, g)<e' and I'|Vy=h|V,.

Proof. Consider T€J, an arbitrary embedding g: T—R", and &=0. Given
A" and QA" with Tp=T, by 5.3 there is =0 such that for every locally LIP
flat embedding h: Uy—~R" with d(h, g|Uy)<d thereis i’ as in the lemma. Since
& is finite, there is the greatest 6=0(T, g, &')€(0, ¢’] having this property for all
A and Q€A with Ty=T.
We set 6*(e)=inf {0(T, g, ¢')| T€ T, g #(T)}. Then as in [V,, Lemma 2.6]
we get 6*(¢")>0 by the compactness of the spaces Z(T). Thus 6*(¢’) is the desired
number. O

6.11. Construction. We choose numbers dy=dy_;=...=5,>0 such that
dy < min (0/2, 1/4c}cy, 1/4c2n(2)n(2Vn—1)),
0; =< 0% (84 0)/(22+14-1).

The numbers J; depend only on #n,7, and o.
We next prove by induction on i that the following lemma is true for every
i€{0,1,...,N}:

6.12;. Lemma. There are a finite set #,, depending only on (m,n,c,i), of
locally LIP flat embeddings J"'(1+2~"")NT—R", T¢ 7, and a locally LIP flat
embedding ¢;: U;~R", such that for each Q¢ A;*

(D) Bo@iglog*Q* (1 +27""Ne A,

@ d(@lQ*(1+2777Y), f10*(1+2717Y) = 25;5,.
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Proof. Since U,=9, 6.12, is trivially true. Assume that 1=i=N and that
6.12,_, is true. For Q¢.#; we define a locally LIP flat embedding hy=Bo®;_109|U,.
If x€U,, there is RE€#;*, such that oy(x)€R*(14+27%), whence RNQ#0. Then
ho(x)=Bofr"Vag ag(x), where Y=PBr@;_10gleg ‘R*1+2")€#_,. The sets
UQnocEIR*(1+2“') belong to a finite set depending only on »n. Thus by 6.8 the
maps h, belong to a finite set %; depending only on (n, 1, 0, I).

For each T€.J, by the compactness of Z(T) there is afinite set #'(T)c Z(T)
depending only on (n,1,0,i) such that d(g, #'(T))<0,_, if g€ Z(T). Consider
Q€A;. Choose geF'(Ty) with d(fy, g)<0;—;. If x€Uy and R is as above,

lho(x)—fo (%) = i(Pi—l(“Q(x))_f(“Q(x))I/SQ
=20;_15x/5g = 272110, _4,

whence d(hy, g|Uy)<0%(d;). Hence there is a locally LIP flat embedding hy: To—~R"
such that d(hp, g)<d; and ho=h, on ¥V,. We can choose the maps /g in such
a way that the maps hpleg'Q*(1+27""") belong to a finite set Z;, depending
only on (n,1,0,i), of locally LIP flat embeddings J"(14+2~"")nT—~R", T€J.

We set o,|V,_i=¢;_1|Vi_y and @,(x)=p5 hpug"(x) for all Q€x; and
x€Q*(1+27"Y. Then ¢;: U;~R" is a well-defined locally LIP flat immersion,
and it satisfies (1) with

H = DO I A2 YAT | h: I L1 +27)AT ~ R, TeT, he #_y).
If Qex; and x€Q*(1+2717Y),
lp: () —f ()| = SQlh,Q(“él(x))—fQ(aél(x))l = 20;59,

which implies (2). We finally prove that ¢; is an embedding. Since ¢; is the
embedding B5'hpag' on Q*(4/3)nU,; for each Q¢;, it suffices to show that if
Q, ReA¥, x€Q* (142711, yeR (142777, so=sg, 4=lp;(x)—,(»)l, and if
x¢R*(4/3) or y¢Q*(4/3), then A=lisy, where A=1/cic;—46,>0. We have
A=|f(x)—f(p)|—46;50. Thus,if y¢ Q*(4/3), the claim follows from 6.6(3), whereas
if y€Q*(4/3), in which case QNR=0 and x¢R*(4/3), the claim follows from
6.6(3)and 6.6(2). O

6.13. Lemma. Let 2=n#4, let n: R ~R' be a homeomorphism, and let
6=0. Then there are a homeomorphism n*: R. —~RY, and a finite set @ of locally
LIP flat embeddings T—R", T€Z, with the following property: Let either YCXC
R"-' with Y openin R"' or YCXCR'™ with Y openin R, let f: X—~R"
be an n-quasisymmetric embedding, and let A be a cubical decomposition of Y.
Then there is an y*-quasisymmetric embedding f*: X—~R" such that

1) fHIXNY=fIX\Y,

(@) f*|Y is locally LIP flat,

() d(f*|Q, flQ)=00q for each Q€ XA,

4) Bof*aglTo€2D for each Q€A
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Proof. Let ¢y: Y—R" be the locally LIP flat embedding of 6.12y. We define
[*=@yu(fIX\Y). Then (1), (2), and (3) are satisfied. One can find Z and prove
(4) in the same way as one obtained %; and the relation hy€%; in the proof of
6.12,. The proof of [LT, Theorem 2.16] now shows that /* is an n*-quasisymmetric
embedding with #* depending only on (n,74,0). O

6.14. Proof of 6.1 for n=2. Apply 6.13 with o=1 and with & being the
cubical (f, ¢)-decomposition of Y. O

6.15. Proof of 6.2 for n=2. Every L-bilipschitz embedding is #,-quasisym-
metric, 7 (¢)=L?%. Theorem 6.2 follows from an application of 6.13 with the sub-
stitution %+, o—-1/3L% The details are almost the same as those of the proof
of [LT, Theorem 3.2]. O

7. Relative LQS or LIP approximation

In this section we prove the following two theorems dealing with relative LQS
or LIP approximation of embeddings or of immersions, respectively. Their essence
is the special case A4#0, U=B=B'=M.

7.1. Theorem. Let C€{LQS,LIP} and n=4, let M be an (n—1)- and
Q an n-dimensional C-manifold with 0Q=0, let ACM be closed and U, BCcM
open with ACU, let f: M—~Q be an embedding which is a C-embedding near A,
and let ¢€C,(B). Then there is an embedding f*: M—~Q such that f*=f near
A and on M\QB, that f*|BEU(f\|B,¢), that f* is a C-embedding near AUB,
and that f* is locally C-flat near B\U.

7.2. Theorem. Let C,n,M,Q, A, U be as in 1.1, let BCM be closed and
B’cM open with BCB’, let f: M—~Q be an immersion which is a C-immersion
near A, and let ¢€C . (B’). Then there is an immersion f*: M—~Q such that f*=f
near A and on MN\B’, that f*|B’cU(f|B’,¢), that f* is a C-immersion near
AUB, and that f* is locally C-flat near B\ U.

We begin with an analogue of [LT, Lemma 4.2] and of 5.8.

7.3. Lemma. Let Cc{LQS,LIP} and n>4, let BC A be open subsets of
R such that BC A is compact, let f: A—~R" be an embedding which is a C-
embedding near a closed subset E of A, and let ¢=0. Then there is an embedding
f*: A—R" such that f*=f on A\B, d(f*, f)<e, and [* is a C-embedding near
EUB.

Proof. We may assume that E is compact. Define ve€C,(B) by v(x)=
min (e, d(f(x), f[4\B])/2). Choose an open neighborhood X of E in A4 such
that XcA is compact and f|X is a C-embedding. Then f|X is quasisymmetric
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if ¢ =LQS or bilipschitz if C=LIP. Let ¥Y=XnB, and define §¢C.(Y) by
d(x)=(1/2) min (v(x), d(f (%), f [B\Y])). By 6.1 if C=LQS or by 6.2 if C=LIP,
there is a C-embedding g: X—~R" such that g=f on X\, g|Y€U(f]Y, ), and
glY is locally LIP flat. Extending g|Y by f|B\Y we obtain an embedding
g.: B—~R".

Choose an open neighborhood ¥ of E in 4 with VcX. Since g; is locally
LIP flat on Y S>VAB, by 5.1 there is a locally LIP flat embedding f;: B—~R" in
U(gy, v/2) such that fi=g, on VnB. Then fEU(SIB,v). Thus f; and flANB
define an embedding f*: A—R", which is the desired one since f*=g on V. O

7.4. Lemma. Theorem 1.1 holds if U=B=M, and Theorem 1.2 holds if
U=M.

Proof. This follows from 7.3 in the same way as 5.1 and 5.2 followed from
58in59. O

7.5. Proof of 7.2. Choose an open VCM with BN\UCVCVCB\A4. By
5.2 there is an immersion g: M~Q such that g=f on M\V, g|lVeU(fIV, (¢/2)|V)
and g is locally C-flat near B\U. Then g=f near 4, whence g is a C-immersion
near AU(B\U). Thus by 7.4 there is an immersion f*: M—Q such that f *=g
near AU(B\U) and on M\B’, f*|B’€U(g|B’,¢/2), and f* is a C-immersion
near AUB. Then f* is the desired map. O

7.6. Lemma. Theorem 1.1 holds if B=M.

Proof. This reduces to 7.4 by 5.1; the proof is similar to 7.5. O

7.7. Proof of 7.1. We may assume that &(x)=d(f(x),[M\B])/2 for each
x€B. Choose an open ¥ CM suchthat ACV cVcU and that f is a C-embedding
near V. By 7.6 there is a C-embedding g: B—~Q in U(f|B, ¢) such that g=f on
VAB and g is locally C-flat near BN\U. Then f*=gu(fIM\B) is the desired
embedding since f*=f on V. O

8. Extension of LQC or LIP structures

In this section C€{LQC, LIP}, M is an n-manifold, and &/ is a C-structure
on OM. We prove the following two theorems.

8.1. Theorem. Suppose that M is of the form M =OMXR'.. Then o/ canbe
extended to a C-structure on M.

8.2. Theorem. Suppose n=4, Then o can be extended to a C-structure
on M.
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Moreover, if of, and st are two C-structures on M both extending </, then
Jor every e€C (M) there is an ambient e-isotopy H of M rel M such that
H,:(M, st,)~(M, «£,) is a C-homeomorphism.

8.3. Remarks. 1. By [LT, Remark 4.7] every LQC manifold (N, #) has
a metric ¢ such that id: (N, #)—~(N, ¢) is an LQS homeomorphism. In 8.1 for
C =LQC, n=2, [T;, Example 4] shows that if (dM, &) is given such a suitable
metric, a product metric is not necessarily a suitable one for the extended LQC
structure on M.

2. One gets the existence part of 8.2 immediately from 5.11 applying it to the
inclusion of (dM, /) into the double of M. However, we give below a more
elementary proof.

8.4. Proof of 8.1 and 8.2. The uniqueness part of 8.2 follows immediately
from [TV;, Theorem 4.8]. Since dM has a collar in M, it is easy to see by [TV,
Theorem 4.6 and Corollary 4.5] that the existence part of 8.2 follows from 8.1.
Theorem 8.1 is trivial for LIP. For n#35, the LQC case of 8.1 follows from the
LIP case, because the LQC structure &/ contains a LIP structure by [TV, Theorem
4.6 and Corollary 4.5]. Thus it suffices to prove 8.1 for C=LQC, n=5. Since
(0M, /) has an open cover by n sets each C-embeddable into R"~* (cf. [Mu,
Lemma 2.7]), the following lemma completes the proof. [J

8.5. Lemma. Let M be as in 8.1 with n=4, write X'=XXR. whenever
XcoM=0Mx{0}, let U,V be open subsets of OM, let s/, be a C-structure on
U with o,|U=A|U, and let f:(V, L|V)~>R"" be a C-embedding. Then there
is a C-structure o/, on (UOUVY) such that o, U0V = \UOV and o, U =of,.

Proof. Let o/; be the unique C-structure on ¥’ which makes the open em-
bedding fXid: V'—~R’ a C-embedding. Then &/,|V=x|V. Let W =UnV.
By the uniqueness part of 8.2 there is a C-homeomorphism hy: (W', oZ, W ')~
(W', o3|W’) which can be extended by the identity of ¥"\ W to a homeomorphism
h:V’—>V’ such that h|V =id. Let </, be the unique C-structure on ¥’ which
makes h: (V’, /)~ V', ;) a C-homeomorphism. Then £,V =<V and
W’ =s1|]W’. Hence the C-structure </, on (UUV) induced by /0, is
the desired C-structure. [J

9. Extension of LQC homeomorphisms

In this section we prove that for every n, every LQC homeomorphism
Jf:R'>R" can be extended to an LQC homeomorphism F : R:*!1—R"*1; cf.
[TV;, Theorem 4.10]. The proof makes use of the fundamental Theorem 3.2 of
Tukia and Viisdld [TV,] on similar problems for quasiconformal embeddings.
For n33 theresultis simple: [TV;,, Theorem 4.8] produces F as an LQC approxima-
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tion of fXid. (In the case n=3, it seems that [Ca] does not suffice for us.) In
9.4 we give a short proof for a slightly improved version of [G,, Theorem 2].

9.1. Lemma. Let f:R'-R" (n=1) be an LQC homeomorphism and let
ACR™' be compact. Then there is ry=0 such that for every r=r, there is an
embedding g: R'OB'Y(r)—~R'*' such that g|R'=f, g|B"(r) is quasiconformal,
and gB" (ry) D A.

Proof. We may assume that f is sense-preserving. Choose consecutively
a,0,70=0 such that ACB'a)X[0,a), f~'B"(a)cB'(0), d(fB"(¢))=2a, and
B"(0)X[0, 20)C B"*Y(r,). We extend f to a homeomorphism F;: R~ Ry
by setting Fy(x, 1)=(f(x), 1(x, 1)) for x€R", 1=0, where

1(x, f) = max {|f(»)—f(*)|: YER", |y—x| =t}

(cf. [TV,, (2.4)]). For each xeB"(¢) we have 7(x, 20)=a since B"(x, 2¢) D B"(0).
Hence F B"‘Y(r)>A. Consider r=ry. Let b=9+5yn, ¥=(1+b)y, U=B"(r),
and U*={(x, 1)eR"}': |x|4+bt<r"}. Then U*nR'=U and B} (r)cU*. Since
f|U is quasiconformal, by [TV,, Theorem 3.2] there is a quasiconformal embedding
F:U*~R'! such that FI[U=f|U and FB%(r,)>A. Then g=fu(F|By(r))
is the desired embedding. O

9.2. Theorem. For every n=0, every LQC homeomorphism f:R"'~R"
can be extended to an LQC homeomorphism F : R >R,

Proof. We may assume n=1. We construct inductively numbers s;>r;>j
and embeddings g;: R"UB" (s;)—~R%"Y, jEN, such that rj<rj.q, g|R*=1,
g;|B%!(s;) is quasiconformal, g;B"* r;) D BY(j), and g;.1=g; on BHN(r)).
We obtain s;, 7, & from 9.1.

Suppose that we have constructed s;,r;, g;. Let H =RNBYNr)), H' =
RN\ g;B"}!(r;). Clearly there is a quasiconformal homeomorphism o: R**!—R"+!
with «H=R%'l. We next construct a quasiconformal homeomorphism
B: R™'>R"+' with BH’=R'*'. Extend g;By "(s;) by reflection to a quasi-
conformal embedding ¢: B"+'(s;)~R"*". By [GV, Relative Schoenflies theorem
2.4] there is a quasiconformal homeomorphism : R"**—~R"*! such that ¥ =¢
on B"+\(r;) and YR"=R" Then yH=H’. Thus p=oy~" is the desired map.
Using the equivalent definition of LQC embeddings in a Euclidean space as LQS
embeddings [V, Corollary 2.6], we see that the homeomorphism hy=pgjo~*: R">R"
is LQC. By 9.1 there is r,>0 such that for every r=r, there is an embedding
h: R"UB"(r)~R'*' such that h|R"=h,, h|B"*'(r) is quasiconformal, and
hB"*(ro) D BB (j+1)nH']. Choose  rj;;=max (r;,j+1)  such  that
a[B' N (r;4 ) HI DB (ro). Set s;,1=2r;44, and fix r such that o[ BY (s 1)NH]C
B"*1(r). Define an embedding hy: (R"UB%'(s;4))nH—~RY™ by hy(x)=B""ha(x).
Then hy=g; on dH, y|B'(s;41)nH is quasiconformal, and hy[B%(r;41)nH] D
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B f'(j+1)nH’. Thus, extending h, by g;|B""!(r;) we obtain the desired embedding
8gj+1-

Setting F=g; on B"(r;) for each jEN we obtain an LQC homeomorphism
F : Ri'> R which extends £, O

9.3. Corollary. For all 0=n=p, every LQC homeomorphism f: R"—R"
can be extended to an LQC homeomorphism F : R°P—~RP. [

9.4. Theorem. Let Cc{LQC, LIP}, n=5, and let M,, M, be homeomorphic
compact locally C-flat (n—1)-submanifolds of S™ without boundary. Then there are
open neighborhoods U; of M; in S" and a C-homeomorphism f:(U,, M;)—~
(Uza M2)

Moreover, if fo: Mi—~M, is a C-homeomorphism, this also holds for n=>35,
and we may assume f|M,=f,.

Proof. We may assume that M;, M, are connected and n=2. By [Gr,
Theorem 27.10], S™\M; consists of two components; their closures My, M,,
are C-manifolds with dM;;=M;. By [TV, Corollary 4.5] there is a C-homeo-
morphism fy: M,—~M, whenever n=5. By [TV,, Theorem 4.10 and Remark 4.11]
there are open neighborhoods U;; of M; in M;; and C-homeomorphisms
Jfii Uyj~Uy;, i, j=1,2, such that f;|M,=f,. Then U;=U,0U, and f= f,uf,
satisfy the theorem. [
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